
BIMONTHLY REPORT

(NASA-CR-120321 ) CONTINUOUS AND DISCRETE N7-31907
'DESCRIBING FUNCTION ANALYSIS OF THE LST
SYST E M  Bi-Monthly Report (Systems
Research Lab., Champaign, Ill.) 59 p HC Unclas$600 

CSCL 1B G14 15992

RESEARCH STUDY ON STABILIZATION AND CONTROL

MODERN SAMPLED-DATA CONTROL THEORY

SYSTEMS RESEARCH LABORATORY

P.O. BOX 2277, STATION A
3206 VALLEY BROOK DRIVE

CHAMPAIGN, ILLINOIS 61820

PREPARED FOR GEORGE C. MARSHALL SPACE FLIGHT CENTER

HUNTSVILLE, ALABAMA



III - 73

BI-MONTHLY REPORT

RESEARCH STUDY ON STABILIZATION AND CONTROL

- MODERN SAMPLED DATA CONTROL THEORY

CONTINUOUS AND DISCRETE

DESCRIBING FUNCTION ANALYSIS
SUBTITLE:

OF THE LST SYSTEM

November 1, 1973 NAS8-29853

BY B.C. KUO

G. SINGH

R.A. YACKE L

PREPARED FOR GEORGE C. MARSHALL SPACE FLIGHT CENTER

HUNTSVILLE, ALABAMA

CONTRACT NAS8- 29853 DCN 1-2-40-23018

SYSTEMS RESEARCH LABORATORY

P. O. BOX 2277 , STATION A

CHAMPAIGN. ILLINOIS 61820



5. A Describing Function of the CMG N'bnlinearity

Using the Analytical Torque Equation

A describing function of the CMG frictional nonlinearity was

derived earlier using the straight-line approximated input-output

relation between the frictional torque TGF and the CMG angular dis-

placement eG.

However, it is possible to derive a describing function for the

CMG frictional torque using the analytical relation between TGF and eG'

It has been established that the frictional nonlinearity of the CMG

can be described by the square-law relation.

dTGF (T)2 (5-)
dO Y(TGFI TGFO

whe re

TGFI = TGF SGN(OG) (5-2)

TGFO = saturation level of TGF

y = positive constant

Carrying out the integration on both sides of Eq. (5-1) yields

G + - 0 G > 0 (5-3)

Y(TGF- TGFO)

G +C2 - G < 0 (5-4)

Y(TGF + TGF O )

where C1 and C2 are constants of integration, and



GF TGF - (5-5)

TGF = TGF G < 0 (5-6)

Then, C1 and C2 are given by

C 1 Y( 0 (5-7)
1  Gi +  G

GFi - TGFO)

1 G < 0 (5-8)

y(TGFi + TGF O)

where 0Gi and TGF i denote the initial values of eG and TGF, respectively.

For a sinusoidal input, G is represented by

OG = A cos wt (5-9)

It is important to note that for the input of Eq. (5-9) 0 Gi = -A when

6G > 0, and 6Gi = A when 6G < 0.

Solving for TGF and TGF from Eqs. (5-3) and (5-4), respectively, we

have

T + T e > 0 (5-10)
GF y(A cos Wt + C1 ) TGFO G -

- -1T = I T 0 < 0 (5-11)
GF y(Acos t + C2 ) TGFO G-

with

C1 = A- + (5-12)
Y(TGFi - TGFO )

C2 = -A - 1 (5-13)

Y(TGFi + TGF O

where



GFi GFO a a (5-1)

a = 2 yATGFO (5-16)

With the describing function method, the frictional torque TGF may be

approximated by the fundamental component of the Fourier series. The dc

component is zero, since the input-output relation is symmetrical

about the zero-torque axis.

Thus,

TGF = Al sin t + B cos wt

=A + B2 cos (ot - ) (5-17)

-1 1
9 = tan B-1 (5-18)

1

A = TGF sin wt dwt f TG sinwt dwt

+ l2

+ T sinwt dwt (5-19)
7T 7T GF

B1 = T cost dwt T cost dwt
1 o GF 7 0 GF

2x
+ I2 TGF coswt dwt (5-20)

Substitution of Eqs. (5-10) and (5-11) into Eq. (5-19) gives



A 1  - T sint dt -± T sinwt dwt
1 Y(Acoswt + C2 )snwt 0 GFO

+ 1 -1 sint dt + T sinwt dwt (5-21)
7f 7  y(A coswt + C1) GFO

Tr 2T
A - I n (A coswt + C) 2TGFo)
1  nAY 2 0

2 r 2T
+ Ay n (A coswt + C ) 2 GFo (5-22)

Thus

ALZn (C2-A+\ n {C1+A -
4TGFO(5-23)

S C2+ C1 -

In arriving at the last expression it is noted that

C2  < -A

C1 > A

and C1 = -C2 over their respective ranges of OG* Equation (5-23) is

simplified further to

4TGFO 1 (C2-A)(C+A)1 A 1  A
4 2 C1+A

TGF + --Rnr LC1-A (5-24)

