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Abstract

The Clebsch method provides a unifying approach for deriving vari-
ational principles for continuous and discrete dynamical systems where
elements of a vector space are used to control dynamics on the cotangent
bundle of a Lie group via a velocity map. This paper proves a reduc-
tion theorem which states that the canonical variables on the Lie group
can be eliminated, if and only if the velocity map is a Lie algebra action,
thereby producing the Euler-Poincaré (EP) equation for the vector space
variables. In this case, the map from the canonical variables on the Lie
group to the vector space is the standard momentum map defined us-
ing the diamond operator. We apply the Clebsch method in examples of
the rotating rigid body and the incompressible Euler equations. Along
the way, we explain how singular solutions of the EP equation for the
diffeomorphism group (EPDiff) arise as momentum maps in the Clebsch
approach. In the case of finite dimensional Lie groups, the Clebsch vari-
ational principle is discretised to produce a variational integrator for the
dynamical system. We obtain a discrete map from which the variables
on the cotangent bundle of a Lie group may be eliminated to produce a
discrete EP equation for elements of the vector space. We give an inte-
grator for the rotating rigid body as an example. We also briefly discuss
how to discretise infinite-dimensional Clebsch systems, so as to produce
conservative numerical methods for fluid dynamics.

1 Introduction

We are dealing with variational principles defined by an action (or cost, for the
optimal control problem)

S =

∫
l[ξ(t)] dt , (1)

whose Lagrangian (or cost functional) l : V 7→ R is defined on vectors ξ in a
vector space V , subject to a condition imposed by a velocity map from the
vector space V to the tangent space TQM of a manifold M at the point Q,

Lξ : V ×M 7→ TQM . (2)
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The velocity map Lξ introduces the dynamics,

Q̇(t) = LξQ(t), (3)

where ξ ∈ V and Q̇ ∈ TQM is tangent to the curve Q(t) in the manifold M .
Such variational principles arise in two different contexts:

1. The optimal control context, in which one seeks solutions for Q(t) gov-
erned by the dynamics (3) that control the motion along a curve in an
interval 0 ≤ t ≤ T so as to minimise the cost in (1) for a given cost
functional l[ξ].

2. The Hamilton’s principle context, in which stationarity δS = 0 of the
action in (1) implies dynamical equations for ξ subject to the constraint
imposed by the velocity map (3).

One approach that applies in both contexts was first introduced for ideal
fluid dynamics in Serrin [Ser59] and in Seliger and Whitham [SW68]. This is the
Clebsch approach for deriving variational principles for Eulerian fluid dynam-
ics. A similar approach later emerged in the work of Bloch et al. [BCMR98] in
the optimal control of rigid bodies. This approach enforces equation (3) through
a Lagrange multiplier term in the action or cost. Doing so produces dynamical
equations for Q and for the Lagrange multiplier P in terms of ξ, together with
a formula for ξ given in terms of Q and P . The Lagrange multiplier P is also
the canonically conjugate momentum for Q in the corresponding Hamiltonian
formulation, and the formula for ξ in terms of Q and P has special significance
in the Hamiltonian framework.

Such variational principles are said to be implicit Lagrangian systems
and the subject has now reached a high state of mathematical development
[YM06]. In this paper we take a “bare hands” approach to investigating this
sort of problem.

Section 2 describes the conditions under which the coordinate Q and its
canonical momentum P in T ∗M may be eliminated from an implicit Lagrangian
system in order to obtain a dynamical system for ξ only. Answering this question
summons a Lie algebra structure on V. That is, Q and P may be eliminated
if and only if Lξ corresponds to the action of some Lie algebra g on M ; that
is Lξ : g × M → TM for ξ ∈ g. In this case the dynamical system for ξ
is always the Euler-Poincaré equation for V with the appropriate ad∗ operator
defined on the dual Lie algebra g∗ through the natural pairing induced by taking
variational derivatives. The formula for ξ in terms of Q and P is then found
via a cotangent-lift momentum map. This key result for the continuous case is
stated and proved in Theorem 12.

In the case where V is the Lie algebra of vector fields X(Rn), there is a
choice of Lie algebra actions on different spaces e.g. Lie derivatives, left-action
on embedding space etc. In each case the resulting system for ξ is the Euler-
Poincaré equation for the diffeomorphism group. This is the EPDiff equation.

Potential energy terms may also be introduced into the action in an implicit
Lagrangian system by following standard procedure for Hamilton’s principle.
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This allows an extension of the Clebsch variational principle to obtain Euler-
Poincaré equations with advected quantities [HMR98]. Many equations of fluid
dynamics may be obtained this way. Section 3 discusses the standard example of
the incompressible Euler equations and provides references for other examples.
Again all calculations are performed explicitly.

Clebsch variational principles not only unify the subject, they also provide a
systematic framework for deriving numerical integrators. A great deal of activity
and rapid development of these variational integrators has recently transpired.
See [BRM07] for an up-to-date survey of the subject, a bibliography and new
results from the same viewpoint as the present paper.

