
Continuous and Collaborative Validation: A Field Study of Requirements
Knowledge in Agile

Rosalva E. Gallardo-Valencia
University of California, Irvine

rgallard@ics.uci.edu

Susan Elliott Sim
University of California, Irvine

ses@ics.uci.edu

Abstract

We present the results of our field study that

describe how requirements validation was performed
at an industrial software company using agile software
practices. As is common in agile processes, the team
did not capture requirements knowledge in a
comprehensive specification document. Instead,
requirements knowledge was captured in user stories,
automated acceptance tests, personal notes, and
conversations. Validation was performed continuously,
during pre-iteration, iteration planning, and intra-
iteration using mainly conversations. Validation was
also collaborative and involved all team members,
including the Product Owner, programmers, and
testers. The results of our field study have implications
for both agile and validation methods. This successful
arrangement of agile practices is instructive for agile
practitioners and for researchers studying validation.

1. Introduction

Requirements engineering is a knowledge-intensive
activity. The correct and clear understanding of
requirements among stakeholders and software team
members is key to the success of a software product.

Ideally, requirements knowledge is captured in a
written format called a requirements specification
document that includes all details that specify customer
needs. However, recent studies on requirements
engineering experts have shown that requirements
engineers prefer short documents that include only the
important details at an appropriate level of abstraction
[1]. Written requirements knowledge is complemented
by requirements knowledge that is shared through
conversations among stakeholders and software team
members.

We are interested in understanding how
requirements validation takes place in environments
where little requirements knowledge is written down.
For this reason, a software team using agile practices

offers a good setting for studying requirements
knowledge.

Requirements validation is an activity that requires
different techniques in agile software development.
Existing approaches to validation rely heavily on a
requirements specification document which is not
available in agile. This leads to a false assumption that
rigorous validation is only necessary on projects that
produce a complete set of written requirements.
However, producing software that does not do what the
customer wants is a major risk [2], which means
validation is necessary on every project. The question
then arises: how can we perform validation on an agile
project without comprehensive documentation?

We conducted a field study of a company using
agile requirements and analyzed the data qualitatively.
We use the phrase agile requirements to refer to the
requirements managed using agile techniques such as
user stories [3], iterations, among others. In this field
study, we saw agile validation being carried out at a
software company using existing agile practices and
artifacts, in particular Scrum [4], user stories, and
automated acceptance testing [5]. Not surprisingly, the
software team did not capture requirements knowledge
in a comprehensive specification document. Instead,
they captured requirements knowledge in user stories,
improvised checklists, and automated acceptance test
cases. The written component of these artifacts and
practices was minimal; they served only as reminders.
There was a dependence on ongoing conversations and
feedback. It was in these interactions that we found
requirements validation activities.

We believe that this approach worked at this
company for two reasons. First, requirements
validation was conducted continuously throughout an
iteration. Validation was not an activity performed
only at the end of the iteration. Instead, each user story
was validated on an ongoing basis, using mainly
conversations to share knowledge about requirements.

Second, every team member participated in
requirements validation. Although the Product Owner

(PO) played a key role, the Scrum Master, manager,
programmers, and testers were also actively involved.
They worked together to define the code that needed to
be implemented and the test cases that should pass to
complete a user story. Validation was a collaborative
activity shared by all team members.

Just as agile requirements differ from the
requirements documentation found in other processes,
we found that validation in agile differs from classical
forms of validation. Agile validation is a form of
validation that is continuous and collaborative.
Although, our study was conducted at only one
organization, we do not believe that agile validation is
unique to this team. Scrum, user stories, and automated
acceptance testing are used throughout the agile
community. This paper provides an explication of agile
validation methods based on qualitative analysis and
reflections on our findings. These results will be
instructive for practitioners and researchers of agile
and of validation.

2. Field Study – Easy Retirement

We conducted a field study at Easy Retirement1, an
Internet-based 401k service provider. The company’s
main product is a web application that allows
individuals to manage their own retirement investment
plans, and is sold as a service to customers. The
company has a total of 26 employees, and the software
team consists of ten members including the Scrum
Master, the Product Owner, a technical manager,
programmers, and testers. We observed the software
team at work, attended planning meetings, interviewed
team members, and collected software artifacts.

2.1. Agile Practices

The software team follows a number of agile

methods closely, including Scrum, daily stand-up
meetings, user stories, continuous integration, on-site
customer, and automated acceptance testing.

