
A Comparison of Continuous and Discretized Pursuit Learning Schemes

B. John Oommen∗ and Mariana Agache
School of Computer Science
Carleton University
Ottawa, K1S 5B6, Canada
oommen@scs.carleton.ca

∗ Senior Member, IEEE.

ABSTRACT
A Learning Automaton is an automaton that interacts with a
random environment, having as its goal the task of learning the
optimal action based on its acquired experience. Many learning
automata have been proposed, with the class of Estimator
Algorithms being among the fastest ones. Thathachar and
Sastry [23], through the Pursuit Algorithm, introduced the
concept of learning algorithms that pursue the current optimal
action, following a Reward-Penalty learning philosophy. Later,
Oommen and Lanctôt [16] extended the Pursuit Algorithm into
the discretized world by presenting the Discretized Pursuit
Algorithm, based on a Reward-Inaction learning philosophy. In
this paper, we argue that the Reward-Penalty and Reward-
Inaction learning paradigms in conjunction with the continuous
and discrete models of computation lead to four versions of
Pursuit Learning Automata. We contend that a scheme that
merges the Pursuit concept with the most recent response of the
Environment permits the algorithm to utilize the LA’s long-
term and short-term perspectives of the Environment. In this
paper, we present all the four resultant Pursuit algorithms, and
also present a quantitative comparison between them. Although
the present comparison is solely based on rigorous experimental
results, we are currently investigating a formal convergence
analysis of the various schemes.

1. INTRODUCTION

The goal of many intelligent problem-solving systems is to be
able to make decisions without a complete knowledge of the
consequences of the various choices available. In order for a
system to perform well under conditions of uncertainty, it has to
be able to acquire some knowledge about the consequences of
different choices. This acquisition of the relevant knowledge
can be expressed as a learning problem. In the quest to solve
the learning problem, Tsetlin, a Russian mathematician, created
in 1961 a new model of computer learning, which is now called
a Learning Automaton (LA). The goal of such an automaton is
to determine the optimal action out of a set of allowable actions,
where the optimal action is defined as the action that
maximizes the probability of being rewarded. The functionality
of the learning automaton can be described in terms of a
sequence of repetitive feedback cycles in which the automaton
interacts with the environment. During a cycle, the automaton
chooses an action, which triggers a response from the
environment, a response that can be either a reward or a
penalty. The automaton uses this response and the knowledge
acquired in the past actions to determine which is the next
action. By learning to choose the optimal action, the automaton
adapts itself to the environment.

Learning automata have found applications in systems that
posses incomplete knowledge about the environment in which
they operate, such as game playing [1], [2], [3], pattern
recognition [10], [20], object partitioning [17], [18]. They also
have been applied to systems that have time varying
environments, such as telephony routing [11], [12], and priority
assignments in a queuing system [7]. The varieties of learning
automata and their applications have been reviewed by
Lakshmivarahan [2], and by Narendra and Thathachar [9].

Consequently, in this paper only a brief classification will be
presented.

In the first LA designs, the transition and the output functions
were time invariant, and for this reason these LA were
considered “fixed structure” automata. Tsetlin, Krylov, and
Krinsky [24], [25] presented notable examples of this type of
automata. Later, Varshavskii and Vorontsova in [26]
introduced a class of stochastic automata known in literature as
Variable Structure Stochastic Automata (VSSA). These
automata are characterized by the fact that the state transition
probabilities or the action selecting probabilities are updated
with time. For such an automaton, there is a bi-directional
correspondence between the set of states and the set of actions
of the automaton, each state corresponding to a particular
action. Consequently, the set of states becomes redundant in
the definition of a VSSA, and hence, the learning automaton is
completely defined by a set of actions (which is the output of
the automata), a set of inputs (which is usually the response of
the environment) and a learning algorithm T. The learning
algorithm operates on a probability vector

P(t) =[p1(t),…,pr(t)]T,

where pi(t) (i = 1,…,r) is the probability that the automaton will
select the action αi at the time t:

pi(t)=Pr[α(t)= αi], i=1,…,r, and it satisfies,

∑
=

=
r

1i
1)t(ip for all ‘t’.

This vector is known in the literature as the Action Probability
vector. Moreover, VSSA are completely defined by a set of
action probability updating rules operating on the action
probability vector P(t) [2], [4], [9].

Definition 1: A Variable Structure Stochastic Automaton
(VSSA) is a 4-tuple <A,B,T,P>, where A is the set of actions, B
is the set of inputs of the automaton (the set of outputs of the
environment), and T:[0,1]r×A×B→[0,1]r is an updating scheme
such that

P(t+1) = T(P(t), α(t), β(t)), (1)

where P(t) is the Action Probability vector defined above, α(t)
is the action chosen at time ‘t’, and β(t), is the response it has
obtained.