Section 4 discusses the potential for constructing numerical integration meth-
ods by discretising the Clebsch variational approach in both space and time
and deriving the resulting discrete equations of motion. The Clebsch approach
provides a method of obtaining variational integrators [LMOW03] simply by
discretising the Clebsch variational principle in both space and time. These
integrators are symplectic and hence they fit into the backward-error analy-
sis framework [LR05]. This means that they preserve the Hamiltonian within
O(∆tp) (p is the order of the method in time) and also preserve conservation
laws associated with symmetries (provided that the symmetries are retained by
the spatial discretisation). We show that for dynamics on finite-dimensional Lie
groups, the discrete Clebsch variational principle results in equations where Q
and P can once again be eliminated to produce a conservative integrator for the
equation for ξ only. We give an example of a Clebsch integrator for the rigid
body equation which after eliminating Q and P takes a particularly elegant
form. The last section of the paper closes by discussing some possible direc-
tions for applying the Clebsch approach and other recently developed parallel
approaches for the case of infinite-dimensional systems.

2 Clebsch variational principles

Definition 1 (Velocity map). Suppose V is a vector space and M is a manifold.
For each Q ∈M and ξ ∈ V , we define the linear velocity map Lξ : V ×M 7→
TQM .

For a given element ξ of V , we use L to define velocity on TQM via

Q̇ = LξQ, Q ∈M.

Definition 2 (Clebsch action principle). For a given functional l : V → R, the
Clebsch action principle is

δ

∫ t2

t1

l[ξ(t)] +
〈
P (t), Q̇(t)− Lξ(t)Q

〉
T∗M

d t = 0, (4)

where P is a Lagrange multiplier in T ∗QM and 〈·, ·〉T∗M is the standard inner
product on T ∗M .
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Remark 3. The solutions of this action principle minimise
∫ t2
t1
l(ξ) d t subject

to the constraint that Q is directed by the velocity map L. The second term in
(4) imposes the definition of velocity by a Lagrange multiplier that will turn out
to be the conjugate momentum in the Hamiltonian formulation. This will be
shown in theorem 12.

To write down the general solutions, we need to define the diamond operator.

Definition 4 (Diamond operator). Let L be a velocity map from V to M as
defined above. The operator � : T ∗M → V ∗ satisfies

〈P �Q, ξ〉V = −〈P ,LξQ〉T∗M .

where 〈·, ·〉V is the inner product on V × V ∗.

Remark 5. For the case where the velocity map is minus the Lie derivative,
the diamond operation is the dual action of the Lie derivative.

Remark 6. Later we shall see that for the case where the velocity map is a Lie
algebra action, the quantity −P �Q is a cotangent-lift momentum map.

Lemma 7 (Clebsch equations).
The optimising solutions for the action principle (4) satisfy:

δl

δξ
= −P �Q,

Q̇ = LξQ,
Ṗ = − (TQLξ)T P ,

where one defines the variational derivative operations

δl =

〈
δl

δξ
, δξ

〉
V

, and 〈P , TQLξδQ〉 = 〈(TQLξ)TP , δQ〉.

Proof.

0 = δ

∫ t2

t1

l[ξ] +
〈
P , Q̇− LξQ

〉
T∗M

d t,

=

∫ t2

t1

〈
δl

δξ
, δξ

〉
V

+
〈
δP , Q̇− LξQ

〉
T∗M

+
〈
P , ˙δQ− (TQLξ) · δQ− LδξQ

〉
T∗M

d t,

=

〈
δl

δξ
+ P �Q, δξ

〉
V

+
〈
δP , Q̇− LξQ

〉
T∗M

+
〈
−Ṗ − (TQLξ)T P , δQ

〉
T∗M

d t,

and the result follows since δξ, δP , and δQ are arbitrary.
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Lemma 8 (Legendre transform). Suppose l is chosen such that it is possible to
solve for ξ from δl/δξ, i.e. there exists an operator G such that

ξ = G
δl

δξ
.

Then the Clebsch equations for Q and P are canonical with Hamiltonian given
by

H = 〈P ,LG(P �Q)Q〉 − l [G (P �Q)] .

Proof. The result follows directly from calculating the canonical equations for
this Hamiltonian.

Example 9 (The rigid body: Bloch et al. 1998). For example, consider the
rigid body in coordinates (Q, Q̇) ∈ TSO(3). The angular velocity Ω of the rigid
body is defined as

Q̇ = QΩ with ΩT = −Ω ∈ so(3).

The Clebsch variational principle for the rigid body is given by δS = 0 with
action S =

∫
Ldt and implicit Lagrangian

L(Ω, P,Q) =
1

2
Ω · IΩ + PT · (Q̇−QΩ)

for constant, symmetric I. The variations of L are given by:

δ

∫
Ldt =

∫ [
δΩ · (IΩ−QTP ) + δPT · (Q̇−QΩ)− δQT · (Ṗ − PΩ)

]
dt.

Thus, stationarity of this implicit variational principle implies a set of rigid
body equations which first appeared in the work of Bloch et al. [BCMR98] on
optimal control of rigid bodies

IΩ = −P �Q = QTP , Q̇ = LΩQ = QΩ , Ṗ = (TQLΩQ)TP = PΩ .