Each Sprint or iteration lasts two weeks, and starts
and ends on a Friday. On the first day of an iteration,
the team holds a Sprint Planning meeting when user
stories are broken down into tasks and estimated.
During the Sprint programmers and testers will work
closely to complete the user stories and to ensure that
all the user stories are accepted by the end of the
Sprint. It is a challenge to get everything done in an
orderly fashion, because testing and development are
mutually dependent.

1 This name is a pseudonym to protect the company’s privacy.

2.2. User Stories

The primary unit of work for requirements is the

user story, which includes written reminders, test
cases, and conversations. Their most public written
representation is the index cards on the Scrum board
using the format “As a … I want …. so that …..” But
individuals also have their own representations that
they use in their work. The Product Owner and Scrum
Master each maintain a personal checklist in a
spreadsheet. The testers store additional details in a
wiki [6].

2.3. Test Cases

During the Sprint, testers start creating the test cases

while programmers are adding new functionality.
Testers use Fitnesse [7], an automated acceptance
testing tool, to create the test cases. On the first
Monday of the Sprint, testers meet with the Product
Owner to ask questions about the high-level
requirements and to create acceptance tests. The
programmers also use these tests to guide their design
work. Programmers are expected to write their own
unit tests and to write fixtures for Fitnesse.

All team members were involved in creating test
cases, especially for acceptance testing, though the
programmers were primarily responsible for unit tests.

2.4. Conversations

All team members have conversations about the

requirements on a daily basis. These conversations are
mainly about the user stories, high-level test cases, and
acceptance test cases. This face-to-face knowledge
sharing facilitates the validation of requirements.

We analyzed the flow of requirements at Easy

Retirement to identify the potential interaction points
that are used to validate requirements. We identified
three stages around each iteration when requirements
are engineered. These stages are: 1) before the
iteration; 2) during the iteration planning; and 3)
during the iteration.

3. Method

We used qualitative research methods [8] to collect
and analyze data at our field site. We observed the
software team for two days in December 2007. This
included observations of stand up and iteration
planning meetings. We also conducted six semi-
structured interviews that lasted between 30 and 68
minutes. Our interview participants had various roles

in the company, including the Scrum Master, Product
Owner, two programmers, a tester, and the owner of
the company. We also collected software artifacts such
as user stories, user stories checklist, and test cases.

After transcribing the interviews, we analyzed them
using focus coding [8]. This technique helped us to
identify points of interest in the transcripts such as
those related to validation of requirements. We
grouped the identified points of interest across
transcripts and used this information to determine the
flow of requirements and how and when they are
validated.

4. Requirements Knowledge in Agile

We begin our discussion of agile validation by
looking first at the requirements process. This
perspective is necessary, because the two activities are
inextricably linked. In agile, requirements knowledge
is gathered iteratively and incrementally, with a
customer focus. Agile validation builds on and is
enabled by these processes. We use the phrase
requirements knowledge to refer to the requirements
themselves including both requirements that are
written down and requirements that are shared through
conversations.

The requirements process and artifacts are also
closely tied to each other. In particular, user stories are
both artifacts and activities, because they include a
written reminder, test cases, and conversations. It is
difficult to draw a stark line between an activity, such
as a conversation or testing, and the artifacts, such as
user story cards and wiki pages. We use the term
artifact-activity to refer to this tight coupling of an
artifact and an activity.

Some requirements knowledge is kept in written
formats such as user stories, user story checklists, task
cards, and test cards. All these formats are short and
only include relevant details. Written requirements
knowledge is also kept in high-level test cases in a
wiki, acceptance test cases, unit test cases, and code.

A considerable part of requirements knowledge is
shared in conversations between business people,
Scrum Master, Product Owner, programmers, and
testers. We will refer to this unwritten requirements
knowledge as live requirements knowledge. The
validation of these requirements is done through
conversations and there is no written record of it.

It is also difficult to situate requirements knowledge
precisely in one form of representation or another.
While this coupling makes our data analysis more
complicated, it is one of the strengths of agile. In other
words, there is a web of collaborative and interlocking

practices that provide a safety net for adaptive software
development.