Now substitution of Eqs. (5-10) and (5-11) into Eq. (5-20) yields

B1 = c- A coswt dwt - TGO coswt dwt
S Y[A cost + C GFO1

y[ t cost dwt + TGFO cost dwt (5-25)
Tr f_ y[Acoswt + C, 717 GFO



Evaluating each of the integrals in the last equation, we have

0 T GF coswt dwt = TGFO coswt dwt = 0 (5-26)

2 2

Since C2 < -A, C2 is always negative, and C2 > A, the first integral of

B1 becomes

I Acoswt d t A - i ( i
C2  7 dwt

+ Acswt+C (5-27)
iyA 0 Acoswt+C2

or
or1 + C 2 tan-l1 (C2-A)tan(wt/2) T

1 - yA y2 ' C2 -A2  0
2-A 2

1 _2 (5-28)

yA yAC~_-A2

where the fact that C2 is negative has been used. Also, tan T/2 is

taken to be +- since wt/2 expands from 0 to 7/2.

Similarly, the third integral of B1 in Eq. (5-25) is written

2 1 f2 -
2 y A Ca+Cl coswt dwt

CI1  f 2 -tan (C1-A)tan(wt/2) '21r

YA tryA 1 1
S-A C 2A

- + (5-29)YA yA- _A2

In arriving at the last equation, we have recognized that C1 > A and

have used that tan T/2 = -t, since in this case wt/2 expands from 7/2 to n.

Thus,



B = 1+ 1= .2 2 + C1S2 2 [
I2 yA A -A2  yAC-A

A 2  1 (5-30)
A

The describing function in complex form is written as

N(A) = A (5-31)

where A1 and B1 are given by Eqs. (5-24) and (5-30), respectively. A

digital computer program for the computation of N(A) and -1/N(A) is listed

in Table 5-1. The constant A is represented by E in this program. The

parameters of the nonlinearity are:

TGF0 = 0.1 ft-lb

y = 1.38 x 105

Figure 5-1 shows the magnitude (db) versus phase (degrees) plots of

-1/N(A) for y = 1.38 x 104, 0.69 x 105, 1.38 x 105, 0.69 x 106, and

1.38 x 106, as the magnitude of A varies. Note that as A becomes

large, the magnitude of -I/N(A) approaches infinity and the phase

approaches -270 degrees. As A decreases, the magnitude of -1/N(A) decreases

and the phase approaches -180 degrees. In the limit as A O, -I/N(A)

goes to -1/YTGFO

Asymptotic Behavior of -1/N(A) for Very Small Values of A

Figure 5-1 shows that as A approaches zero, the magnitude of

-1/N(A) in db approaches 20 llog 1 [/YTGFO2 ] and the phase is -180

degrees. The asymptotic behavior of -1/N(A) for very small values

of A is derived here analytically.
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Table 5-1

L
.100 L$, T CONTIriOUT DESCRIB~ING FUfNCTIONl - EXAC:T CMGl, rONLINEARITY

1 .0 (0 C.OMPFLEX: GVGN*i.16E
1.500 REAL*8 F(0,IRDTAMSRT;,~RTFsGNTFlC

1 .600 F:EAL.E: R
2.000 PI=:3.14159
3.000 ~trA=130 .z..I
4.000 TO= .1
4.500 2=10.
5 . 000 I3AMIA=S:. E5
6.000 E:&rRPT=.E-13
7. 000 riF=2

80(10 rir= 15
9.0001 P( 1)= 1

10.000 P(2)=5.
10.200 WR.IITE0,~11)
10.400 WI.J1TE(6,p01)
11.000 DO 1 .J=1 ;Nr
12.000 rDO I 1=1,NF
13 . 000 E=ESTRRToP (I ).(1:1.*..(j1::'-
14.000 AR=2 .eIAMrIAoE*TO
15.000 R(1.'H:~lIR(FAA+ :''FHA~;
16.000 T'3FI=R*TO
17'.0001 T'FN=T'3FI
13 .00'0 T'3FP=-T3F I
19 .000 C 1=E- 1. ':: I3 A *(A.T'FP- To).
20 .000 C2=-E-./6MoTGNOY
21 .000 R1=(-4 .. TO'P1 )+( 1./(F'I'FGiAMME)):',LO3(( It+E).(C2-E) )'((C:1-E).%
21 .100 (C2+E))

22.100 A1=A1.,E
22.2001 B1=B 1 .E
23 . 000 '3N=DCPFLX:(BI1 -A1 )-
24 . 000 GVs)- 1 . 1N
25 .0(00 '31 =FEAL (iV)
26.00 G:('''2= I MAG3(GV3)
27 .000 '3MA13=CAB&:3(GiV)
283.00'(I0 '3rB=2 0 .*.LO'31 0 (GMRG)
29 .0001 lPHR:SE=RAtiRTAN2 ('32 '1)