In general, FSSA and the VSSA can be analyzed using the
theory of Markov chains. For the VSSA, if the mapping T is
independent of time, the probability P(t+1) is determined
completely by P(t), which implies that {P(t)}t≥0 is a discrete-
homogenous Markov process. From this perspective, different
mappings, T, can identify different types of learning algorithms.
If the mapping T is chosen in such a manner that the Markov
process has absorbing states, the algorithm is referred to as
absorbing algorithm. Families of VSSA that posses absorbing
barriers have been studied in [4], [8], [10]. Ergodic VSSA have
also been investigated [2], [10], [13]. These VSSA converge in
distribution and thus the asymptotic distribution of the action

probability vector has a value that is independent of the
corresponding initial vector. Because of this independence
property, the ergodic VSSA are suitable for non-stationary
environments. In stationary environments, automata with
absorbing barriers may be preferred because they can be made
to converge to the optimal action with a probability as close to
unity as desired.

In practice, the relatively slow rate of convergence of these
algorithms constituted a limiting factor in their applicability. In
order to increase their speed of convergence, the concept of
discretizing the probability space was introduced in [21]. This
concept is implemented by restricting the probability of
choosing an action to a finite number of values in the interval
[0,1]. If the values allowed are equally spaced in this interval,
the discretization is said to be linear, otherwise, the
discretization is called non-linear. Following the discretization
concept, many of the continuous VSSA have been discretized;
indeed, various discrete automata have been presented in
literature [13], [15].

In the quest to design faster converging learning algorithms,
Thathachar and Sastry [22] opened another avenue by
introducing a new class of algorithms, called “Estimator”
Algorithms. The main feature of these algorithms is that they
maintain running estimates for the reward probability of each
possible action, and use them in the probability updating
equations. Typically, in the first step of the functional cycle the
automaton chooses an action and the environment generates a
response to this action. Based on this response, the estimator
algorithm updates the estimate of the reward probability for that
action. The change in the action probability vector is based on
both the running estimates of the reward probabilities, and on
the feedback received from the environment. A detailed
description of the estimator algorithms can be found in [5], [6],
[16], [22], [23].

Contribution of this paper
Pursuit algorithms are a subset of the estimator algorithms. As
their names suggest, these algorithms are characterized by the
fact that the action probability vector “pursues” the action that
is currently estimated to be the optimal action. This is achieved
by increasing the probability of the action whose current
estimate of being rewarded is maximal [16], [23].

The estimator algorithms presented until now update the
probability vector P(t) based on the long-term properties of the
Environment, and no consideration is given to a short-term
perspective. In contrast, the VSSA and the FSSA rely only on
the short-term (most recent responses) properties of the
Environment for updating the probability vector P(t).

Besides these methods of incorporating the acquired knowledge
into the probability vector, another important characteristic of
the learning automata is represented by the philosophy of the
learning paradigm. For example, by giving more importance to
rewards than to penalties in the probability updating rules, the
learning automata can considerably improve their convergence
properties. In the case of the linear schemes of the VSSA, by
updating the probability vector P(t) only if the environment
rewarded the chosen action, the linear scheme LRI became ε-
optimal, whereas the symmetric linear Reward-Penalty scheme,
LRP, is at most expedient. Also, by considerably increasing the
value of probability changes on reward in comparison to
changes made on penalty, yields a resultant linear scheme, the
LR-εP, which is ε-optimal. The same behavior can be observed
in the case of the FSSA. The difference between the Krinsky
automaton and the Tsetlin automaton is that the Krinsky
automaton gives more importance to the rewards than to the
penalties. This modification improves the performance of the
Krinsky automaton, making it ε-optimal in all stationary
environments, whereas the Tsetlin automaton is ε-optimal only
in the environments where min{c1,c2} < 0.5 [24].

In this paper, we argue that the automaton can model the long
term behaviour of the Environment by maintaining running
estimates of the reward probabilities. Additionally, we contend
that the short term perspective of the Environment is also
valuable, and we maintain that this information resides in the
most recent responses that are obtained by the automaton. The
paper presents schemes by which both the short-term and long-
term perspectives of the Environment can be incorporated in the
learning process – the long term information crystallized in
terms of the running reward-probability estimates, and the short

term information used by considering the whether the most
recent response was a reward or a penalty. Thus, when short-
term perspectives are considered, the Reward-Inaction and the
Reward-Penalty learning paradigms become pertinent in the
context of the estimator algorithms.

The Pursuit algorithm presented by Thathachar and Sastry in
[23] considered only the long-term estimates in the probability
updating rules. Later, Oommen and Lanctôt [16] presented a
discretized version of a Pursuit algorithm which considered
both the short-term and the long-term perspectives and
embraced the Reward-Inaction learning paradigm. In this
paper, we shall present these two Pursuit algorithms and new
versions of Pursuit algorithms, which basically emerge from the
combination of these learning “philosophies” and paradigms.
Also, based on experimental results, a comparison of the rate of
convergence of these algorithms will be presented.

2. PURSUIT ALGORITHMS

In this section we shall describe the two existing Pursuit
algorithms, a continuous version introduced by Thathachar and
Sastry and a discretized version, presented by Oommen and
Lanctôt.

