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Continuous and Finite Element
Methods for the Vibrations of

Inflatable Beams 
J.C. Thomas, Z. Jiang and C. Wielgosz

GeM, Institute of Research in Civil Engineering and Mechanics, UMR-CNRS 6183

Université de Nantes, 2 rue de la Houssinière, 44322 Nantes, France

ABSTRACT: Inflatable structures are under increasing development in

various domains. Their study is often carried out by using 3D membrane finite

elements and for static loads. There is a lack of knowledge in dynamic

conditions, especially for simple and accurate solutions for inflatable beams.

This paper deals with the research on the natural frequencies of inflatable

Timoshenko beams by an exact method: the continuous element method

(CEM), and by the classical finite element method (FEM). The dynamic

stiffness matrix D(ω) is here established for an inflatable beam; it depends on

the natural frequency and also on the inflation pressure. The stiffness and mass

matrixes used in the FEM are deduced from D(ω). Natural frequencies and

natural modes of a simply supported beam are computed, and the accuracy of

the CEM is checked by comparisons with the finite element method and also

with experimental results.  

Key words: Continuous element, mass matrix, stiffness matrix, follower

forces, inflatable tubes, natural modes

1. INTRODUCTION
Inflatable structures are increasingly used nowadays.

They find applications in well-known structures (tires,

boats) and in more recent applications, mainly in the

spatial industry (inflatable antennas, shields, houses)

or in civil engineering (buildings, temporary hospitals,

inflatable scales). Other industrial sectors are

developing inflatable structures. Inflatable wings are

aeronautical applications. The naval industry is

interested in many different structures: boats,

inflatable laths to rigidify the sails and inflatable

landing stages. Environmental protection is concerned

with inflatable dams. Medical inflatable prosthesis are

being increasingly used.

The growing interest for inflatable structures comes

from the large amount of advantages that they offer:

they are light, easy to fold, quite easy to built, easy to

deploy. In the spatial industry, the focus is put on their

ability to attain large sizes for a small storage volume

and to present low specific mass and an interesting

reliability. For these applications, the inflation

pressure is quite low. Earthly structures are mainly

used for temporary applications, but durable ones are

also built nowadays: autonomous or in association

with metallic reinforcements (tensairity systems [1]).

Generally, they need greater pressure than for spatial

applications and may become very strong structures if

the pressure is large enough. All these developments

require engineers to be able to calculate their

mechanical behaviour.

The type of material used, the geometrical

characteristics of the beams, and the internal pressure

lead to the strength and stiffness of the inflatable
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structure. Several types of fabrics are used. They are

often manufactured from high modulus fibres such as

Kevlar, Vectran. For instance, Vectran was used for the

Mars Pathfinder [2]. Polyester fabrics with a PVC

coating are more often used for inflatable structures in

civil engineering: Ferrari pre-stressed fabric is one of

them. Materials are robust and can be packed and

deployed many times with minimal degradation in

performance. 

Inflatable structures are built from elementary parts

like tubes, panels, cones or tori. Due to the geometry

of these elements, the strength of materials is well

adapted to the study of these structures in order to

predict their behaviour. A beam approach gives useful

tools for easy model assembly of longitudinal

elements. Several authors have worked on static

analysis. Comer and Levy [3] have proposed an Euler

Bernoulli formulation for an inflatable cantilever

beam. Main and al. [4] have realized experiments and

compared their results to Comer and Levy’s theory. In

fact, the effect of the pressure isn’t obtained explicitly

by using the usual beam theory. Clearly, the

deflections of fabric tubes are dependent on the

internal pressure, on the fabric’s constitutive law, on

the initial geometry and on the external loads. Fichter

[5] used the minimization of the global potential

energy with Timoshenko’s beam assumptions and was

the first to put forward a theory for the deflections

including the pressure effects. Thomas [6] has

constructed a model for the tubes, which lead the way

to quite complicated formulas and to a non-

symmetrical stiffness matrix. Even if the comparison

between theoretical and experimental results have

given evidence of a good accuracy of these formulas,

the choice has been made here to use the recent Le

Van’s approach [7] who obtained simpler static beam

formulations, which leads to bending formulas where

the inflation pressure appears also explicitly in the

rigidities of the beam. In fact, Le Van’s study is an

improvement on Fichter’s. Equations are written by

the use of the virtual work principle in lagrangian

variables with finite rotations. This approach has been

extended in this paper by introducing the dynamic

terms in order to predict the influence of the pressure

effects on the natural frequencies. 