Consequently, we describe the requirements process
at Easy Retirement using activity diagrams, as shown
in Figure 1 - Figure 3. By modeling the process in this
manner, we are able to see both the activities and
artifacts. This representation also facilitates our
examination of validation activities. The stick figures
along the top of the diagrams represent the different
roles involved in requirements. Horizontal arrows
show questions and answers being exchanged. Large
boxes that are bordered with a dashed line depict
meetings. Smaller rectangular boxes represent artifacts
that are created or used. Down the left hand side of the
diagrams is a shorthand notation for the kinds of
requirements activities taking place. The first letter
shows whether the interaction is performed through a
conversation (‘C’) or through other means (‘-’). The
next character in the shorthand is a vertical bar to
separate the next group of characters. The last four
characters correspond to the four canonical activities in
requirements engineering, elicitation (‘E’), modeling
(‘M’), communication (‘C’), and validation (‘V’).

In our data analysis, we found that there were three
time periods that correspond to different opportunities
for requirements engineering. These stages were: 1)
pre-iteration showed in Figure 1; 2) iteration planning
showed in Figure 2; and 3) intra-iteration showed in
Figure 3.

4.1. Pre-Iteration

Pre-iteration is the time leading up to the start of an

iteration. During this stage, the Product Owner
received requirements from business people and
clarified their expectations (arrows 1.1 and 1.2 in
Figure 1). Then, the software team held a Brainstorming
Meeting (1.3-1.5 in Figure 1) to make preliminary
estimates of user stories, which are prioritized in a later
meeting (1.6 in Figure 1).

The Product Owner records what he has learned
from these interactions with the business people to
create a personal user story checklist in a spreadsheet.
The Product Owner uses this checklist to help him
think of questions to ask the businessperson regarding
details and test cases, manage details of the user story,
understand scope, manage risks, and document
conversations and decisions. The checklist also helps
him to participate more effectively in Iteration
Planning.

Figure 1. Pre-Iteration flow of requirements at Easy Retirement

The user story checklist includes the satisfaction
conditions that are needed to consider the user story
completed, as well as a story description, its assigned
story points, expected delivery date, the iteration it
belongs to, output of the story, and related user stories.

The user story checklist is an instrument to validate
requirements because it helps the Product Owner think
about questions related to requirements and user story
completeness. When the Product Owner asks these
questions to the business people, the answers received
serve to validate the information the Product Owner
already has.

4.2. Iteration Planning

Every Friday, an Iteration Planning Meeting (2.1-

2.5 in Figure 2) is held. At this time, user stories, tasks
cards, and test cards are written on an index card and
placed on the Scrum Board. All the team members,
including the Product Owner, Scrum Master, technical
manager, programmers, and testers work
collaboratively to create these cards. The index cards
do not have much information on them, just a couple
of sentences. However, the requirements that they

represent are validated when programmers and testers
ask questions about details.

4.3. Intra-Iteration

During the iteration, as showed in Figure 3, testers

write tests, programmers implement new functionality,
and testers run the acceptance test cases. Additionally,
the Product Owner checks that the software works as
expected.

Testing plays a particularly important role during
the Intra-Iteration stage. For the first time,
requirements are expressed as test cases. This
information is stored on a wiki, based on the detailed
information obtained by the testers in conversations
with the Product Owner. Programmers are free to look
at the information, though they rarely do. Often, there
is friction between the testers and programmers,
because the testers must enforce the acceptance criteria
from the business people passed on by the Product
Owner.

These criteria are written into automated acceptance
tests within Fitnesse. Thus, we can consider that when
these test cases are run the requirements are being
validated.

Figure 2. Iteration planning flow of requirements at Easy Retirement

High-level test cases are also instrumental on

requirements validation. When they are written, testers
think about questions related to the acceptance criteria
of user stories. Testers ask the Product Owner
questions, and the answers help them to validate the
requirements they have in the wiki.

5. Agile Validation

In the previous section, we described the agile

requirements process at Easy Retirement. Consistent
with the values in the Manifesto for Agile
Development [9], the process does not use
comprehensive documentation, relies on collaboration,
and emphasizes individuals and interactions. It should
come as no surprise that validation has the same
characteristics.

Agile validation is continuous and collaborative.
This activity is carried out continuously during the
development of the software product and mainly
through conversations. We saw that validation
activities are performed by different roles in the
development team during the whole iteration.
Consequently, the whole team contributes to software
quality.

5.1. Continuous Validation

The concept of continuous validation applies to

both artifacts and activities. Because the two are tightly
coupled in agile, both perspectives need to be
considered because they suggest different focal points
for validation activities.