The Continuous Pursuit Reward-Penalty (CPRP) Algorithm
The pioneering Pursuit algorithm, the Continuous Pursuit
algorithm, was introduced by Thathachar and Sastry [23]. We
present it here in all brevity. As alluded to earlier, the
algorithm is based on the long-term estimates. In other words, it
did not take into account the short term information (the most
recent response), and thus modified the action probability
vector at every time instant, yielding a Pursuit algorithm
operating on a Reward-Penalty learning paradigm. For this
reason, we shall refer to it as the Continuous Pursuit Reward-
Penalty (CPRP) algorithm. The CPRP algorithm involves three
steps [23]. The first step consists of choosing an action α(t)
based on the probability distribution P(t). Whether the
automaton is rewarded of penalized, the second step is to
increase the component of P(t) whose reward estimate is
maximal (the current optimal action), and to decrease the
probability of all the other actions. Vectorially, the probability
updating rules can be expressed as follows:

P(t+1) = (1-λ) P(t) + λ em (2)

where em is the action which is currently estimated to be the
“best” action.

This equation shows that the action probability vector P(t) is
moved in the direction of the action with the current maximal
reward estimate.

The last step is to update the running estimates for the
probability of being rewarded. For calculating the vector with
the reward estimates denoted by (t)d̂ , two more vectors are
introduced: W(t) and Z(t), where Zi(t) is the number of times
the ith action has been chosen and Wi(t) is the number of times
the action αi has been rewarded. Formally, the algorithm can be
described as follows.

ALGORITHM CPRP
Parameters

λ the speed of learning parameter , where 0<λ<1.
m index of the maximal component of the reward estimate
vector

(t)}d̂{max(t)d̂(t),ˆ
i

,..,r1i
m

=
=d .

em unit r-vector with 1 in the mth coordinate
Wi(t) the number of times the ith action has been
rewarded up to time t, for 1≤i≤ r.
Zi(t) the number of times the ith action has been
chosen up to time t, for 1 ≤i≤ r.

Method
Initialize pi(t)=1/r, for 1≤i≤r
Initialize)t(d̂ by choosing each action a small number of
times.

Repeat
Step 1: At time t pick α(t) according to probability
distribution P(t). Let α(t)= αi.
Step 2: If αm is the action with the current highest reward
estimate, update P(t) as :

P(t+1) = (1-λ) P(t) + λ em (3)
Step 3: Update)t(d̂ according to the following equations
for the action chosen:

()

)1t(Z

)1t(W
)1t(d̂

1)t(Z)1t(Z

)t(1)t(W)1t(W

i

i
i

ii

ii

+
+

=+

+=+
β−+=+

 (4)

End Repeat
END ALGORITHM CPRP

The CPRP algorithm is similar in design to the LRP algorithm, in
the sense that both algorithms modify the action probability
vector P(t) if the response from the environment is a reward or
a penalty. The difference occurs in the way they approach the
solution; whereas the LRP algorithm moves P(t) in the direction
of the most recently rewarded action or in the direction of all
the actions not penalized, the CPRP algorithm moves P(t) in the
direction of the action which has the highest reward estimate.

Thathachar and Sastry in [23] proved that this algorithm is ε-
optimal in any stationary random environment. In the context
of this paper, we shall merely outline the proof of the
convergence of this algorithm. Indeed, they proved the
convergence in two stages. First, they showed that using a
sufficiently small value for the learning parameter λ, all actions
are chosen enough number of times so that)t(d̂m will remain

the maximum element of the estimate vector)t(d̂ after a finite
time. This is stated in Theorem 1 below.

Theorem 1: For any given constants δ > 0 and M < ∞, there
exist λ* > 0 and t0< ∞ such that under the CPRP algorithm, for
all λ∈(0, λ*),

Pr[All actions are chosen at least M times each before
time t] > 1-δ, for all t ≥ t0.

The detailed proof for this result can be found in [23] ♦♦♦

The second stage of the proof of convergence of the CPRP
algorithm consists of showing that if there is such an action αm,
for which the reward estimate remains maximal after a finite
number of iterations, then the mth component of the action
probability vector converges in probability to 1.

Theorem 2: Suppose that there exists an index m and a time
instant t0 < ∞ such that

0jm tt)t(,mj)j(),t(d̂)t(d̂ >∀≠∀> .

Then pm(t) →1 with probability 1 as t→∞.

Sketch of Proof: To prove this result, we define the following
the interval:

[])t(Q|)t(p)1t(pE)t(p mmm −+=∆ .

Using the assumptions of the theorem, this quantity becomes:

0mm ttallfor,0))t(p1()t(p ≥≥−λ=∆ ,

which implies that pm(t) is a submartingale. By the
submartingale convergence theorem [9], { }

0ttm)t(p ≥ converges
as t → ∞,

[] 0)t(Q|)t(p)1t(pE
tmm →−+

∞→
 with probability 1.

Hence, pm(t)→1 with probability 1. ♦♦♦

The final theorem that shows the ε-optimal convergence of the
CPRP algorithm can be stated as:

Theorem 3: For the CPRP algorithm, in every stationary random
environment, there exists λ* >0 and t0>0, such that for all λ∈(0,
λ*) and for any δ∈(0, 1) and any ε∈(0, 1),

[] δ−>ε−> 11)t(pPr m

for all t>t0.