In this particular example, one can study the dynamics of Ω by calculating

d

d t
IΩ = Q̇TP +QT Ṗ ,

= (QΩ)TP +QTPΩ,

= ΩT (QTP ) + (QTP )Ω,

= ΩT (IΩ) + (IΩ)Ω = [IΩ,Ω].

Thus, the Clebsch equations yield the dynamics for Ω by eliminating P and Q
via the derivative of δl/δξ.

We will determine when it is possible to obtain a dynamical system for ξ by
eliminating the Clebsch variables. First we need to make two more definitions.
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Definition 10 (Closure). Let V be a vector space with L being a velocity map
V ×M → TM . The velocity map L is said to be closed if, for every pair of
vectors u,v ∈ V , there exists a third vector w ∈ V such that

LwQ = ((TQLv)Lu − (TQLu)Lv)Q,

where TQLu is the tangent of Lu evaluated at Q. In that case, the velocity map
induces an algebra structure on V with bracket

L[u,v] = (TQLv)Lu − (TQLu)Lv,

which satisfies the Jacobi identity.

Definition 11 (ad- and ad∗-operators). Let L define an velocity map from V
on M with induced bracket [·, ·] : V × V → V . We define the ad-operator by

adu v = −[u,v].

For m in V ∗ we define the ad∗-operator by

〈ad∗um,v〉V = 〈m, adu v〉V .

Theorem 12 (Elimination requires closure of the velocity map).
Let V be a vector space, and let L be a velocity map from V ×M → TM . Then

the cotangent variables (P ,Q) ∈ T ∗M may be eliminated from the Clebsch
equation if and only if the image of L in TM is closed under the Lie bracket.
Furthermore, when this closure condition holds:

1. L induces a Lie algebra structure on V ,

2. −P �Q is a cotangent-lift momentum map, and

3. ξ satisfies the Euler-Poincaré equation:

d

d t

δl

δξ
+ ad∗ξ

δl

δξ
= 0.

Proof. First suppose that L is closed. For any vector w ∈ V ,

d

d t

〈
δl

δξ
(ξ),w

〉
V

= − d

d t
〈P �Q,w〉V

[Definition of �] =
d

d t
〈P ,LwQ〉T∗M

[P and Q equations] = 〈−(TQLξ)TP ,LwQ〉T∗M + 〈P , (TQLw)LξQ〉T∗M

= 〈P , (−(TQLξ)Lw + (TQLw)Lξ)Q〉T∗M

[closure] = 〈P ,−L[ξ,w]Q〉T∗M

[Definition of �] = 〈P �Q, [ξ,w]〉V

= −
〈
δl

δξ
(ξ), adξw

〉
V

,

= −
〈

ad∗ξ
δl

δξ
(ξ),w

〉
V

,
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and hence
d

d t

δl

δξ
+ ad∗ξ

δl

δξ
= 0,

which is a closed system for ξ. Hence, closure allows elimination of P and Q.
Conversely, suppose that L is not closed. Then there exist u,v ∈ V such

that
(TQLv)Lu − (TQLu)Lv 6= Lw , (5)

for any w ∈ V . Now assume, aiming for a contradiction, that P and Q may be
eliminated from the equations. For any Q, we may find a P such that

δl

δξ
(u) :=

δl

δξ

∣∣∣
ξ=u

= P �Q.

Then 〈
d

d t

δl

δu
(u),v

〉
V

= 〈P , (−(TQLu)Lv + (TQLv)Lu)Q〉. (6)

In order for this to be consistent, the left-hand side must be linear in ξ and
δl/δξ (treating δl/δξ as a separate variable), and hence we may write

d

d t

δl

δξ
(u) = L̂u

δl

δξ
(u),

for some linear operator L̂u. We pair this with a vector, then use the Clebsch
variational equation and the definition of diamond to write〈

d

d t

δl

δξ
(u),v

〉
V

=

〈
L̂u

δl

δξ
(u),v

〉
V

=

〈
δl

δξ
(u), L̂∗uv

〉
V

= −
〈
P �Q, L̂∗uv

〉
V

=
〈
P ,LL̂∗

uv
Q
〉
V
.

Consequently, comparing with equation (6) yields

LL̂∗
uv
Q = [(TQLu)Lv − (TQLv)Lu]Q

for any Q, which contradicts the assumption (5). Hence, P and Q may be
eliminated from the Clebsch equation if and only if the image of L in TM is
closed under the Lie bracket.

The fact that −P � Q is a cotangent-lift momentum map comes straight
from the definition: if L is closed, then V is a Lie algebra with bracket induced
by L, and the map L is a Lie algebra action on M . The Hamiltonian for the
corresponding cotangent-lifted action is

hξ = 〈P ,LuQ〉T∗M ,
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and the momentum map J for this action is defined by the relation

〈J , ξ〉V = 〈P ,LuQ〉T∗M

which matches Definition 4, and hence

J = −P �Q.

Remark 13. As a result of Theorem 12, solutions of the Clebsch equations may
be composed by � into solutions of the following equation

d

d t

δl

δξ
+ ad∗ξ

δl

δξ
= 0,

whenever L is closed. This equation is called the Euler-Poincaré equation and
it describes geodesic motion on the space V whenever l is a quadratic functional
(metric).

To extend the scope of this framework it is useful to introduce potential
energy terms to l in the action principle, i.e. let l be a function of the elements
of M as well as V .