There are only a few papers which deal with

theoretical studies on the dynamics of inflatable

beams with a strength of materials approach.

Membrane or shell analysis is generally used. For

instance, the vibrations of inflatable dams (rubber

dams) have lead to several studies where the authors

mainly use displacement finite element computations

[8]. Recently, Jha and al. [9] have suggested a study

focused on the vibrations of an inflatable torus made

of kapton dedicated to the spatial industry, and the

model used was based on a shell theory. Concerning

the beam approach, Main and al [10] put forward work

dealing principally with the damping mechanisms; an

Euler-Bernoulli theory was used again. In fact the

experimental results clearly show the dependency of

the frequencies on the pressure. The beam dynamic

theory that will be established in this paper follows Le

Van’s work on static analysis. We have chosen to use

the continuous element method to analytically obtain

the dynamic stiffness matrix because it allows an exact

vibration analysis of the problem. The most popular

computational method used in structural dynamic is

the finite element method. In this work, the stiffness

matrix and the mass matrix used in the FEM have also

been calculated. 

The physical intuition is that increasing the pressure

in a structure leads to an increase of the material

properties. In order to take into account the effects of

the inflation pressure and the shear deformation, a

Timoshenko beam theory has been used in this paper.

The internal pressure is the pre-stress effect: it allows

pre-stressing the walls and inducts the initial geometry

and stiffness. The second special feature comes from

the fact that the force inducted locally follows the

walls and will be denoted by the follower force effect.

The equations of motion therefore have to be written

on the current configuration, which explains the

choice of the lagrangian approach. This means that the

follower load effect due to the pressure can be taken

into account properly, which is of importance for these

kinds of structures.

The framework of this paper is the following: in the

first part, the differential equations of motion are

obtained by using the virtual work principle written in

lagrangian variables following [7]. In the second part,

the dynamic stiffness matrix of an inflatable beam is

built by connecting the values of the loads and the

displacements at the two ends of the beam. FEM

stiffness and mass matrixes are deduced from the

dynamic stiffness matrix. In the fourth part, the

stiffness and mass matrix are directly derived from the

FEM and the coherence with the continuous element

analysis is verified. Then the natural frequencies are

calculated for an inflatable simply, supported beam by

using the CEM. Comparisons are finally made with

experimental results and show the accuracy of the

theory.

2



2. THE DIFFERENTIAL EQUATIONS OF
MOTION
Inflatable structures are made of pressurized fabrics.

The inflation pressure leads to a pre-stress state in the

walls of the structure, which ensures its stiffness. The

shear deformations of these thin-walled structures

must not be overlooked and one must use

Timoshenko’s beam kinematics because the cross-

section doesn’t remain orthogonal to the neutral fibre

(see Fig 2 in [6]). Fig.1 shows a straight uniform

Timoshenko beam model.

The use of the virtual work principle written in

lagrangian variables leads to differential equations of

motion where the effect of the inflation pressure

appears. This principle is written as follows:

(1) 

U denotes the displacement field and U* the virtual

displacement field. Π is the first Piola-Kirchhoff stress

tensor. ρ0 is the density in the reference configuration,

Ω0 is the volume of the element in the reference

configuration and δΩ0 its boundary. N is the outward

normal unit in the reference configuration, and f0 the

body force per unit reference volume. In the

following, details are expressed for the virtual work of

the inertia terms. The principle of calculus and the

corresponding results for the other virtual works

(internal virtual stress work, external virtual dead

loads work, external virtual work due to the pressure)

have just been condensed. Details can be found in [7].