Sketch of Proof: The proof for this theorem can be easily
deduced by the first two results. ♦♦♦

The Discretized Pursuit Reward-Inaction (DPRI) Algorithm
In 1990, Oommen and Lanctôt introduced [16] a discretized
version of a Pursuit algorithm. Apart from the long-term
perspective of the Environment (recorded in the estimates of the
reward probabilities), it also utilized the short-term perspective
of the Environment that was modelled in terms of the most
recent Environment response. This Pursuit algorithm was
based on the Reward-Inaction learning paradigm. In the
context of this paper, we shall refer to this algorithm as the
Discretized Pursuit Reward-Inaction (DPRI) Scheme. The
differences between the discrete and continuous versions of the
Pursuit algorithms occur only in the updating rules for the
action probabilities, the second step of the algorithm. The
discrete Pursuit algorithms make changes to the probability
vector P(t) in discrete steps, whereas the continuous versions
use a continuous function to update P(t).

In the DPRI algorithm, when an action is rewarded, all the
actions that do not correspond to the highest estimate are
decreased by a step ∆, where ∆=1/rN, and N is a resolution
parameter. In order to keep the sum of the components of the
vector P(t) equal to unity, the probability of the action with the
highest estimate has to be increased by an integral multiple of
the smallest step size ∆. When the action chosen is penalized,
there is no update in the action probabilities, and it is thus of
the Reward-Inaction paradigm. This, in principle, fully
describes the algorithm, given formally below.

ALGORITHM DPRI

Parameters
m index of the maximal component of the reward estimate
vector

)}t(d̂{max)t(d̂),t(ˆ
i

r,...,1i
m

=
=d .

Wi(t) the number of times the ith action has been
rewarded up to time t, for 1≤i≤ r.
Zi(t) the number of times the ith action has been
chosen up to time t, for 1 ≤i≤ r.
N resolution parameter
∆=1/rN is the smallest step size

Method
Initialize pi(t)=1/r, for 1≤i≤r
Initialize)t(d̂ by choosing each action a small number of
times.

Repeat
Step 1: At time t pick α(t) according to probability
distribution P(t). Let α(t)= αi.
Step 2: Update P(t) according to the following
equations:

If β(t)=0 and pm(t) ≠ 1 Then

{ }
∑
≠

≠

+−=+

∆−=+

mj
jm

j
mj

j

)1t(p1)1t(p

0,)t(pmax)1t(p

 (5)

Else
pj(t+1) = pj(t) for all 1≤ j ≤r. (6)

Step 3: Update)t(d̂ exactly as in the CPRP Algorithm
End Repeat
END ALGORITHM DPRI

Oommen and Lanctôt proved that this algorithm satisfies both
the properties of moderation and monotonically [16] required
for any discretized “Estimator” algorithm to converge. They
also showed that the algorithm is ε-optimal in every stationary
random environment.

The proof of the convergence of this algorithm follows the same
trend as the proof for the Pursuit CPRI algorithm, with the
necessary adjustments made to accommodate for the
discretization of the probability space [0,1]. Thus, Oommen
and Lanctôt proved that if the mth action is rewarded more than
any action from time t0 onward then the action probability
vector for the DPRI will converge to the unit vector em. These
results are stated below.

Theorem 4: Suppose there exists an index m and a time instant

t0<∞ such that)t(d̂)t(d̂ jm > for all j such that j≠m and all t≥t0.
Then there exists an integer N0 such that for all resolution
parameters N>N0, pm(t)→1 with probability 1 as t→∞.

Sketch of Proof: The proof for this theorem aims to show that
{ }

0ttm)t(p ≥ is a submartingale satisfying [] ∞<
≥

|)t(p|Esup m
0t

.

Then, based on the submartingale convergence theorem [9]
{ }

0ttm)t(p ≥ converges, and so,

[] 0)t(Q|)t(p)1t(pE
tmm →−+

∞→
.

Indeed, the authors of [16] showed that

[] ∆+=≠+ tmmmm cd)t(p1)t(p),t(Q|)1t(pE ,

where ct is an integral, bounded by 0 and r, such that
∆+=+ tmm c)t(p)1t(p . Thus,

[] 0cd)t(Q|)t(p)1t(pE tmmm ≥∆=−+ , for all t≥t0,

implying that pm(t) is a submartingale. From the submartingale
convergence theorem they infer that dmct∆→0 with probability
1. This in turn implies that ct→0 w.p. 1, and consequently, that
∑
≠

→∆−
mj

j 0)0,)t(pmax(w.p. 1. Hence pm(t) →1 w.p. 1. ♦♦♦

The next step in proving the convergence of this algorithm is to
show that using a sufficiently large value for the resolution
parameter N, all actions are chosen enough number of times so
that)t(d̂m will remain the maximum element of the estimate

vector)t(d̂ after a finite time.

Theorem 5: For each action αi, assume pi(0)≠0. Then for any
given constants δ > 0 and M < ∞, there exists N0 < ∞ and t0 < ∞
such that under DPRI, for all learning parameters N > N0 and all
time t > t0:

Pr{each action chosen more than M times at time t} ≥ 1-δ.

The proof of this theorem is similar to the proof of the Theorem
1, and can be found in [16]. ♦♦♦

These two theorems lead to the result that the DPRI scheme is ε-
optimal in all stationary random environments.