User stories are the primary unit of work in agile.
Consequently, each user story is validated one at a
time. This focused validation allows programmers to
gain a detailed understanding of small pieces of
functionality. Validation occurs when a user story is
discussed, when it is broken down into tasks and tests
cards, and when it is written on index cards. High-level
test cases and automated acceptance test cases are
created specifically to validate a user story. In addition,
programmers and testers are able to validate
requirements (arrows 1.4, 2.3, 2.4, 3.2, 3.6, 3.10) even
before a single line of test or code has been written for
a user story. The entire team has a shared
understanding of the requirements related to each user
story.

The iteration also serves as a focal point for
validation. Work is done in anticipation of an iteration,
to plan for an iteration, and during an iteration.
Working out the requirements for the whole project is
avoided. The team focuses on doing only what needs to
be done for the current iteration. As a result, the
Product Owner will be able to concentrate on getting
detailed requirements, communicate those to the
development team, and also validate these
requirements through conversations in the time frame
of the Iteration. This focused validation of
requirements occurs during pre-iteration, iteration
planning, and intra-iteration. These time-boxes allow
programmers to have feedback on their code intra-
iteration, when they still have the current user stories
fresh in their minds. Also, programmers and testers are
able to see their code working and being tested by the
Product Owner and business people.

Figure 3. Intra-Iteration flow of requirements at Easy Retirement

If adjustments are needed, they can be part of the next
iterations. Validation is carried out in each iteration,
until the whole project is done.

Continuous validation is possible due to the
practices of agile, such as Iterations, user stories, and
test-driven development. Similarly, collective and
collaborative validation is possible due to people who
perform different roles such as business people,
Product Owner, Scrum Master, programmers, and
testers, who trust on each other, are able to share live
requirements knowledge, and are available to ask and
answer questions of each other. Live requirements
knowledge is used to validate requirements mainly
through conversations. In Table 1, we identify the
shared knowledge, both written and live, that is
involved in requirements validation.

Iterations promote conversations among
stakeholders and the development team during the
Iteration Planning and during the whole iteration. User
stories are triggers for conversations about
requirements. Test-driven development (TDD) [10]
promotes early communication among testers,
programmer, and Product Owner. Thus, practices

enable team members to rely on conversations to
communicate and validate requirements knowledge.

Table 1. Written and live knowledge used to
validate requirements

Stage Written
Knowledge

Live Knowledge

Pre-
Iteration

- - Conversations between
Programmers and PO,
and Testers and PO.
- Conversations between
PO and Business People.

Iteration
Planning

- - Conversations between
Programmers and PO,
and Testers and PO.
- Conversations between
Programmers and
Testers.

Intra-
Iteration

Acceptance
Test Cases

- Conversations between
Testers and PO, PO and
Business People, and
Programmers and PO.

5.2. Collaborative Validation

At Easy Retirement, all members of the
development team worked together collaboratively to
validate requirements. There was no one person who
was responsible for validation, because everyone was
responsible for this activity. We observed that
validation was initiated by Product Owner (1.7, 1.9,
3.3, 3.7, 3.11), programmers (1.4, 2.3, 2.4, 3.10), and
testers (1.4, 2.3, 2.4, 3.2, 3.6). All of them asked
questions to make sure that they have the correct
understanding of what business people want.

At first glance, one would expect validation
activities to be centered on the Product Owner, because
he is the conduit between business people and
engineers. However, this was not the case at Easy
Retirement. Programmers and testers both asked and
answered validation questions. This interaction
happens during the iteration planning where
programmers and testers talk to each other to validate
their understanding of the functionality and create task
cards and test cards (2.4). It also happens in intra-
iterations when test cases and fixtures are exchanged.

High quality software is the shared goal of the
development team. All members cooperate to achieve
this goal. Although the Product Owner is the first point
of contact, he does not have sole responsibility for
requirements engineering, including validation. It is
always possible that Product Owner missed some
details or questions. However, whenever user stories
change hands between team members an opportunity
arises for programmers and testers to raise questions.
The Product Owner might have an answer, but if he
does not, it reveals a gap in knowledge that needs to be
addressed. Thus, validation was a collaborative
activity; if one team member misses something, others
pitch in, help out, or catch the mistake.

6. Discussion

In this section, we discuss the implications of agile
validation for both practitioners and researchers. Based
on our field study, we have a number of insights and
observations relevant to the application of agile and the
study of validation.