Definition 14 (Clebsch action principle with potential energy).
For a given functional l : V ×M → R, the Clebsch action principle is

δ

∫ t2

t1

l[ξ(t),Q(t)] +
〈
P (t), Q̇(t)− Lξ(t)Q

〉
T∗M

d t = 0, (7)

where P is a Lagrange multiplier in T ∗QM and 〈·, ·〉T∗M is the usual inner prod-
uct on T ∗M .

Lemma 15 (Clebsch equations with potential energy). The optimising solu-
tions for the action principle (4) are:

δl

δξ
= −P �Q,

Q̇ = LξQ,

Ṗ = − (TQLξ)T P +
δl

δQ
.
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Proof.

0 = δ

∫ t2

t1

l[ξ,Q] +
〈
P , Q̇− LξQ

〉
T∗M

d t,

=

∫ t2

t1

〈
δl

δξ
, δξ

〉
V

+

〈
δl

δQ
, δQ

〉
+
〈
δP , Q̇− LξQ

〉
T∗M

+
〈
P , ˙δQ− (TQLξ) · δQ− LδξQ

〉
T∗M

d t,

=

〈
δl

δξ
+ P �Q, δξ

〉
V

+
〈
δP , Q̇− LξQ

〉
T∗M

+

〈
−Ṗ − (TQLξ)T P +

δl

δQ
, δQ

〉
T∗M

d t,

and the result follows since δξ, δP , and δQ are arbitrary.

Theorem 16 (Elimination theorem with potential energy). Let V be a vector
space, and let L be a velocity map from V → TM . The cotangent variables P
and Q may be eliminated from the Clebsch equation with potential energy, if
and only if the image of L in TM is closed under the Lie bracket.

Furthermore, when the condition holds, ξ and Q satisfy the Euler-Poincaré
equation with advected quantities:

d

d t

δl

δξ
+ ad∗ξ

δl

δξ
= − δl

δQ
�Q, Qt = LξQ.

Proof. The proof follows the proof of Theorem 12, using

d

d t

〈
δl

δξ
,w

〉
V

= − d

d t

〈
P �Q,w

〉
V

,

=
d

d t

〈
P ,LwQ

〉
V

=

〈
−(TQLξ)TP +

δl

δQ
,LwQ

〉
T∗M

+

〈
P , (TQLw)LξQ

〉
T∗M

,

=

〈
− ad∗ξ

δl

δQ
− δl

δQ
�Q,w

〉
.

3 Examples

3.1 Singular solutions of EPDiff

When V is the space of vector fields X(Rn), under the conditions of Theorem
12 the Clebsch implicit variational principle yields the Euler-Poincaré equation
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for diffeomorphisms (EPDiff):

d

d t

δl

δu
+∇ · (u δl

δu
) + (∇u)T · δl

δu
= 0.

One possible way to form a Clebsch principle for EPDiff is to consider the
left-action of vector fields on the space of embeddings M = Emb(S,Rn) for
some manifold S (such as the circle, or the sphere). For an embedding

Q : S → Rn,

the velocity map is defined by composition of functions

LuQ(s) = u(Q(s)), s ∈ S.

The Clebsch principle is then

δ

∫ t2

t1

l[u] + 〈P , Q̇− u(Q)〉T∗M d t = 0,

where the inner product in the second term is defined as∫
S

P (s, t) ·
(
Q̇(s, t)− u(Q(s, t))

)
d s.

The diamond operator (�) is thus defined in this case by

〈(P �Q) ,u〉V = 〈P ,LuQ〉T∗M

=

∫
S

P (s) · u(Q(s)) d s,

=

∫
S

P (s)

∫
M

δ(x−Q(s, t))u(x) dV (x) d s

=

∫
M

(∫
S

P (s)δ(x−Q(s, t)) d s

)
· u(x) dV (x).

Consequently, one finds

P �Q =

∫
S

P (s)δ(x−Q(s, t)) d s ,

which is the singular solution ansatz of [HM04].
One then calculates the Clebsch equations as

δl

δu
= P �Q =

∫
S

P (s, t)δ(x−Q(s, t)) d s, (8)

Q̇ = LuQ = u(Q), (9)

Ṗ = −(TQLu)TP = −
∑
k

Pk
∂uk

∂Q
= −(∇u(Q))T · P , (10)
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which we know to be canonically Hamiltonian from Lemma 8. Furthermore, we
know that δl/δu satisfies the EPDiff equation from Theorem 12. To verify this
statement, take the inner product with a test function and differentiate in time,
as follows.

d

d t

〈
δl

δu
,w

〉
X(M)

=
d

d t
〈P �Q,w〉X(M),

=
d

d t

∫
M

(∫
S

P (s, t)δ(x−Q(s, t)) d s

)
·w(x) d Vol(x),

=
d

d t

∫
S

P ·w(Q) d s,

=

∫
S

(Ṗ ·w(Q) + P · ∂w
∂Q
· Q̇) d s,

=

∫
S

−
(
(∇u)T · P

)
·w(Q) + P · ∇w(Q) · u(Q) d s,

=

∫
M

(
−
∫
S

P δ(x−Q(s)) d s · ∇u(x) ·w(x),

+

∫
S

P δ(x−Q(s)) d s · ∇w(x) · u(x)

)
d Vol(x),

= −
〈

(∇u)T · δl
δu
,w

〉
X(M)

+

〈
δl

δu
,∇w · u

〉
X(M)

.