3. NEW ALGORITHMS

Applying different learning paradigms to the principle of
pursuing the action with the best reward estimate leads to four
learning algorithms. These are listed below:

Algorithm DPRI: Discretized Pursuit Reward-Inaction Scheme

Paradigm: Reward-Inaction; Probability Space: Discretized

Algorithm DPRP: Discretized Pursuit Reward-Penalty Scheme

Paradigm: Reward- Penalty; Probability Space: Discretized

Algorithm CPRI: Continuous Pursuit Reward-Inaction Scheme

Paradigm: Reward-Inaction; Probability Space: Continuous

Algorithm CPRP: Continuous Pursuit Reward- Penalty Scheme

Paradigm: Reward- Penalty; Probability Space: Continuous

Observe that of the above four, algorithms CPRP and DPRI were
already presented in the literature and were described in the
previous section. The algorithms that are now new to the field
of Pursuit schemes are the CPRI and DPRP mentioned above.
We shall discuss these briefly below.

The Continuous Pursuit Reward-Inaction (CPRI) Algorithm
The continuous Pursuit algorithm based on the reward-inaction
learning “philosophy” represents a continuous version of the
discretized algorithm of Oommen and Lanctôt in [16]. The
algorithm differs from the CPRP algorithm only in its updating
probability rules. As before, the long-term perspective of the
Environment is recorded in the estimates of the reward
probabilities. But it utilizes the short-term perspective of the
Environment by updating the probability vector based on the
most recent Environment response. Being a Reward-Inaction
algorithm, it updates the action probability vector P(t) only if
the current action is rewarded by the environment. If the action
is penalized, the action probability vector remains unchanged.
The algorithm follows.

ALGORITHM CPRI
Parameters

λ, m, em , Wi(t), Zi(t) : Same as in the CPRP algorithm.
Method

Initialize pi(t)=1/r, for 1≤i≤r
Initialize)t(d̂ by choosing each action a small number of
times.

Repeat
Step 1: At time t pick α(t) according to probability
distribution P(t). Let α(t)= αi.
Step 2: If αm is the action with the current highest reward
estimate, update P(t) as :

If β(t)=0 Then
P(t+1) = (1-λ) P(t) + λ em (7)

Else P(t+1)=P(t)
Step 3: Update)t(d̂ exactly as in the CPRP Algorithm

End Repeat
END ALGORITHM CPRI

Like the CPRP, the CPRI algorithm can be proved ε-
optimal in any stationary environment. The proof for the ε-
optimality of the CPRI follows the same idea as the other Pursuit
algorithms. First, it can be shown that using a sufficiently
small value for the learning parameter λ, all actions are chosen
enough number of times so that)t(d̂m will remain the

maximum element of the estimate vector)t(d̂ after a finite time.
Mathematically, this can be expressed with the following result.

Theorem 6: For any given constants δ > 0 and M < ∞, there
exist λ* > 0 and t0 < ∞ such that under the CPRI algorithm, for
all λ∈(0, λ*),

Pr[All actions are chosen at least M times each before
time t] > 1-δ, for all t ≥ t0. ♦♦♦

The proof for this theorem is very similar to the proof for the
Theorem 1, and so we omit the details here. Furthermore, it can
be shown (Theorem 7) that if there is an action αm, for which
the reward estimate remains maximal after a finite number of
iterations, then the mth component of the action probability
vector converges in probability to 1. Finally, Theorem 8
expresses the ε-optimality convergence for the CPRI algorithm,
and can be easily deducted from the two previous results. The
proof of these theorems is remarkable similar to that of
Theorem 2 and 3, and is omitted.

Theorem 7: Suppose that there exists an index m and a time
instant t0 < ∞ such that

0jm tt)t(,mj)j(),t(d̂)t(d̂ >∀≠∀> .

Then pm(t)→1 with probability 1 as t → ∞. ♦♦♦

Theorem 8: For the CPRI algorithm, in every stationary random
environment, there exists a λ* >0 and t0>0, such that for all
λ∈(0, λ*) and for any δ∈(0, 1) and any ε∈(0, 1),

[] δ−>ε−> 11)t(pPr m for all t>t0. ♦♦♦

The Discretized Pursuit Reward-Penalty (DPRP) Algorithm
By combining the strategy of discretizing the probability space
and the Reward-Penalty learning paradigm in the context of a
Pursuit “philosophy”, we shall present another version of
discrete Pursuit algorithm, denoted by DPRP above. As any
discrete algorithm, the DPRP algorithm makes changes to the
action probability vector in discrete steps. If N is a resolution
parameter, the quantity that the components of P(t) can change
by is given by multiples of ∆, where ∆=1/rN, r is the number of
actions and N is a resolution parameter. Formally, the
algorithm can be expressed as follows.

ALGORITHM DPRP
Parameters

m, Wi(t), Zi(t), N and ∆ : Same as in the DPRI algorithm.
Method

Initialize pi(t)=1/r, for 1≤i≤r
Initialize)t(d̂ by choosing each action a small number of
times.

Repeat
Step 1: At time t pick α(t) according to probability
distribution P(t). Let α(t)= αi.
Step 2: Update P(t) according to the following equations:
If pm(t)≠1 Then

{ }
∑
≠

≠

+−=+

∆−=+

mj
jm

j
mj

j

)1t(p1)1t(p

0,)t(pmax)1t(p

 (8)

Step 3: Update)t(d̂ exactly as in the DPRI Algorithm
End Repeat
END ALGORITHM DPRP

Just as in the case of the DPRI algorithm, we can show that
DPRP algorithm is ε-optimal in every stationary environment.
The proof is very similar to the proof for convergence of the
DPRI and is omitted to avoid repetition and in the interest of
brevity.