2.1 The virtual work of the inertia terms
The cross-section is assumed to have a rigid body

displacement. In a right-handed rectangular Cartesian

coordinate system, Fig. 1 shows an inflatable tube of

length �0 in the reference configuration and a current

cross section on the reference and in its current

configuration. The displacement of any point P0 of the

cross section comes from:
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(2)

Here, U(G0, t) = (U(X, t), V(X, t), 0) is the displacement of the centre of the current cross-section, and R

corresponds to the rotation of the section.

The virtual displacement field is chosen as follows:

(3)

where U*(G0) = (U*(X), V*(X), 0), Ω* = (0, 0, θ*(X)) and where the particularity comes from GP which

corresponds to the final configuration. This gives in lagrangian variables:

(4)

The virtual work of the inertia terms is:

(5)

where (6)

This leads to:

(7)

By introducing the second moment of area of the beam cross section about the z axis I, and considering that

the first moment of area is nil, the virtual work of the inertia terms is:
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2.2 Strain tensor, stress tensor, constitutive law
The Green strain tensor is given by E = 

1_
2(H + HT + HT · H), where H = gradU is the displacement gradient

tensor. One obtains: 

(9)

(10)

The matrix of the second Piola-Kirchhoff stress tensor Σ is assumed to be a “beam” matrix:

(11)

The following generalized stresses can therefore be introduced:

(12)

which are respectively considered as the normal force, the bending momentum and the shear force acting on the

cross-section in the reference configuration. 

Different kinds of materials are commonly used to build inflatable structures. Thin isotropic membrane may

be used (example of the kapton in the spatial industry). Composites made of fabric embedded in a matrix material

are also used (temporary buildings are often made of polyester fibres and rubber coating). Even if this kind of

membrane follows an orthotropic behaviour, the material is considered here as an hyperelastic isotropic Saint-

Venant Kirchhoff material and the constitutive laws are:

(13)

∑0
XX and ∑0

XY are the initial stresses. They are induced by the initial inflation with inducts pre-stress effects in the

walls of the structures. E and G are respectively the Young modulus and the shear modulus. 

2.3 The virtual work of the internal forces
The virtual work of the internal forces is:

(14)

Π is calculated by using the deformation gradient F: Π = FΣ
On the assumption that the material is linear and elastic and by taking into account the existence of pre-

stressing, we have:
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Here, and γ0 comes from the development of the initial stresses. The strain expression 

allows writing

(16)

2.4 The virtual work of the external loads 
Two kinds of load can be considered for these structures: dead loads (loads which always go in the same

direction) and follower loads due to the inflation pressure (which inducts local forces acting normally to the

surface, and following this surface from the reference configuration to the current configuration). The inflation

pressure is considered here as an external force even if it is acting inside the structure.

The virtual work of the external loads (except the pressure) is given by: 

(17)

Where T = Π.N and px, py, µ are respectively the in-plane components of the dead load and momentum per

unit length; X(.), Y(.), Γ(.) are the components of the resultant force and the resultant momentum, which will lead

to the boundary conditions.

Concerning the external loads due to the pressure, it is supposed that the beam is subjected to a uniform

pressure p on the entire internal surface. The surface is broken down into two different parts: the lateral walls

and the surfaces at the end sections. In the following, the force due to the pressure acting on the end section in

the initial configuration will be noted: P = pS0.
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Sp corresponds to the lateral external surfaces and the two bases of the tube. After development (see [7]), the

work can be written as follows:

(19)

2.5 Equations of motion and boundary conditions:
The use of the virtual work principle written in lagrangian variables then leads to the following equations where

the dynamic terms appear: 

(20)
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In order to calculate analytical solutions, the same assumptions than those made in [7] are made. After

linearization, the reference and spatial configurations can be considered as the same approximately. The

computational viewpoint remains Lagrangian; however, use will be made of small characters (i.e. Eulerian

notations) in order to designate the variable. The constitutive laws become:

(25)

here, k is the correction shear coefficient. For circular thin tubes, k =0.5.