6.1. Effectiveness

A natural question to ask is: Does agile validation
actually work? We do not have quantitative data to
show that it does. However, Easy Retirement’s
executives and business people are satisfied. In
comparison to approaches that they used previously, it
is much faster and easier to get the functionality that

they want. The software programmers also feel that the
process is a vast improvement over what they used
before, even the ones who resist interacting with end
users. The company is growing rapidly and attracting
new customers. Beyond these anecdotes, we were not
able to collect metrics that showed a quantitative
change. However, improvements in these areas get to
the heart of agile, the value of working software.

Other questions also arise regarding the application
and use of the agile validation process itself.

Isn’t it bad to have one person be the gatekeeper for
all requirements? At first glance, it appears that the
Product Owner tracks all the requirements. In practice,
any member of the development team is welcome to
communicate with executives, business people, and
customers, but they never do. Having one person serve
as a communicator and a translator was invaluable.
After the requirements are communicated by the
Product Owner to the development team, and
requirements are validated through questions asked by
programmers and testers, and answered by the Product
Owner, requirements become part of the shared
knowledge of the whole team. Members of the
development team should be willing to share
knowledge about requirements and be interested on
having them clear, so that they could also serve as
validations points of requirements.

Do you not need one person in charge of validation
to make sure it happens? Agile validation is
decentralized, meaning that no single person is
responsible for checking or ensuring that it occurs.
This is not a problem if every team member is pitching
in. Mechanisms for ensuring accountability, without
assigning blame can be helpful here.

What if people do not ask questions? Agile
validation depends on people sharing knowledge and
asking questions to make sure that requirements were
understood correctly. But people do not always ask. It
could be due to situational factors, e.g., distractions on
a given day, or personality factors, e.g., a coder who is
not social. In our case study, the Scrum Master
frequently has to help people communicate to each
other or arrange a meeting where people can talk
(sometimes just by reminding others to “go talk to each
other”). For this type of validation to work, teams
should assure an open environment where asking and
answering question is considered a fundamental
practice.

This process does not produce any records showing
that validation has been done. A working system is the
best evidence of effective validation. Generally, people
want work records to protect themselves when things
go wrong. In such cases, a record of validation is
useful for creating culprits and victims, but not at all
helpful for fixing problems. Effort would be much

better spent on creating working software rather than
creating records for contract negotiation or worst-case
scenarios.

6.2. Implications for Practitioners of Agile

Lessons can be learned from the Easy Retirement

experience, whether or not one intends to adopt agile
validation or even agile itself. Some of the practices at
the field site suggest improvements to requirements
engineering and validation that are generally
applicable.

Think about test cases and acceptance criteria
during requirements elicitation. Good requirements
can be mapped easily onto test cases and test cases can
reveal gaps in understanding of requirements.
Consequently, thinking about test cases in early
requirements can improve requirements. It can also be
beneficial to have a tester participate in requirements
engineering. This idea of early validation is not new
[11] and it has been already proposed by other
researchers [12]. Similarly, the idea of performing
Validation and Verification early and during the whole
development cycle has already been proposed [13],
[14].

Encourage knowledge sharing and question
asking. Team members should be encouraged to share
knowledge and ask questions about requirements
throughout the software lifecycle. Questions can be
helpful even when using the Waterfall model,
especially in the early phases where detecting and
fixing a misunderstood requirement could be less
expensive and time consuming. Asking questions
about requirements will help team members gain a
better understanding of high-level requirements and
share a common understanding of requirements. This
common understanding is key to have all team
members participating in a collaborative validation
where every member can trigger validation of
requirements or validate them.

Write test cases even for the obvious success
scenarios. Agile processes depend on continuous
feedback and frequent conversations. Additionally,
comprehensive documentation is avoided, sometimes
at the risk of not having enough documentation. As a
result, there is a great deal of tacit knowledge on agile
projects, including requirements that seem obvious at
the time. However, these requirements may not be
obvious to team members as the project ages or to
newcomers to the project. Consequently, tests should
be written for the simple, obvious scenarios too. Test
cases are actually part of user stories and provide high-
level details.

6.3. Implications for Validation Researchers

Validation has been traditionally defined as “The
process of evaluating software at the end of the
software development process to ensure compliance
with software requirements.” [13] This definition was
extended by Boehm to include the activity of
determining the fitness or worth of a software product
for its operational mission. This definition and
extension work well for phased software process
models as Waterfall where requirements are gathered
up front, validation is based on a requirement
specification document, and there is one main release
of the product.