This shows that δl/δu satisfies the weak form of EPDiff:

d

d t

〈
δl

δu
,w

〉
X(M)

+

〈
(∇u)T · δl

δu
,w

〉
X(M)

+

〈
δl

δu
,∇w · u

〉
X(M)

= 0.

Remark 17. In consonance with Theorem 12 and as discussed in [HM04] the
singular solution ansatz for EPDiff given by (8) is an equivariant momentum
map arising from the cotangent lift of the action of vector fields corresponding
to composition the left.

3.2 Euler equations

The Lagrangian for the incompressible Euler equations is

l[u, D] =

∫
M

D

2
|u|2 + p(1−D) d Vol(x),

where D is the density, and p is a Lagrange multiplier introduced to enforce
the constraint that the fluid is incompressible. Not unexpectedly, the quantity
p turns out to be the pressure.

There are several ways to write down a Clebsch variational principle for
the incompressible Euler equations. However in order to obtain a set of vari-
ables which include all possible solutions one needs to include at least d scalar
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Lagrange multipliers where d is the spatial dimension of M . If, for example,
we only use one Lagrange multiplier then only the vorticity-free solutions are
obtained, as first noticed by Lin (see [CM87] for discussion and references).

As described in [HK83], one possible way to construct such a Clebsch vari-
ational principle is to use the action of the diffeomorphisms on the Lagrangian
labels, which satisfy

`At = Lu`A = −u · ∇`A , `A(x, 0) = xA, A = 1, . . . , d.

The Clebsch variational principle is then

δ

∫ t2

t1

∫
M

D

2
|u|2 − p(D − 1) d Vol(x)

+

∫
M

P · (`t + u · ∇`) d Vol(x)

+

∫
M

φ · (Dt +∇ · (uD)) d Vol(x) d t = 0 .

Here we have also introduced an additional Lagrange multiplier φ to enforce the
dynamics of the density D which means we have d+ 1 scalar Lagrange multipli-
ers. The system could be reduced to d multipliers but this would unnecessarily
complicate the exposition.

The Clebsch equations are:

∂`

∂t
+ u · ∇` = 0,

∂D

∂t
+∇ · (uD) = 0,

∂P

∂t
+∇ · (uP ) = 0,

∂φ

∂t
+ u · ∇φ =

δl

δD
=

1

2
|u|2 − p,

δl

δu
= Du = −(∇`)T · P −D∇φ,

together with the constraint D = 1. After elimination one obtains

∂(uD)

∂t
+ u · ∇(uD) + (∇u)T · uD = D∇1

2
|u|2 −∇p,

∂D

∂t
+∇ · (uD) = 0 , D = 1

which becomes
∂u

∂t
+ u · ∇u = −∇p, ∇ · u = 0,

after substituting D = 1.
The Clebsch variational principle encompasses essentially all fluid theories.

See [Hol02] for references and the example of a complex fluid.
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4 Clebsch integrators

In this section we discuss the potential for constructing numerical integration
methods by discretising the Clebsch variational principle in both space and time
and thereby deriving the resulting discrete equations of motion. Any numer-
ical method obtained this way will automatically be a variational integrator,
and hence will inherit the accompanying conservative properties such as exact
preservation of momenta where the discretisation preserves the symmetry of the
continuous system, and the long-time approximate conservation of energy via
backward-error analysis. See [LMOW03] for a review of variational integrator
methods.

In the finite dimensional case one simply needs to follow the variational
integrator programme by finding a map which approximates the time-derivative,
and then substituting it into the Clebsch variational principle. In the following
sections we show how to do this for the case of finite dimensional Lie groups
such as SO(3).

Definition 18. For a manifold M , define the derivative map φ∆t by

φ∆t : M ×M → TM, (Qn+1,Qn) 7→ TQn+1M,

such that φ∆t(Q
n+1,Qn) is an approximation to Q̇ at Qn [LMOW03].

Definition 19 (First-order discrete Clebsch action principle).
For a given functional l(ξ), the first-order discrete Clebsch action principle is

δF = δ

N−1∑
n=0

(
l(ξn) + 〈P n, φ∆t(Q

n+1,Qn)− LξnQn〉
)

= 0.

Lemma 20. The first-order discrete action principle given in Definition 19 is
optimised by P , Q and ξ satisfying the Discrete Clebsch equations

δl

δξ
(ξ)n + P n �Qn = 0,

φ∆t(Q
n+1,Qn) = LξnQ

n,(
D1φ∆t(Q

n,Qn−1)
)T
P n−1 +

(
D2φ∆t(Q

n+1,Qn)
)T
P n = TQn (LξnQ)

T
P n.

Proof.