The equations of motion can therefore be deduced:

(26)

(27)

(28)

The boundary conditions are written for the generalized stresses:

(29)

(30)

(31)
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(33)
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3. CONSTRUCTION OF THE ELEMENTARY DYNAMIC STIFFNESS MATRIX
3.1 Solutions for the differential equation of motion
In the following, we will consider an inflated tube submitted to bending local external loads and torques at its

two ends, and to its internal pressure. Hence, we consider that px, py, µ are nil. Eqns (25), (29) and (30) give:
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Figure 3. nodal forces and torques

By neglecting the effect of rotation inertia, the equation of motion for free vibrations can be obtained: 

(36)
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which allows to write, after some manipulations:
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One assumes that the solution takes the shape: 
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Harmonic variation of g with circular frequency ω is assumed then g(t) = cos(ωt – ϕ); then:

(42)

Let us consider a solution of eqn (42) in the exponential form: 

(43)

Introducing solution eqn (43) into eqn (42) yields to the characteristic equation:

(44)

The roots can now be obtained:
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Finally we can obtain the solutions:
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λ1 and λ2 are functions of the circular frequency ω and of the internal pressure. 
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3.2 Expression of displacements in the matrix form
The expression of the transversal displacement and the cross-section rotation can be written as:

(50)

In eqn (50), A, B, C and D are undetermined constants. After reduction, one can obtain:

(51)

with 

(52)

The values of the displacements and rotations at the ends of the beams are:

- At the left-end x = 0:

(53)

(54)

- At the right-end x = �0:

(55)

(56)

We can now write the displacements in a matrix form:

(57)

where
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and with {U}T = {v1, θ1, v2, θ2}
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3.3 Expression of the external loads in the matrix form
In the same way, we will obtain the expression of the external loads at the ends of the beam by using the boundary

conditions (31-34):

- For the transversal forces F1 and F2:

(59)

- For the torques Γ1 and Γ2:

(60)

Substituting into ∂V
∂x, 

∂θ
∂x

, θ and simplifying gives:

(61)

With

(62)

(63)

The values of the shear loads and bending momenta at the ends of beam are finally:

At the left-end x = 0:
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At the right-end x = �0:
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where

(69)

and with {F}T = {F1, Γ1, F2, Γ2}

3.4 The dynamic stiffness matrix
The dynamic stiffness matrix [D(ω)] is given by:

(70)

and [D(ω)] = [Z(ω)][W(ω)]–1

(71)

The dynamic stiffness matrix is symmetrical, and its components are:
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where

The inflation pressure appears in the equations and each term of the matrix D is a transcendental function of ω. 

Simple changes of coordinates give the matrixes needed in order to compute the bending natural frequencies

and mode shapes of inflatable tubes. This leads to the non-linear eigenvalue problem: 

(73)

Natural frequencies can be calculated by the use of the well-known algorithm defined by Wittrick and

Williams [11], which enables the calculation of the number of natural frequencies of the structure that exist below

an arbitrary chosen trial frequency. It allows us to calculate the natural frequencies with a chosen accuracy.

Numerous papers deal with the determination of natural frequencies and natural modes of beams with the CEM

with accuracy ([12], [13]). In this paper, we have preferred to focus our attention on two points: the first is the

coherence of the results with the conventional finite element method; the second point is concerned with the

influence of the inflation pressure in the results which is of great importance for inflatable structures.

4. F.E. STIFFNESS MATRIX AND MASS MATRIX
The aim of this section is to deduce FEM stiffness and mass matrixes dedicated to inflatable tubes from the

dynamic stiffness matrix.

4.1 From CEM to FEM:
Free vibrations may be calculated by the use of the dynamic stiffness matrix, which leads to the non-linear

eigenvalue problem:
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This problem may be rewritten as follows:
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The mass and stiffness matrixes are obtained with the help of Leung’s theory [14]: 
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Free vibrations may also be studied by the use of the finite element method. The displacement field is

discretized:

(78)

where N is the shape function matrix, and V is the vector of generalized co-ordinates. The FEM leads to the linear

eigenvalues problem:

(79)

The FEM stiffness and mass matrixes will then be calculated with:
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4.2 The stiffness and mass matrix obtained with the dynamic stiffness matrix
By calculating the limit of [D(ω)] when ω→0, one obtains [K].
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The inflation pressure also appears in the mass matrix. If P tends to 0, the mass matrix also becomes the

Timoshenko beam mass matrix. 