This traditional validation process does not include
activities that ensure that a software system is being
built to the customer’s satisfaction in the absence of a
specification document. There is also no room for
artifact-activities, such as user stories, test cases, and
conversations. Yet some form of validation must be
taking place, because software is being built
successfully using agile. Perhaps it is time to broaden
the concept of validation to make it applicable to a
wider variety of software processes.

7. Limitations

We are aware that our study has some limitations.
The data reported in this paper is based on observations
and interviews conducted in one company. Our
findings cannot be generalized to other companies due
to the specific settings of Easy Retirement, the nature
of the software product, the organizational culture of
the company, among other factors. However, our
findings could be helpful for agile practitioners that use
similar agile methods and for researchers working on
requirements validation.

This paper reports on data collected and analyzed
using qualitative methods. This work would be
improved by future development of quantitative
metrics to supplement the qualitative ones.

Although our study has some limitations, the results
obtained represent the findings of an initial study and
provide us with some useful empirical data to
understand how requirements validation is done in
agile environments.

8. Related Work

Requirements validation for agile teams has not
been widely explored in the literature. There have been
some studies on agile requirements and many others on
traditional validation of requirements. There has been

little research on validation of agile requirements and
we know of no other field studies on this topic.

Eberlein and Sampaio do Prado Leite [15] in their
position paper studied agile requirements through the
lenses of Requirements Engineering (RE). They
suggested some ways to improve agile requirements
verification using traditional RE techniques such as the
use of formal models and inspections. The authors
recommended the use of checklists to inspect
requirements. In our field study, we observed that the
software team used user story checklists to validate
requirements.

Martin and Melnik [11] examined the close
relationship between requirements and testing. The
authors argued that the early writing of acceptance
tests cases should be used as a requirements
engineering technique. Thus, tests cases can specify
system behavior and the behavior can be verified by
executing the tests. Similar to Martin and Melnik’s
statement, we observed that the software team at Easy
Retirement writes high-level test cases to detail
requirements and then the testers write acceptance test
cases. Later, the acceptance test cases are run to
validate the requirements. In our field site, the
acceptance test cases are written in Fit [7] style. Martin
and Melnik recommend this style because it is easy for
the stakeholders to read and write.

Kovitz [16] surveyed the skills that support phased
and agile requirements. He identified six skills for agile
requirements. In our field site, we observed all six
skills but four were relevant for requirements
validation: breaking big things into tiny things, writing
meaningful tests, conversation, and tools for fast cycle
times.

Some empirical studies have also been done in agile
requirements and agile in general. Cao and Ramesh
[17] conducted an empirical study of 16 software
companies and identified seven agile requirements
practices. While this study does not focus on the
validation process itself, it does mention characteristics
of agile validation also identified in our study, such as
early and constant validation and frequent review
meetings to validate requirements. Sharp and Robinson
[18] reported an ethnography on a company working
with Extreme Programming (XP) [19] with the aim to
understand the culture and community of agile. Similar
to our study, they also found that agile teams have a
shared purpose, understanding, and responsibility.
They found that communication was mainly face-to-
face and the only documentation they observed was
user stories. However, we found that agile teams also
use user stories checklists, high-level test descriptions,
and automated acceptance test cases.

Similar to our study, Chau et al’s [20] comparison
of knowledge sharing in agile methods and traditional

methods reported that the interactions among team
members are key to knowledge sharing and that agile
techniques rely on communication and collaboration to
share tacit knowledge.

9. Conclusions

In this paper, we reported on a field study of the
requirements practices of an agile software
development team. Our analysis focused on
requirements validation, because we were struck by the
gap between conventional, academic concepts of
validation and what we found the team was doing. In
the software engineering literature, requirements
knowledge is captured in specification documents and
requirements validation is an activity that relies on this
detailed document. Such an artifact is rare on agile
projects, which do not value comprehensive
documentation. Instead, we saw a set of artifact-
activities that were centered around the basic unit of
work in agile, the user story. A user story consists of a
written reminder, test cases, and conversations, and
which means that it is both something that is created
and something that is done. At Easy Retirement, the
user story was also the basic unit of validation. The
conversations, test cases, and written reminders served
to help team members validate their knowledge and
understanding of the requirements.