δF =

N−1∑
n=0

(〈
δl

δξ
(ξ)n, δξn

〉
− 〈P n, LδξnQ

n〉

+〈δP n, φ∆t(Q
n+1,Qn)− LξnQn〉

+
〈
P n, D1φ∆t(Q

n+1,Qn)δQn+1 +D2φ∆t(Q
n+1,Qn)δQn

−TQn (LξnQ) δQn
〉)

,

and the result follows after renumbering indices.
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Remark 21. When M is a vector space, one may choose

φ∆t(Q
n+1,Qn) =

Qn+1 −Qn

∆t
,

and the equations become

δl

δξ
(ξn) = −P n �Qn,

Qn+1 = Qn + ∆tLξnQ
n,

P n+1 = P n −∆t
(
TQn+1Lξn+1Q

)T
P n+1.

Remark 22. These equations give the first-order symplectic method, known in
[LR05] as symplectic Euler-A, for the Hamiltonian system given in Lemma 8.
The adjoint method to this, known in [LR05] as symplectic Euler-B, is obtained
from the following discrete variational principle:

δ

N∑
n=1

(
l(ξn) + 〈P n,−φ∆t(Q

n−1,Qn)− LξnQn〉
)

= 0.

Remark 23. Higher-order schemes may be obtained by replacing the first-
order discretisation of the Q-equation enforced by the Lagrange multiplier P
by Munthe-Kaas methods [MK98] (Runge-Kutta methods on Lie groups).

4.1 First-order integrators for matrix groups

In this section we show how to construct a derivative map for the case of matrix
groups. For this entire section:

1. Q is a d-dimensional complex matrix.

2. The velocity map acts by matrix multiplication by X from the right

LXQ = QX.

3. The inner product on TM is defined by the matrix trace using the transpose-
conjugate operation (†)

〈P, Q̇〉 = Tr
(
PQ†

)
=
∑
kl

PklQ̄kl,

where the overbar indicates complex conjugation.

4. The diamond operation is given by P �Q = −Q†P since

〈P �Q,X〉 = −〈P,LXQ〉
= −Tr

(
P(QX)†

)
= −Tr

(
Q†PX†

)
= −〈Q†P,X〉.
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We first define the exponential map when the velocity map LX is defined by
right matrix multiplication.

Definition 24 (exponential map). The exponential map corresponding to the
velocity map LX is the solution of the equation

d

d t
exp(tX) = LX exp(tX) := exp(tX)X, exp(0) = Id .

We also define the logarithm map:

Definition 25 (logarithm map). Let L be a velocity map. The logarithm map
is defined by

log(exp(X)) = X,

for any vector element X of V .

For a pair of group elements Q1, Q2, we seek a vector X such that

Q2 = Q1 exp(∆tX).

This allows one to use LXQ2 as an approximation for the time derivative at Q2,
thereby motivating the following definition.

Definition 26 (Discrete approximation of time derivative).
For two group elements Q1, Q2 an approximation to the time derivative at Q1

of a solution which passes between Q1 and Q2 in time ∆t is

φ∆t(Q2,Q1) = Q1
1

∆t
log
(
Q−1

1 Q2

)
,

where log : Ω→ V is given by

log(A) = log(A) +O((A− I)p),

for some positive integer p.

Let us now construct the Clebsch integrator.

Definition 27 (First-order discretisation). We replace the time integral in the
Clebsch variational principle by a sum and substitute our discrete approximation
of the time derivative to get

δ

N∑
n=1

(
l
(
Xn−1

)
+

〈
Pn−1,

1

∆t
Qn−1log

((
Qn−1

)−1
Qn
)
−Qn−1Xn−1

〉)
= 0.

Note that the inner product is taken at the point Qn−1.
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Theorem 28. The Clebsch variational principle given in Definition 27 leads to
the following first-order symplectic Euler discretisation:

δl

δX
(Xn−1) = (Qn−1)†Pn−1, (11)

Qn = Qn−1exp(∆tXn−1), (12)

Pn =
(

(Qn)
†
)−1 ((

Texp(∆tXn)log
)†)−1 (

exp(∆tXn−1)
)†

(
Texp(∆tXn−1)log

)† (
Qn−1

)†
Pn−1 (exp(∆tXn))

−1
,(13)

where exp is the inverse of the log operation.

Remark 29. The discrete Clebsch momentum map takes the expected form.

Proof. The variational principle becomes

0 =

N∑
n=1

(〈
δl

δX
(Xn−1) + (Qn−1)†Pn−1, δXn−1

〉
+〈

δPn−1,
1

∆t
Qn−1log

((
Qn−1

)−1
Qn
)
−Qn−1Xn−1

〉
+〈

Pn−1,
1

∆t
Qn−1

(
T(Qn−1)−1Qn log

) (
Qn−1

)−1

(
δQn − δQn−1

(
Qn−1

)−1
Qn
)

+

δQn−1

(
1

∆t
log
((

Qn−1
)−1

Qn
)
−Xn−1

)〉)
.