0000IF(SPHA:E .'E .0. GlFHH:SE=I;FHRTE-.::6,
?3000 aR I TE (6 1 02) E T'3F I 'HA E q DB GI3R

24.000I: 1 CONT INUE
:35 .(0( 100( FORMRT( C:OtTIN\OH:: D9ES~CRIB.ING FUNCTION FOR CMG3 NONL INERF:I

36 .0010 1011 FORMAT.' P3X< E" '11':! T'3F1 .1 O;~s"PHAE' '1 0X,'B',p9X,"MF1'NlTLI
DE"/

3000 1012 FORMATCP514.5)
:39 . 0'00 STOP

40.000 ENDi
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Figure 5-1



Dividing both sides of Eq. (5-24) by A and expanding the loga-

rithmic term into a power series, we have

A1  4  4 +A A3  A
A iA GFO 2 C 3

,nA y C1 CI

4+.T + A + A5 + ... (5-32)A GFO y CA C3 C5

Taking the limit on both sides of Eq. (5-32) as A-+O, and using the

fact that

tim C1  T (5-33)
A-O GFO

we have

A+*OA A O 7TA GFO ry C A 3 C
1 1

m 4T + 4 YTGFO 4 AY2 TGFO3 +
AO K A GFO Ty A + "

Substituting Eq. (5-33) into the last equation we have
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Zim _ = Zm + -2 2TGF y + + ...] = 0 (5-34)
A - 1 I A 0 O

Dividing both sides of Eq. (5-30) by A and taking the limit as A

approaches zero, we have

tim Bl = Zem 2 C -I

A+O AO yA2  2c-2

= 2 1 -2 1 (5-35)

A+O YA2  )2

Expanding [I - (A/C1 )2 -I/2 into a power series, and using only the

first two terms, Eq. (5-35) becomes

2
&Lm ( 1 2 [(
A-O A AO yA2 2 C

1 2 (5-36)=&Lm -~- = YTGFO (5-36)

A-*O yC1

Thus,

Zm I/N(A) = m 1 2 (5-37)
A-O2 A0 1 J yTF(5-37)A A

As shown in Fig. 5-1, the gain-phase plot of -1/N(A) as A approaches

zero is a point which lies on the -180 deg line with a magnitude of

20 logl 0[l/yTGFO].



Asymptotic Behavior of -1/N(A) For Very Large Values of A

For very large values of A, the value of C1 becomes

£im C = imJA + 2 (5-38)
A-)- 1  A-L yTGFOI

Then

A 3
tm A Pim 4 TA2 1 A _ A
A- A AA GFO 7Y C1A C3 C5J

im - TGF = -0 (5-39)A-

Similarly we can show that

1m - = +0 (5-40)
A-o A

Thus,

- I/N(A)] = -j/0 =- -270 (5-41)

As shown in Figure 5-1, the gain-phase plots of -I/N(A) approach

mi-2700 as A m for all values of y and TGFO.
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6. Computer Simulation of the Simplified LST System with the

Analytical Torque Expressions

A computer simulation of the LST system is presented here to

corroborate the results of the describing function analysis of the

last chapter. Since the describing function analysis has been carried

out with the analytical torque expressions for the CMG frictional

nonlinearity, the simulation model of the nonlinearity also has the

same characteristics. This model of the nonlinearity is implemented by

using the expressions for TGF in Eqs. (2-38) and (2-39) with initial

conditions for eG and TGF being redefined each time a sign change in

occurs.
G

The simplified LST system is represented by the block diagram of

Figure 1-7. The linear transfer function which the nonlinear element NL

sees is given by

JVs

G(s) 3

JG VS 4+JvKpS 3 KIs 2 +KI HK s+KIHKO

Two sets of numerical values are considered as follows:

System 1 System 2

JV 10 10

JG 2.1 3.7

Kp 216. 280.

KI  9700. 10000

H 600 200

K1  1371.02 3000

K0 5758.35 20000
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The frequency-domain plots of G(s) for both systems are given

in Figure 6-1 in db versus phase coordinates. Figure 6-1 also

contains the -1/N curves of Figure 5-1 for y = 1.38 x 10 s,

1.38 x 10' and 1.38 x 10 7 .

With y = 1.38 x 10', the -1/N curve intersects the G(s) curves

of the two systems at two points each. Among these the stable points

for sustained oscillations are the ones on the left at the higher

frequencies. The approximate magnitudes and frequencies of the

oscillations are 6 x 10-6 rad and 4.4 rad/sec, respectively, for

system 1, and 2 x 10- ' rad and 5.6 rad/sec, respectively, for system

2. The curves in Figure 6.1 also show that for y considerably smaller

than 1.38 x 107, both systems will exhibit a stable response, although

for certain values of y system 2 will show sustained oscillations

while system 1 is stable.

For the computer simulation, the input to the LST system, X,

is set to zero, along with all the initial states, except for the

vehicle position eV . The initial value of 0V is set at 5 x 10- s

rad, which is chosen so that the input signal to the nonlinearity,

OG, would be large enough to cause the torque to saturate, while

at the same time the limiting value of the input signal is not

exceeded.