4.3 The stiffness matrix by the left quotient operation:
The foundations of this algebraic operation can be found in [16]. The diagram given figure 4 can draw the left

quotient operation. 

Figure 4. the left quotient operation

The continuous element is described by a “mechanical element”: the two vector spaces V (displacement space)

and Φ (loads space) are dual for a bilinear form <.;.>1, which represents the work of a load {ϕ} ∈ Φ in a

displacement {v} ∈ V. The load law L (application from V into Φ) summarizes the equilibrium equations and

the boundary conditions. This has already been written for an inflatable panel [17] element submitted to nodal

concentrated loads. The vector spaces are: 
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The static load law and the load vector are:
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with {ϕ}T = {F1, Γ1, F2, Γ2}
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of the rigid body displacements) and the building of the stiffness matrix needs other equations, which come from

the equilibrium equations.

Following the process detailed in [17], one obtains:

(88)

Concerning the inflatable tubes, the load law is obtained with the static equilibrium equations obtained by

elimination of the dynamic terms in eqns (36-37-59-60):

(89)
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The virtual work principle for static analysis can then be written, which is used here to obtain the stiffness

matrix: 

(92)

The equations of motion are easily obtained by elimination of the dynamic terms in eqns (36-37).

For an Euler Bernoulli beam, the displacement is written as follows:

(93)

where the shape functions are the usual cubic expansions:

(94)

The relation is valuable for an Euler Bernoulli beam. It allows us to obtain the shape functions for the section’s

rotation. For inflatable beams, which are Timoshenko’s beams, the cross-section does not remain orthogonal to

the neutral fibre. Hence dv/dx ≠ θ. The preceding functions interpolate displacements and the derivative of

displacements, which is now written as:

(95)

where the shape functions Nv′
1
(x) and Nv′

2
(x) are:

(96)

In this case, the following boundary conditions are, of course, checked:
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By changing the unknowns {V
~

} = {v1, v ′1, v2, v ′2} to the unknowns {V} = {v1, θ1, v2, θ2}, the equilibrium

equations lead to:

(98)

where

(99)

The boundary conditions give the linear system:

(100)

The following relation is then easily obtained:

(101)

Thus:

(102)

And the shape functions can be calculated by:

(103)

The shape functions depends on the inflation pressure, the Young modulus and the shear modulus:

(104)
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The boundary conditions allow the calculation:

(105)

The virtual work of the internal loads can then be written as:

(106)

And by use of the shape functions:

(107)

The stiffness matrix of the inflatable tube is then calculated, which is nothing else than the stiffness matrix

calculated from the dynamic stiffness matrix:

The use of the shape functions now allows the calculation of the mass matrix:

(108)

(109)

The term gives this mass matrix. The calculation of the different terms of the

matrix is simplified by the use of formal calculus software. Finally, the mass matrix and the stiffness matrix

obtained here are exactly the same as those given by eqns (82-84), which shows the coherence of these

developments. 

5. SOLUTIONS FOR A SIMPLY SUPPORTED INFLATABLE BEAM
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The natural frequencies of vibration of an inflatable simply supported beam are solutions of:

(111)

One gets:

(112)

Then

(113)

Hence, with d ≠ 0, one can obtain: 

(114)

We find:

(115)

The natural frequency can finally be calculated by the use of eqn (48):

(116)

The inflation pressure appears explicitly in the formulation of the frequency, which increases with the

pressure.