The discrete Clebsch equations are then

0 =
δl

δX
(Xn−1)− (Qn−1)†Pn−1, (14)

0 = Qn−1log
((

Qn−1
)−1

Qn
)
−∆tQn−1Xn−1, (15)

0 =
((

Qn−1
)−1
)† (

T(Qn−1)−1Qn log
)† (

Qn−1
)†

Pn−1 −(
(Qn)

−1
)† (

T(Qn)−1Qn+1 log
)†

(Qn)
†

Pn
(

(Qn)
−1

Qn+1
)

+ (16)(
1

∆t
log
(

(Qn)
−1

Qn+1
)

Q−Xn

)†
Pn. (17)

After rearrangement, equation (15) becomes

Qn+1 = Qnexp(∆tXn),
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and the last equation simplifies to

0 =
((

Qn−1
)−1

Qn
)† (

T(Qn−1)−1Qn log
)† (

Qn−1
)†

Pn−1 +(
T(Qn)−1Qn+1 log

)†
(Qn)

†
Pn
(

(Qn)
−1

Qn+1
)
,

=
(
exp(∆tXn−1)

)† (
Texp(∆tXn−1)log

)† (
Qn−1

)†
Pn−1 −(

Texp(∆tXn)log
)†

(Qn)
†

Pn (exp(∆tXn)) ,

as required in the statement of Theorem 28.

Corollary 30. P and Q can be eliminated from the equations arising from the
discrete variational principle in Definition 27 to obtain the equation

0 =
(
exp(∆tXn−1)

)† (
Texp(∆tXn−1)log

)† δl
δX

(Xn−1)−(
Texp(∆tXn)log

)† δl
δX

(Xn) (exp(∆tXn)) .

Proof. Substitute equation (11) into equation (12).

Cayley transform methods In the following example, we derive an integra-
tor for the rigid body equations by approximating the exponential map using the
Cayley transform, which preserves the property of mapping from the Lie algebra
into the group. This property of the Cayley transform has long been used for
ensuring that numerical schemes preserve Lie group structure. In [AKW93], the
Cayley transform was used to reconstruct the attitude of a rotating rigid body
from numerical solutions of the body angular momentum equation obtained
from the midpoint rule. It was noted that the conservation of the Casimir
‖m‖2 (where m is the angular momentum) was necessary to obtain conserva-
tion of spatial angular momentum. [LS94] proposed to transform a Hamiltonian
system on a Lie group onto the Lie algebra using the Cayley transform (rather
than the exponential map), and integrating the resulting equation numerically.
This approach was developed in [Ise01] which suggested that, rather than in-
tegrating the Lie algebra equation using a Runge-Kutta method (producing a
Cayley Munthe-Kaas method [MK98]), one could obtain an efficient scheme by
using a truncated Magnus expansion and, if a suitable numerical quadrature is
used to approximate the integrals in the series, one obtains a time-reversible
method of even order. In the example below, we embed the Cayley transform
into the discrete Clebsch variational principle; higher-order schemes could be
produced by using the methods of Munthe-Kaas and Iserles.

Example 31 (Rigid body integrator). For the case where V is so(3) and acts
on SO(3), we may approximate the exponential map to first-order using the
Cayley transform

exp(X) =

(
I +

X

2

)(
I − X

2

)−1

.
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We obtain a corresponding approximation to the logarithm by taking the inverse:

logA = exp−1A,

= 2(A− I)(A+ I)−1 = (A− I)

(
I +

A− I
2

)−1

,

= (A− I) +O
(
(A− I)2

)
,

= log(A) +O
(
(A− I)2

)
.

Our approximation to the time derivative is then

φ∆t(Q
n+1,Qn) = Qnlog((Qn)−1Qn+1),

=

(
Qn+1 −Qn

∆t

)(
I +

1

2

(
(Qn)−1Qn+1 − I

))−1

,

which is the usual linear difference with a projection applied to ensure that φ∆t

is in so(3).
The Q- and X-equations are then

δl

δX
(Xn) = (Qn)TPn, (18)

Qn+1

(
I −∆t

Xn

2

)
= Qn

(
I + ∆t

Xn

2

)
. (19)

The Q-component of the variational principle, which gives rise to the P-equation,
is

N∑
n=1

〈
Pn−1,Qn−1δlog

(
(Qn−1)−1Qn

)〉
= 0.

Making use of the formula

δ
(
log
(
(Qn−1)−1Qn

))(((Qn−1)−1Qn
)

+ I

2

)
+

log
(
(Qn−1)−1Qn

) δ ((Qn−1)−1Qn
)

2
= δ

(
(Qn−1)−1Qn

)
,
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we have

δ
(
log
(
(Qn−1)−1Qn

))
=

(
I − 1

2
log
(
(Qn−1)−1Qn

))

δ
(
(Qn−1)−1Qn

)(((Qn−1)−1Qn
)

+ I

2

)−1

,

=

((
(Qn−1)−1Qn

)
+ I

2

)−1

δ
(
(Qn−1)−1Qn

)(((Qn−1)−1Qn
)

+ I

2

)−1

,

=

((
(Qn−1)−1Qn

)
+ I

2

)−1

(Qn−1)−1

(
δQn − δQn−1(Qn−1)−1Qn

)(((Qn−1)−1Qn
)

+ I

2

)−1

.

Consequently the P-equation in this formulation is

(
(Qn−1)−1

)T (((Qn−1)−1Qn
)

+ I

2

)−1
T

(Qn−1)TPn−1

(((Qn−1)−1Qn
)

+ I

2

)−1
T

=
(
(Qn)−1

)T (((Qn)−1Qn+1
)

+ I

2

)−1
T

(Qn)TPn
(
(Qn)−1Qn+1

)T (((Qn)−1Qn+1
)

+ I

2

)−1
T

.