The following quantities are plotted from the simulation runs:

0V = vehicle position (rad)

WV = vehicle velocity (rad/sec)

aG = Gimbal position (rad)
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WG = Gimbal velocity (rad/sec)

TGF = Torque output of the nonlinearity (ft-lb)

Error = Error input command (rad/sec) to the CMG

=X - K0 V - K1m V

Figures 6-2 and 6-3 show the plots of the above listed quantities

for system 1 with y = 1.38 x 107. It may be noted from the plot of TGF

in Figure 6-3 that the system has a sustained oscillation. This

oscillation is not seen on the other plots because of the large initial

transients. Figure 6-4 through 6-5 show the continuation of Figures 6-2

and 6-3 with proper scales. Figures 6-6 and 6-7 show the response plots

for system 2 with y = 1.38 x 10', and Figures 6-8 and 6-9 show the

continuation of these plots with proper scales. The frequencies and

magnitudes of oscillations obtained with the two systems are quite

close to the predicted values. The small discrepancy is attributed to

the discretization of the nonlinearity implementation on the digital

computer.

Figures 6-10 and 6-11 show the response plots for system 1 with

y= 0.69 x 10' and their continuations are shown in Figures 6-12 and

6-13, respectively. Figures 6-14 and 6-15 show the response plots

for system 1 with y = 1.38 x 10 s . As predicted, the system is stable

for both of the lower y values.
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System 1 y = 1.38 x10 7
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System 1 y = 1.38 x10 7
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System 2 y = 1.38 x10 7
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System 1 y = 0.69 x10 7
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System 1 y = 0.69 x10 7 -
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7. Transfer Functions of the Sampled-Data LST System

Since the actual LST system has sample-and-hold between the vehicle

controller and the CMG controller, the system should be modelled as a

sampled-data control system. Figure 7-1 shows the block diagram of the

simplified LST system with sampled data. Since it is necessary to

isolate the CMG nonlinearity from the linear dynamics for analytical

purposes, a sample-and-hold is inserted in front of the nonlinearity

as an approximation.

Referring to Figure 7-1, the following equations are written

using e*, eG* and eV* as outputs.

e* (G1X)* +N* ho L G G [GhGlG2GG6G7] e* (7-1)

GhoG * -Gh0G2G3G6  *

G*= -N* sA0  + so e* (7-2)

eV* L G OGG e*- N* 6 (7-3)
A0 1 A 0 G

where the symbol * denotes the z-transform operation, and N* represents

the discrete describing function of the CMG frictional nonlinearity;

A0 = 1 + G3 G6  (7-4)

Equations (7-1) through (7-3) are portrayed by the sampled signal flow

graph of Figure 7-2. Applying Mason's gain formula to this flow graph

yields the determinant of the graph as



G1  Gho G2  G3  G6  G7

XK +Ks e -zoh 1  -1 1 H
01 T Ks+KI + JGS s

GF

NL 4-- zoh 1

CMG Nonlinearity Gho

Figure 7-1. A block diagram of the simplified LST control system with sampled data
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G ho IG 2G 3 G6G7

Figure 7-2. The Sampled Signal Flow Graph for the Equivalent System.
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N , r r"0
NGhoG* ho6 7 hoG2G3G 6

s 0 0 SAO

[Gh G G G G G  [ G G G GGG7J
+ N* L Ao J G LG ] GhoGG 2G S GG 7l*hN* A (7-5)

The last equation is put into the form of (with N(z) = N*)

1 + N(z)G(z) = 0 (7-6)

where

G(z) =A (z)-A 2 (z)A3 (z)+A 4 (z)A1 (z)
(z) 1+A(z )  (7-7)

A (Z) = (l-z- 1  (7-8)

AG1 (7-11)A4(z) = (1-z- )  so0 (7-11)

Substitution of the system transfer functions into the above expressions

yields

Ay0 - 2 (7-12)
JG

s

Al(z) = (-z - 3+K 2+K (7-13)

A2(z) = (1-z-1 (H(KJ+ K1s) s 14)

JVs 2(Gs 2+K s+K )
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A3(z) = (l
-z -l) s2 JG2 K ) (7-15)

s (J s +K s+K1 )

A4(z) = (l-z -l)2) (7-16)

. Jvs3 Gs p+K s+K

The following system parameters are used for System.l:

H = 600 ft-lb-sec

JG = 2.1 ft-lb-sec2

K0 = 5.75835 x 103

K1 = 1.37102 x 103

K = 216 ft-lb/rad/sec

K = 9700 ft-lb/rad

J = 105  ft-lb-sec2

Taking the z-transforms of the functions inside the brackets in

Eqs. (7-13) through (7-16), we have the following results:

z-e z-e

a = - 51.429993- j44.42923

a = - 51.429993 + j44.42923

A13 = 1.0309376 x 10-4

A14 = - 5.15469 x 10-5 - j5.9669183 x 10-5

A15 = -5.15469 x 10-5 + j5.9669183 x 10-5

A(z) A + A + A z- + A z
2(z)= A22 z-1 + 23 24 zeaT 25 ze- T (7-18)
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A22 = 3.5616776 x 10- 3

A -4
A23 = 7.6870434 x 10

A2 4 = -3.8435217 x 10-  - j4.8499764 x 10 - 4

A25 - 3.8435217 x 10- 4 + j4.8499764 x 10- 4

T + z- l + zA3 (z) = A32  
+ A33 + A z-1 + A z (7-19)