4. EXPERIMENTAL RESULTS

Having introduced the various possible forms of continuous and
discretized Pursuit algorithms, we shall now compare them
experimentally. Indeed, in order to compare their relative
performances, we performed simulations to accurately
characterize their respective rates of convergence. In all the
tests performed, an algorithm was considered to have converged
if the probability of choosing an action was greater or equal to a
threshold T (0<T≤1). If the automaton converged to the best
action (i.e., the one with the highest probability of being
rewarded), it was considered to have converged correctly.

Before comparing the performance of the automata,
innumerable multiple tests were executed to determine the
“best” value of the respective learning parameters for each
individual algorithm. The value was reckoned as the “best”
value if it yielded the fastest convergence and the automaton
converged to the correct action in a sequence of NE
experiments. These best parameters were then chosen as the
final parameter values used for the respective algorithms to
compare their rates of convergence1.

When the simulations were performed considering the same
threshold T and number of experiments, NE, as Oommen and
Lanctôt did in [16], (i.e. T=0.99 and NE=75), the learning
parameters obtained for the DPRI algorithm in the (0.8 0.6)
environment had a variance coefficient of 0.2756665 in 40 tests
performed. This variance coefficient was not considered
satisfactory for comparing the performance of the Pursuit
algorithms. Subsequent simulations were performed imposing
stricter convergence requirements by increasing the threshold T,
and proportionally, the number of experiments NE, which
yielded learning parameters with smaller variance coefficients.
For example, the learning parameter (N) for DPRI algorithm in
the (0.8 0.6) environment, when T=0.999 and NE=750,
exhibits a variance coefficient of 0.0706893, which represents a
much smaller variance. Therefore, in this paper the simulation
results for T=0.999 and NE equal to 500 and 750 experiments
shall be presented.

The simulations were performed for different existing
benchmark environments with two and ten actions. These
environments have been used also to compare a variety of
continuous and discretized schemes, and in particular the DPRI
in [16] and to compare the performance of the CPRP against
other traditional VSSA in [23]. Furthermore, to keep the
conditions identical, each estimator algorithm sampled all
actions 10 times each in order to initialize the estimate vector.
These extra iterations are also included in the results presented
in the following tables. Table 1 and
Table 2 contain the simulation results for these four algorithms
in two action environments. The probability of reward for one
action was fixed at 0.8 for all simulations and the probability of
reward for the second action was increased from 0.5 to 0.72. In
each case, the reported results correspond to the results
obtained using the above-described “best” parameter.

1 The reader will observe that there is a considerable difference
between the results presented here and the results presented in
[23]. In [23], the parameter chosen was the one which gave
correct convergence in 25 parallel experiments. However, on
testing the CPRP for 1000 experiments, it was observed that it
yielded only 84% accuracy. Thus, in the case of the CPRP what
we seek is the largest parameter, λ, which yields correct
convergence in all the 750 and 500 experiments respectively.
Similarly, in the case of the DPRP we seek the smallest integer
parameter, N, which yields correct convergence in all the 750
and 500 experiments respectively.
2 When the reward probability for the second action is less than
0.5, the iterations required for convergence, after the initial 20,
is very small (between 3 and 10), and do not permit meaningful
comparison. They are thus omitted from the Table 1 and
Table 2.

Table 1: Comparison of the Pursuit Algorithms in two-action
benchmark environments for which exact convergence

was required in 750 experiments (NE=750).3

0.8

0.8

0.8

d
1

d
2

0.5

0.6

0.7

DPRI

274 430

N
No.
Iter.

Environ-
ment

58

20

105

49

DPRP

391 456

N
No.
Iter.

89

32

118

53

CPRI

0.0091 939

λ
No.
Iter.

0.046

0.214

198

55

CPRP

0.0072 942

λ
No.
Iter.

0.027

0.122

258

69

Table 2: Comparison of the Pursuit Algorithms in two-action
benchmark environments for which exact convergence

was required in 500 experiments (NE=500).

0.8

0.8

0.8

d
1

d
2

0.5

0.6

0.7

DPRI

217 357

N
No.
Iter.

Environ-
ment

52

17

97

44

DPRP

297 364

N
No.
Iter.

74

26

102

47

CPRI

0.011 789

λ
No.
Iter.

0.054

0.314

171

43

CPRP

0.0075 905

λ
No.
Iter.

0.036

0.169

199

55

Table 3: Comparison of the Pursuit algorithms in ten-action
benchmark environments for which exact convergence

0was required in 750 experiments. The Reward
probabilities for the actions are:

EA: 0.7 0.5 0.3 0.2 0.4 0.5 0.4 0.3 0.5 0.2
EB: 0.1 0.45 0.84 0.76 0.2 0.4 0.6 0.7 0.5 0.3

DPRI

N
No.
Iter.

Environ-
ment

188 752

DPRP

N
No.
Iter.

1655

572

3230

1126

CPRI

λ
No.
Iter.

0.0097

4603

1230

CPRP

λ
No.
Iter.