Agile validation at the field site was continuous and
collaborative. Validation was done even before the
iteration starts, during planning meetings, and
throughout the entire iteration. Since the basic unit for
requirements was the user story, validation was also
performed per each user story. The user stories served
as a focal point for gathering details, giving context to
conversations, and relating test cases. Agile validation
practice depended on team members working together
constantly to ensure that the software being built met
the customer’s expectations. No one person was in
charge of validation, but everyone was responsible for
getting it done. Agile validation relied on team
members thinking critically and asking questions about
the program and test cases. While agile validation is
compatible with values in the Manifesto for Agile
Development, such as valuing individuals and
interactions, it is not trivial to implement. We feel that
both agile practitioners and academics studying
validation can learn from requirements knowledge
techniques used for validation at Easy Retirement.

10. Acknowledgements

Thanks to all the participants and supporters at Easy
Retirement. This research was possible due to their

generosity in sharing their time and work with us.
Thanks to Marisa Cohn for her help in data collection
and to Anahita Fazl for helping us with transcriptions.
This research was supported in part by a grant from the
Agile Alliance Academic Research Program.

11. References

[1] S. E. Sim, T. Alspaugh and B. Al-Ani, "Marginal Notes
on Amethodical Requirements Engineering: What Experts
Learned from Experience," in Proceedings of Requirements
Engineering Conference (RE 2008), pp. 105-114, 2008.
[2] B. W. Boehm, "Software Risk Management: Principles
and Practices," IEEE Software, vol. 8, pp. 32-41, 1991.
[3] M. Cohn, User Stories Applied: For Agile Software
Development. Addison Wesley, 2004.
[4] K. Schwaber, Agile Project Management with Scrum.
WA, USA: Microsoft Press Redmond, 2004.
[5] L. Crispin and J. Gregory, Agile Testing: A Practical
Guide for Testers and Agile Teams. Addison-Wesley
Professional, 2009.
[6] B. Leuf and W. Cunningham, The Wiki Way: Quick
Collaboration on the Web. Addison-Wesley Professional,
2001.
[7] R. Mugridge and W. Cunningham, Fit for Developing
Software: Framework for Integrated Tests. Prentice Hall,
2005.
[8] J. Lofland, D. Snow, L. Anderson and L. Lofland,
Analyzing Social Settings: A Guide to Qualitative
Observation and Analysis. Belmont, CA:
Wadsworth/Thomson Learning, 2006.
[9] M. Fowler and J. Highsmith, "The Agile Manifesto,"
Software Development, vol. 9, pp. 28-32, 2001.

[10] D. Astels, Test-Driven Development: A Practical Guide.
Upper Saddle River, New Jersey: Prentice Hall PTR, 2003.
[11] R. C. Martin and G. Melnik, "Tests and Requirements,
Requirements and Tests: A Möbius Strip," IEEE Software,
vol. 25, pp. 54-59, 2008.
[12] J. C. S. P. Leite and P. A. Freeman, "Requirements
Validation through Viewpoint Resolution," IEEE
Transactions on Software Engineering, vol. 17, pp. 1253-
1269, 1991.
[13] B. W. Boehm, "Verifying and Validating Software
Requirements and Design Specifications," IEEE Software,
vol. 1, pp. 75-88, 1984.
[14] D. R. Wallace and R. U. Fujii, "Software Verification
and Validation: An Overview," IEEE Software, vol. 6, pp.
10-17, 1989.
[15] A. Eberlein and J. C. S. P. Leite, "Agile Requirements
Definition: A View from Requirements Engineering," in
Proceedings of the International Workshop on Time-
Constrained Requirements Engineering (TCRE’02), 2002.
[16] B. Kovitz, "Hidden Skills that Support Phased and Agile
Requirements Engineering," Requirements Engineering, vol.
8, pp. 135-141, 2003.
[17] L. Cao and B. Ramesh, "Agile Requirements
Engineering Practices: An Empirical Study," IEEE Software,
vol. 25, pp. 60-67, 2008.
[18] Sharp, "An Ethnographic Study of XP Practice,"
Empirical Software Engineering, vol. 9, pp. 353, 2004.
[19] K. Beck, Extreme Programming Explained: Embrace
Change. Mass: Addison Wesley, 2000.
[20] T. Chau, F. Maurer and G. Melnik, "Knowledge
Sharing: Agile Methods Vs. Tayloristic Methods," in IEEE
International Workshops on Enabling Technologies:
Infrastructure for Collaborative Enterprises (WETICE’03),
pp. 302-307, 2003.