32 z1 33 34 aT 35 zT

A3 2 = 1.0

A 33 -2.2268891 x 10- 2
A34 = 1.1134446 x 1032 + j.6350537 x 10-

A34 = 1.1134446 x 10-2 _ j1.6350537 x 10-3

A35 = 1.1134446 x 10-2 - j1.6350537 x 10-3

T2(+1) A T z-1 z-l
A (Z) = A + A + A + A + A4 41 2(z 2 42 -1 43  44  aT +  45 zeaT

2(z-1) z-e z-e

(7-20)

A41 = 34.54837

A42 = 7.4564409

A43 = -0.17352653

A44 = 8.6763263 x 10
-2 + j1.6520832 x 10-2

A45 = 8.6763263 x 10-2 - j1.6520832 x 10-2

The following system parameters are used for System 2. The

same expressions for Al(z), A2 (z), A3 (z) and A4 (z) are preserved.

H = 200 ft-lb-sec

JG = 3.7 ft-lb-sec 2

K0 = 2 x 10

K, = 3 x 103
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Kp = 280 ft-lb/rad/sec

KI = 104 ft-lb/rad

JV = 105 ft-lb-sec 2

The corresponding coefficients in Eqs. (7-17) through (7-20)

are

a = -37.83783 - j35.651077

a = -37.83783 + j35.651077

A13 = 9.9999976 x 10
-5

A14= -4.9999973 x 10-5 - j5.3066848 x 10-5

A15 = -4.9999973 x 10
-5 + j5.3066848 x 10-5

A22 = 3.9999932 x 10- 3

A23 = 4.8799929 x 10
-4

A24 = -2.43997 x 10
-4 - j3.150655 x 10-4

A25 = -2.43997 x 10- 4 + j3.150655 x 10-4

A32 = 9.9999982 x 10-1

A33 = -2.8 x 10
2

A34 = 1.4000002 x 10-2 + j8.3391555 x 10-4

A35 = 1.4000002 x 10
-2 - j8.3391555 x 10-4

A41 = 39.999985

A42 = 4.8800011

A43 = -1.5144014 x 10-

A44 = 7.5720072 x 10
-2 + j1.1923421 x 10-2

A45 = 7.5720072 x 10-2 - j1.1923421 x 10-2

It can be shown that if T approaches zero, the z-transfer function

G(z) in Eq. (7-7) reverts to that of the continuous transfer function

G(s) of Eq. (1-16).
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8. The Discrete Describing Function of the CMG Frictional Nonlinearity

In order to study the condition of self-sustained oscillations

of the LST system with sampled data, it is necessary to evaluate

the discrete describing function of the CMG frictional nonlinearity,

N(z).

The first step in the derivation of N(z) involves the inter-

changing of the positions of the nonlinearity and the zero-order

hold in Figure 8-la. This step is justified since the nonlinearity

is amplitude dependent only, so that the signal of TGF is not affected

by this interchange. Figure 8-lb illustrates the transposition

between NL and zoh.

The second step involves the assumption that 0G is sinusoidal;

that is,

OG(t) = Acos(wt + 9) (8-1)

where A, w, and denote the amplitude, the frequency in radians,

and the phase in degrees of the sinusoid, respectively.

The z-transform of OG(t) is

0G(z) = Acos(- + )zk (8-2)
k=O

or in closed form,

Az[(z - cos-- )cos - sin-sin]

G(z) 2= (8-3)
z - 2zcos--- + 1
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0 zoh NL T

T

(a)

OG G* TGF TGF

NL zoh

T

(b)

Figure 8-1

An important consideration is that because of the periodic

nature of the sampler, OG(t), eG*(t), and TGF*(t) are all periodic

functions of period NT, where N is a positive integer >2.

Therefore, w = 27/NT, and wT = 27/N.



39

The output of the nonlinearity in Figure 8-lb is denoted by

TGF*(t), and its z-transform is TGF(Z). The discrete describing

function (DDF) of the nonlinearity is defined as

TGF(z)
N(z) = (8-4)

It turns out that the discrete describing function (DDF) for

N = 2 must be derived separately, and a general expression for N(z)

can be obtained for all N > 3.

The DDF for N = 2

Let TGF(kT) denote the value of TGF*(t) at t = kT. For N = 2,

the signal TGF*(t) is a periodic function with a period of 2T. The

z-transform of TGF*(t) is written

TGF(z) = TGF(O)( + z-2 + z-4 + ...) + TGF(T)(z - 1 + -3 + )

TGF(O)z2 + TGF(T)z

2 (8-5)
z - 1

For the CMG frictional nonlinearity, it has been established

in chapter 2 that

R - - cos(t + )]
TGF(t)= TGFO 1 < 0 (8-6)

GFO + 1 + {l - cos(t + )]



40

R + {1 - cos(wt + p)]

TGF(t) = TGFO I + wt (8-7)

R- 1 - cos(t )

Let us introduce the following notation:

TGF-(kT) = TGF(t) t=kT G < 0 (8-8)

TGF (kT) = TGF(t) t=kT G > 0 (8-9)

We have,

R a 2rk
R + 1 1 - cos( N )]