0.00126

0.003

5685

2427EA

EB 1060 2693 0.002

Table 4: Comparison of the Pursuit algorithms in ten-action
benchmark environments for which exact convergence
was required in 500 experiments. The Action Reward

probabilities are the same as in Table 3.

DPRI

N
No.
Iter.

Environ-
ment

153 656

DPRP

N
No.
Iter.

1230

377

2511

872

CPRI

λ
No.
Iter.

0.0128

4126

970

CPRP

λ
No.
Iter.

0.00128

0.0049

5589

1544EA

EB 730 2084 0.00225

The simulations suggest that as the difference in the reward
probabilities decreases (i.e., as the environment gets more
difficult to learn from), the Discretized Pursuit algorithms
exhibit a performance superior to the Continuous algorithms.
Also, comparing the Pursuit algorithms based on the Reward-
Inaction paradigm with the Pursuit algorithms based on the
Reward-Penalty paradigm, one can notice that, in general, the
Pursuit Reward-Inaction algorithms are up to 30% faster than
the Reward-Penalty Pursuit algorithms. For example, when
d1=0.8 and d2=0.6, the DPRI converges to the correct action in
an average of 105 iterations, and the DPRP algorithm converges
in an average of 118 iterations. In the same environment, the
CPRI algorithm takes an average of 198 iterations and the CPRP

3 The number of iterations presented in these tables are
rounded to the nearest integer.

requires 258 iterations, indicating that it is about 30% slower
than the CPRI algorithm.

To render the suite complete, similar experiments were also
performed in the benchmark ten-action environments [16], [23].
The following table presents the results obtained in these
environments.

As in the previous two-action environments, in ten-action
environments, the DPRI algorithm proved to have the best
performance, converging to the correct action almost 25% faster
than the DPRP algorithm, and almost 50% faster than the CPRP
algorithm. If we analyze the behavior of these automata in the
first environment, EA, when NE=750, the average number of
iterations required by the DPRI to converge is 752, whereas the
DPRP requires 1126, which implies that the DPRI algorithm is
almost 30% faster than the DPRI. In the same environment, the
CPRI requires an average of 1230 iterations for convergence and
the CPRP requires 2427, which shows that the CPRI is 50%
faster than CPRP, and the DPRI is almost 70% faster than the
CPRP.

Based on these experimental results, we can rank the various
Pursuit algorithms in terms of their relative efficiencies - the
number of iterations required to attain the same accuracy of
convergence. The ranking is as follows:

Best Algorithm:
Discretized Pursuit Reward-Inaction (DPRI)

2nd-best Algorithm:
Discretized Pursuit Reward-Penalty (DPRP)

3rd-best Algorithm:
Continuous Pursuit Reward-Inaction (CPRI)

4th-best Algorithm:
Continuous Pursuit Reward-Penalty (CPRP)

Indeed, if we compare the algorithms quantitatively, we observe
that the discretized versions are up to 30% faster than their
continuous counterparts. Furthermore, if we compare the
Reward-Inaction Pursuit algorithms against the Reward-Penalty
algorithms, we see that the Reward-Inaction algorithms are
superior in the rate of convergence, being up to 25% faster than
their Reward-Penalty counterparts. Although it is clear that
these comparative results are based only on the experimental
results obtained from simulations, we believe that these results
characterize the properties of the algorithms studied. A formal
convergence analysis of the various schemes is currently being
done.

5. CONCLUSION

Over the last decade, many new families of learning automata
have emerged, with the class of Estimator Algorithms being
among the fastest ones. Thathachar and Sastry [23], through
the Pursuit Algorithm, introduced the concept of algorithms that
pursue the current optimal action, following a Reward-Penalty
learning philosophy. Later, Oommen and Lanctôt [16] extended
the Pursuit Algorithm into the discretized world by presenting
the Discretized Pursuit Algorithm, based on a Reward-Inaction
learning philosophy. In this paper, we argued that a scheme
that merges the Pursuit concept with the most recent response
of the Environment permits the algorithm to utilize the LA’s
long-term and short-term perspectives of the Environment.
Thus, we have demonstrated that the combination of the
Reward-Penalty and Reward-Inaction learning paradigms in
conjunction with the continuous and discrete models of
computation, can lead to four versions of Pursuit Learning
Automata. In this paper, we presented them all, (DPRI, DPRP,
CPRI, CPRP) and also presented a quantitative comparison
between them. Overall, the Discrete Pursuit Reward-Inaction
algorithm surpasses the performance of all the other versions of
Pursuit algorithms. Also, the Reward-Inaction schemes are
superior to their Reward-Penalty counterparts.

6. ACKNOWLEDGMENTS

This work was partially supported by the National Science and
Engineering Research Council of Canada.

The authors are grateful to Professor M. A. L. Thathachar, of
the Indian Institute of Science, Bangalore, India, for his
valuable comments and suggestions during the course of this
study.

REFERENCES

[1] S. Baba, S. T. Soeda, and Y. Sawaragi, “An application of
stochastic automata to the investment game”, Int. J. Syst. Sci.,
Vol. 11, No. 12, pp. 1447-1457, Dec. 1980.