Making use of equations (18-19) allows this to be rearranged into the more com-
pact form,

(
exp(∆tXn−1)

)T ((I + exp(∆tXn−1)

2

)−1
)T

δl

δX
(Xn−1)

((
I + exp(∆tXn−1)

2

)−1
)T

=

((
I + exp(∆tXn)

2

)−1
)T

δl

δX
(Xn)exp(∆tXn)T

((
I + exp(∆tXn)

2

)−1
)T
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Finally, making use of the Cayley transform approximation,

exp(∆tX) =

(
I + ∆t

X

2

)(
I −∆t

X

2

)−1

,

and its consequence,

I + exp(∆tX) = 2

(
I −∆t

X

2

)−1

,

we obtain the reduced equation for X:(
I −∆t

Xn−1

2

)
δl

δX
(Xn−1)

(
I + ∆t

Xn−1

2

)
=

(
I +

∆tXn

2

)
δl

δX
(Xn)

(
I −∆t

Xn

2

)
.

This finally rearranges to become

δl

δX
(Xn) =

δl

δX
(Xn−1) +

∆t

2

(
δl

δX
(Xn−1)Xn−1 +

δl

δX
(Xn)Xn

)
+

∆t

2

((
Xn−1

)T δl

δX
(Xn−1) + (Xn)

T δl

δX
(Xn)

)
,

+
(∆t)2

4

(
Xn δl

δX
(Xn)Xn −Xn−1 δl

δX
(Xn−1)Xn−1

)
which is the discrete rigid body equation obtained from this choice of discrete
Clebsch variational principle.

Remark 32. The Clebsch integrator for the rigid body obtained using the Cayley
transform approximation for exp is equivalent to the CAY-integrator obtained
from the discrete Hamilton-Pontryagin principle in [BRM07]. In that case, the
equations are obtained by extremising a functional on a Lie algebra (in this case
the kinetic energy as a function of the body angular velocity X) subject to the
constraint that Q̇Q−1 = X; in the case of the CAY-integrator the exponential
map is again discretised using the Cayley transform. The Hamilton-Pontryagin
principle provides an alternative viewpoint to the Clebsch principle; the extra
feature in the Clebsch framework is the role of the �-operator as a momentum
map.

A plot of the dynamics obtained from this discrete integrator is given in
Figure 1.

5 Summary and outlook

This paper has discussed Clebsch variational principles from the point of view
of a velocity map Q̇ = LξQ which allows the dynamics Q(t) on a manifold to
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Figure 1: A plot showing numerical integration over 100 periodic orbits using the
discrete Clebsch integrator for the rotating rigid body with moment of inertia
eigenvalues (0.5,0.6,1) and ∆t = 0.1. The good energy conservation and exact
angular momentum conservation are illustrated through the persistence of the
periodic orbit structure over this long time integration interval.

be controlled by a time-series ξ(t) of elements of a vector space, using Lagrange
multipliers P (t). Theorem 12 shows that Q and P may be eliminated from the
resulting Clebsch equations, if and only if the velocity map Lξ is a Lie algebra
action on Q ∈ M . The Clebsch framework for velocity maps thus has a clear
connection with the theory of Euler-Poincaré reduction; namely, the equations
obtained are the Euler-Poincaré equations on the dual of the Lie algebra. For the
continuous time case where the velocity map is assumed to be a Lie derivative,
this connection is not unexpected.

Examples in the paper included the finite-dimensional rigid body equation,
and two infinite-dimensional examples: the singular solutions of the EPDiff
equation and the incompressible Euler equation. In the EPDiff example, the
Clebsch framework derives the singular solutions as a family of momentum maps.

Finally the paper showed how discrete Clebsch variational principles can
be used to produce numerical methods for Clebsch equations. For the case
of finite-dimensional Lie groups, in which the variational principle need only
be discretised in time, one may again eliminate Q and P using the discrete
approximation for the time derivative in Definition 26 to obtain a conservative
numerical method in terms of ξ only. The example of discretisation for the
rigid body resulted in the CAY integrator for the associated EP equation in
[BRM07]. Possible extensions of this technique would be to obtain higher-
order time-integration methods based on Runge-Kutta/Munthe-Kaas methods
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[MK98] or Magnus methods [Ise01], and to apply the Clebsch integrator to
systems with potentials such as the heavy top.

In the case of infinite-dimensional systems, it is necessary to discretise the
variational principle in space as well as time. if one wishes to eliminate Q and
P thereby obtaining a closed discrete equation for ξ, Theorem (12) requires the
spatial discretisation of the velocity map to remain a Lie algebra action on the
discretised space. This is a key step for making future progress in applying the
Clebsch method for discretising fluid dynamics and other infinite-dimensional
evolutionary systems. In the special case where the Lagrangian is at most linear
in space-time derivatives (without higher derivatives), then the resulting PDE is
multisymplectic (see [BR01] and cited papers). Any discrete Clebsch variational
principle leads to a multisymplectic Clebsch integrator. See [CHH07] for more
details.
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