TGF(kT) = TGFO 1 2nk G 0 (8-10)

R + cos( - o27r+ )

R -I o(-- - -- --+ ¢ )]
TGF (kT ) = TGFO -1 + 1 - cos( eG > 0 (8-11)

- l cos(-N---+ p)] G

For N = 2,

TGF(0) = TGF-(0) 0 < <I

=TGF+ (0) < < 2

(8-12)

TGF(T) = TGF+(T) Tr < < 2 (82)

=TGF (T) 0 < <
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Substituting N = 2 into Eq. (8-3), we have

OG(Z) = Azcos (8-13)

Using Eqs. (8-5) and (8-13), the DDF for N = 2 is determined,

TGF(O)z + TGF(T)
zN(z) = A - -c (8-14)

Also, for N = 2, z = -1, the last equation becomes

TGF(O) - TGF(T)
N(z) 2Acos (8-15)

For stability analysis, we define

1 2AcosP
F(z) - - TGF (8-16)

GF GF

The DDF for N > 3

In general, the z-transform of the output of the nonlinearity may

be written as

TN- kmN

TGF(z) = TGF(kT)z - k -m N

m=O k=O

N-1
STGF(kT)zN-k

k=O z -N (8-17)
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Using Eq. (8-2) for eG(Z), the discrete describing function

N(z) is written

N-I

TGF(Z )  Y TGF(kT)zN-k
N(z) GFz k=O0 (8-18)

eG (N - 1) z Acos(--+ p)z
k=O

The denominator of N(z) may be simplified as follows:

(z N - 1) Acos( k + )z- = A zN-kcos( + ) - A z-kcos(?-T+
k= k=0 N k=N

= A cos(2k N-k-=NAI cos(2N + b)z (8-19)
k=O

Thus,

N-i

Y TGF(kT)zN-k
-I

N(z) = N- kcos(0- '  (N > 3) (8-20)i 2 )k N - k -I
A ' cos(-N-- + p)z - -
k=O

As an alternative we may expand zN - 1 as

zN-  N-1
N1 (z - ej2 k/N) (8-21)

k=O

Then, using Eq. (8-3) for OG(z), N(z) is written
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N IT F(kT)zN-k[z2 - 2zcos - + 1]
k=O N (8-22)

N(z) N-I

N (z - ej21k/N )Az[(z - cos -)cosq - sin sin ]
k=O

For N = 3, N(z) is simplified to

T GF(O)z2 + TGF(T)z + TGF(2T)
N(z) = A(z - 1)[(z + 0.5)cos - 0.866sin6] (8-23)

For N > 3,

N-1
I TGF(kT)zN-k-I

N(z) =N-2 k=0 (8-24)

A(z - I) (z - ej2k/N)[(z - cos2 2)cos - sin 2sin]
k=2

where in general,

-2k
TGF(kT) = TGF (kT) 0 < 2k +

(8-25)

= TGF (kT) < 2k + < 2

where 0 < (27rk/N + ) < 271 must be satisfied by appropriate conversion

of the angle 27k/N + c.

For stability studies the critical regions of F(z) = -1/N(z)

should be constructed for N = 2, 3, ..., with varied from 00 to

3600, and A from 0 to infinity.
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The following theorems on the properties of -I/N(z) are useful

for simplifying the task of the construction of the critical regions.

Theorem 8-1

For any integrat N, the magnitude and phase of -I/N(z) repeat

4o& every c = 27/N radians.

Proof: The negative inverse of the discrete describing function

is written

2 27 N
1 -A[(z - cosi)cos - sinN-sin](z - 1)

F(z) =-- N(z=T N- (8-26)

SZGF(kT) - (z2 - 2 zcosN + 1)

Let

FI(z)F2(z)
F(z) = F (z)F 2 (z) (8-27)

3(z)F4(z)

where

F(z)= -A[(z - cos --)cos - sin -sin ] (8-28)

F2 (z) = zN - 1 (8-29)

N-1
F3 (z) = TGF(kT)zN-k- (8-30)

k=0

F4 (z) = (z 2 - 2zcos.- + 1) (8-31)
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Let

F(z)N = [F(z)]@ = + 2r/N (8-32)

Fl(z)N = [Fl(Z)] = O + 2T/N (8-33)

F3(z)N = [F3(z)] = + 2r/N (8-34)

Then,

F (zN F3(z)I F(z)N (8-35)

and

Arg[F(z)] - Arg[F(z)N ] = Arg[Fl(z)] - Arg[F3 (z)]

- Arg[Fl(z)N] + Arg[F 3 (z)N] (8-36)

Also,

Fl(z) = AsinF (8-37)

IF1(z)NI= Asin- = F(z) (8-38)

Let us express F3 (z)N as
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N-1
F3 (z)N = N TGF(kT)NzN-k-I (8-39)

k=O

where

TGF(kT)N = [TGF(kT)]q = q + 2f/N (8-40)

It can be shown that for any integral N,

N-I
F3 (z)N = zF 3 (z) = N TGF(kT)zN-k (8-41)

k=O

Then, Eq. (8-35) becomes

F(z F3 (z)N_ zF 3 (z)
F z N F3(z F3(z) = (8-42)

The argument of F1 (z) is

Arg[F 1(Z)] = - 7/2 (8-43)

Then

Arg[Fl(z)N] = - r/2 + 2T/N (8-44)

Thus, Eq. (8-36) becomes
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Arg[F(z)] - Arg[F(z) N]  - - Arg[F 3(z)] + Arg[F3(z)N

2N Arg[F 3(z)] + Arg[zF 3 (z)]2 2

- Arg[F 3(z)] + -N + Arg[F3(z)]

=0 (8-45)

Q.E.D.