[2] S. Lakshmivarahan, Learning Algorithms Theory and
Applications, New York: Springer-Verlag, 1981.

[3] S. Lakshmivarahan, “Two person decentralized team with
incomplete information”, Appl. Math. and Computation, Vol. 8,
pp. 51-78, 1981.

[4] S. Lakshmivarahan and M. A. L. Thathachar, “Absolutely
expedient algorithms for stochastic automata”, IEEE Trans.
man. Cybern., Vol. SMC-3, pp. 281-286, 1973.

[5] J. K. Lanctôt, Discrete Estimator Algorithms: A M
athematical Model of Computer Learning, M.Sc. Thesis, Dept.
Math. Statistics, Carleton Univ., Ottawa, Canada, 1989.

[6] J. K. Lanctôt and B. J. Oommen, “Discretized Estimator
Learning Automata”, IEEE Trans. on Syst. Man and
Cybernetics, Vol. 22, No. 6, pp. 1473-1483,
November/December 1992.

[7] M. R. Meybodi, Learning Automata and its Application to
Priority Assignment in a Queuing System with Unknown
Characteristic, Ph.D. Thesis, School of Elec. Eng. and
Computing Sci., Univ. Oklahoma, Norman, OK.

[8] K. S. Narendra and S. Lakshmivarahan, “Learning
automata: A critique”, J. Cybern. Inform. Sci., Vol. 1, pp. 53-
66, 1987.

[9] K. S. Narendra and M. A. L. Thathachar, Learning
Automata, Englewood cliffs, NJ, Prentice-Hall, 1989.

[10] K. S. Narendra and M. A. L. Thathachar, “Learning
Automata – A Survey, IEEE Trans. on Syst. Man and
Cybernetics, Vol. SMC-4, 1974, pp. 323-334.

[11] K. S. Narendra and M. A. L. Thathachar, “On the behavior
of a learning automata in a changing environment with routing
applications”, IEEE Trans. Syst. Man Cybern., Vol. SMC-10.
pp. 262-269, 1980.

[12] K. S. Narendra, E. Wright, and L. G. Mason, “Applications
of Learning Automata to Telephone Traffic Routing”, IEEE
Trans. Syst. Man. Cybern., Vol. SMC-7, pp. 785-792, 1977.

[13] B. J. Oommen, “Absorbing and Ergodic Discretized Two-
Action Learning Automata”, IEEE Trans. Syst. Man. Cybern.,
Vol. SMC-16, pp. 282-296, 1986.

[14] B. J. Oommen and J. R. P. Christensen, “Epsilon-Optimal
Discretized Reward-Penalty Learning Automata”, IEEE. Trans.
Syst. Man. Cybern., Vol. SMC-18, pp. 451-458, May/June
1988.

[15] B. J. Oommen and E.R. Hansen, “The Asymptotic
Optimality of Discretized Linear Reward-Inaction Learning
Automata”, IEEE. Trans. Syst. Man. Cybern., pp. 542-545,
May/June 1984.

[16] B.J. Oommen and J. K. Lanctôt, “Discretized Pursuit
Learning Automata”, IEEE Trans. Syst. Man. Cybern., vol. 20,
No.4, pp.931-938, July/August 1990.

[17] B. J. Oommen and D. C. Y. Ma, “Deterministic learning
automata solutions to the equi-partitioning problem”, IEEE
Trans. Comput., Vol. 37, pp. 2-14, Jan 1988.

[18] B. J. Oommen and D. C. Y. Ma, “Fast Object Partitioning
Using Stochastic Learning Automata”, in Proc. 1987 Int. Conf.
Research Development in Inform. Retrieval, New Orleans, LA,
June 1987.

[19] B. J. Oommen and M. A. L. Thathachar, “Multiaction
Learning Automata Possessing Ergodicity of the Mean”, Inform.
Sci., vol. 35, no. 3, pp. 183-198, June 1985.

[20] R. Ramesh, Learning Automata in Pattern Classification”,
M.E. Thesis, Indian Institute of Science, Bungalore, India,
1983.

[21] M. A. L. Thathachar and B. J. Oommen, “Discretized
Reward-Inaction Learning Automata”, J. Cybern. Information
Sci., pp. 24-29, Spring 1979.

[22] M. A. L. Thathachar and P.S. Sastry, “A Class of Rapidly
Converging Algorithms for Learning Automata”, presented at
IEEE Int. Conf. on Cybernatics and Society, Bombay, India,
Jan. 1984.

[23] M. A. L. Thathachar and P.S. Sastry, “Estimator
Algorithms for Learning Automata”, Proc. Platinum Jubilee
Conf. on Syst. Signal Processing, Dept. Elec. Eng., Indian
Institute of Science, Bangalore, India, Dec. 1986.

[24] M.L. Tsetlin, “On the Behavior of Finite Automata in
Random Media”, Automat. Telemek. (USSR), Vol. 22, pp.
1345-1354, Oct. 1961.

[25] M.L. Tsetlin, Automaton Theory and the Modeling of
Biological Systems, New York: Academic, 1973.

[26] V.I. Varshavskii and I.P. Vorontsova, “On the Behavior of
Stochastic Automata with Variable Structure”, Automat.
Telemek. (USSR), Vol. 24, pp. 327-333, 1963.