As an illustrative example of Theorem 8-1, let us consider the

case of N = 4.

Let -- = YTGFOA = K

Then

T -(kT) =R K(R 1 )[cos + 2rrk/N) - Ir(

T (kT) = R - K(R + 1 )[cos( + 2nk/N - 1]T  (8-46)

GF 1 - K(R - 1 cos ( + 2Trk/N) - 1]GFO

For 0 < q < r,

F3 (z) = TGF(O)z3 + TGF (T)z2 + TGF (2T)z + TGF (3T) (8-48)

F3(z)N = TGF-(O)Nz3 + TGF (T)Nz2 + TGF (2T)Nz + TGF-(3T)N (8-49)

It is easy to see that
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TGF-(O)N = TGF-(T)

TGF + (T)N = TGF+ ( 2 T )

(8-50)

TGF (2T)N TGF+(3T)

TGF- (3T)N = TGF-(O)

which proves that F3 (z)N = zF3 (z).

Similar results are obtained for r < 4 < 27.

Theorem 8-2

Foat odd N (N > 3), the magnitude and phase o4 -I/N(z) tepeat

for evey p = T/lN.

Proof: Let F(z)N, Fl(z)N, F3 (z)N now be defined as F(z),

Fl(), and F3(z) with ( replaced by 4 + i/N, respectively.

Then,

Arg[F (Z)N] L (8-51)

Arg[F(z)] - Arg[F(z)N] = - + Arg[F 3(z)N] - Arg[F3 (z)] (8-52)

Using the same notation as in Theorem 8-1, it can be shown that

for odd N > 3,
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F3(z)N = -z-(N-1)/2F 3(z) (8-53)

Thus,

Arg[F3(z)N (N 2 1) 2 Arg[F3(z)]

= + Arg[F3 (z)] (8-54)

Again,

F 3(z)N=l (8-55)

and

Arg[F(z)] - Arg[F(z)N ] = - -+ Arg[F3(z)N] - Arg[F 3(z)]

= 0 (8-56)

Q.E.D.

As an illustrative example of Theorem 8-2, consider the case N = 3.

For 0 < ~< 7r,

F3(z) = TGF-(O)z 2 + TGF-(T)z + TGF (2T) (8-57)

F3(z)N T(GF-(O)N z2 + TGF (T)Nz + TGF (2T)N (8-58)

It can readily be shown that
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TGF-(O)N = -TGF (2T)

TGF + (T) N = -TGF-(O )  (8-59)

TGF + (2T)N = -TGF-(T)

To carry out one of the identities above,

T R - K R - 1 [cos ( + - 1- R + K(R - 1)(cos + 1T
GF )N GFO 1 - K R - 1 [cos P + TO - 1 1 + K(R - 1)(cos + 1)GFO

(8-60)

TGF-(O) = TGF 1- R + cos (8-61)

Using the relation, R2 + KR - 1 = 0, we have

TGF- (T)N = -TGF(0) (8-62)

Thus,

F3 (z)N = -z-1F3 (z) (8-63)

The significance of the last two theorems is that the critical

regions of -1/N(z) need be computed only for 00 < < ir/N for odd

N, and 00 < 6 < 27/N for even N.
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TheoAem 8-3.

Mympotic Behaviot of -I/N(z) as A appouaches infinity.

(a) liml-1/N(z)j =~ (8-64)
A-o

(b) For even N > 4, 0 < < 2Tr/N.

t&m Arg[-1/N(z)] = (--- -) + (8-65)
A-

For odd N > 3, 0 < < 7/N.

tim Arg[-1/N(z)] = (1 - -) + (8-66)
A-*N

(c) For N = 2 0 < < r

£Zm Arg[-1/N(z)] = 00 0 < 4 < rr/2
A-

= Tr /2 < < r (8-67)

(d) For N = 3 0 < < 7 /3

tim Arg[-1/N(z)] = - 3 + r (8-68)
A"3

Proof:

We can easily show that

N m TGF-(kT) = -TGFO G 0 (8-69)
A-0

tZm TGF (kT) = TGFO  G> 0 (8-70)
A-,
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The magnitude of -1/N(z) is directly proportional to A as A

approaches infinity; thus (a) is proved.

For N = 2 0 < q < r/2

F(z) = -1/N(z) - GF T- TGF 0) (8-71)

Thus,

a1m Arg[F(z)] = Zim Arg 2Acos 3
A--* A- T "F - TGF GF(

=Arg 2ACOS = 0 0  < <r/2
GFO

= rr/2 < < Tr (8-72)

This proves. item (c).

For N = 3 0 < P < T/3

F(z) =-A[(z + 0.5)cos - 0.866sin](z - 1) (8-73)
TGF(O)z + TGF(T)z + TGF(2T)

tim Arg[F(z)] = - 5- im Arg[TGF(0)z2 + TGF(T)z + TGF(2T)] + pA-)a 3 A-GF

5 - Arg[-z - z + 1] +

57r-+ 
(8-74)

This proves item (d).
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For N > 4 and even 0 < < 2rr/N

Using Eqs. (8-27) through (8-31), we have

im Arg[F(z)] = fZm Arg[Fl(z)] + Arg[F2(z)] - Arg[F 3(z)] - Arg[F4(z)]
1

= - - ~rm Arg[F3 (z)] + Arg[F2 (z)] - Arg[F 4(z)]
A (8-75)

N-2
Arg[F2 (z)] - Arg[F4 (z)] = Arg[(z - 1) H2 (z - ej2nk/N)

k=2

= Arg[ej~/N j u/ N - -j /NN j2/N(l - ej2/N(k-1))] (8-76)

k=2

Arg[F2 (z)] - Arg[F 4 (z)] = ArgEej(/N ej /N - e- )(e/N ( j2 r/N-3N3r (1 - eJ2 lk/N)]

k=l

N-3
= + -+ (N - 3 )(L) + Arg ej ek/N (e-jk/N - e+j k/N

k=l

N-3= + (N - 3)( ) + (N - 4)(- ) + N 3 - (8-77)
k=l

N-I
Zim Arg[F3 (z)] = im Arg TGF(kT)zN-k-l
A-m A- k=O
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N/2-1 N-I

= Arg - TGFN-k- + Arg N TGFOzN-k-l

k=O k=N/2

N/2-1 (N 1)
= Arg I - T N-k-1 (- - r - I (8-78)

k=O GFO N 2 (8-78)

Thus,

N-3
Am Arg[F(z)] = - + + (N- 4)(-) + (N - 3)( )  ++

N 4 k
(3 2 N +  -)T + k=1

1 1
= (I- -)i+ (8-79)

For N > 3 and odd 0 < < 7r/N

For this case,

(N-1)/2 N-I
-Zm Arg[F 3 (z)] = Arg - T GFOzN -k- + Arg T N-k-
A- GF k=O k$4+ 1)2 GFO

2N (8-80)

Thus,
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eZm Arg[F(z)] = - + + (N - 4 )(-) + (N - 3) () + N 2N3
A-o k=l

N 7 N-3 k

= (3 2 2N +
k= 1

= (1 - -)+ (8-81)

and (b) is proved. Q.E.D.

Theoem 8-4.

Asymptotic Behavio o6 -I/N(z) as A appaaches zeio.

im F(z) (8-82)
A-+O YTGFO

for all ( and all N.

Proof: From Eq. (8-20),

N-l 2k7r N-k-l
-A I cos(--N--+ )z

1 k=O
F(z) = - =1-O - - (8-83)

z TGF(kT)z
k=O

N-oN-1 2k7r N-k-l
- Z cos(N + f)z

£2im F(z) : k=O-Oim F(z) N-l T (kT)
A+/O GF N- k - 1Aeim A

A-+0 k=0



56

N-I N 2kir N-k-l
- I cos- N + p)z
k=0k=-O (8-84)
N-I T GF(kT) k (8-84)

k=O A-O A

TGF(kT)
- Therefore ;-the -problem is- th-at of-- findi-ng-tim-

A0 A

First, let TGF(kT) = TGF (kT). Then

T -(kT) Rk
tim GF (kT) m T A(R + 1 - YTGFO + YTGFOcos(2 +

AO A GFO 2-k 1A-0 A-O YTGFOA - yTGFoAcos(k + ) +

R T 2 2-rk

TGFO A(R + 1) + YTGFO [cos(2 k + 1) - 1] (8-85)

where the fact that i£m [1/(R + 1)] = 1 has been used.
A O

2 2A2
R R+I I 4y TG A + 1Zm A(R +R )m 1 TGF + (8-86)

A+O AO A-O A 2yTGFOA 4y2T GF 2A2

Or,

A-lm A(R +R 1 1 1 + 4 2A2 (8-87)A-+O + 1) A-O 2 YTGFOA 2yT GFOA



57

Expanding-J1 + 4y 2TGF2A2 into a power series, and using only the

- -f-i-rst two terms, we-have.,-----.

2 24y2T 2A2
m R = GFO -yT (8-88)

A-0 A(R + 1) A- A 4YTGFA GFO

Thus,

A O A T yTGFO2 + yTGFO [cs( N +  ) - 1]

2 A2rk
STGF cos( N + ¢) (8-89)

Similarly, it can be shown that

TGF(kT) TGF (kT) 2
im -= im = GFO cos(- + 4) (8-90)
A+O A A+O GFo

Now,

N-1
N-I (2k N-k-l- . cos( N + )z

Z&Ui F(z) = k=O 1 (8-91)
A 2N- 2 27k N-k-l yT 2

YTGFO I COs( N + T)z GFO
k=

for all J and all N. Q.E.D.