Figure 5. natural frequencies of a simply supported inflatable tube: influence of the internal pressure

Fig 5 shows the evolutions of the first three natural frequencies of an inflatable tube versus pressure. Here, �0

= 1,858m, R0 = 0,0831m, ρ0e = 0,3759kg.m–2. Two Young moduli and three shear moduli are used here to show
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their influence on the solution. Increasing the pressure inducts an increase of the natural frequencies, but these

growths are quite small and depend on the natural frequency. Multiplying by three the pressure leads in this case

to an increase of the frequencies by 2.7%, 6% and 9% respectively for n=1, 2, 3 in the most varying cases. In

fact, the first frequency is mainly dependent on the Young modulus. For a given Young’s modulus, the shear

coefficient G has a great influence on the interval between the natural frequencies. 

6. COMPARISONS WITH THE FINITE ELEMENT METHOD RESULTS
The first three natural frequencies are calculated with the two methods. The CEM values are simply obtained

with eqn (116). The three first frequencies are calculated for the simply supported inflatable tube, which is used

for the experiments (see section 7). Geometry and material are such that:

�0 = 1,858m, R0 = 0,0831m, Ee = 179000 Pa.m, Ge = 20000 Pa.m, ρ0e = 0,3759kg.m–2.

Figure 6. Evolution of frequency according to the number of element reference 

Figure (6) shows that the results of FEM converge with the results of CEM with the increase of the number

of elements. If the CEM gives the exact frequency with a chosen accuracy, it is not the case of the FEM,

However, the results of FEM are always greater than the ones of the CEM, as expected.

7. COMPARISONS WITH THE EXPERIMENTAL RESULTS
Experiments have been carried out to measure the natural frequencies of an simply inflatable supported beam.

Sewing two layers of fabric manufactures the beam used for these experiments. This fabric is a woven network,

for which the fibbers are initially orthogonal and imply an orthotropic behaviour. Because we focus the studies

on beam models, it will be considered here as an hyperelastic isotropic Saint-Venant Kirchhoff material. A thin

PVC membrane incorporated inside the beam ensures the air tightness. The vibration of the beam comes from

an electromagnet. The induction coil has been separated form the electromagnet. It is very light and just sticked

on the beam. 
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Figure 7. Simply supported beam experiment

Figure 8 presents the results for the first three natural frequencies and the evolution of the length and radius

of the inflated beam versus the pressure. The notable point is that increasing the pressure leads to an increase in

the rigidity of the beam, which inducts the natural frequency to grow.

a) natural frequencies versus pressure b) length and radius versus pressure

Figure 8. Experimental results

In order to compare experiments and theoretical results, the Young modulus has to be identified. This is done

with the variation of the initial geometry, which clearly shows the importance of the pres-tress state. It is easy to

calculate the circumferential and longitudinal stresses in the membrane due to the internal pressure of the beam

in the initial configuration: 

(117)

e corresponds to the thickness of the fabric. Since we consider an elastic isotropic material, the length and the

radius may be modelled with:

(118)

Here, �φ and Rφ are the length and the radius for a very low internal pressure, and can be obtained with the

curves Fig. 8. b with the linear interpolations of the two curves length versus pressure and radius versus pressure.

The Young modulus is also determined with these linear interpolations. 
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Figure 9. pre-stress effect

The average value of the product of the Young modulus with the thickness e is estimated to Ee=178973 Pam.

The Young modulus is the main influent parameter for the first natural frequency. The product Ge is then

estimated in order to ensure the interval between the other natural frequencies (here Ge=20000 Pam). The

comparison between theoretical and experimental results is shown fig 10 a. The analytical results are close to the

experimental results for the first pressure (50 kPa) but the slopes of the theoretical curves are smaller than the

experimental ones. This can be corrected by the use of the influence of the pressure on the radius and on the

length on the natural frequencies. The initial state is then correctly defined. Fig 10. b presents the comparison

between the experimental frequencies and the theoretical frequencies taking into account the variation of the

length and radius versus pressure, and the results show a correct accuracy between theory and experiment.

a) without pre-stress effect b) with pre-stress effect

Figure 10. Comparison between theoretical and experimental results

8. CONCLUSIONS
Inflatable structures are increasingly used nowadays. They are often made of beam elements. In this paper, two

methods to calculate the eigenvalues and eigenmodes of structures made of inflatable beams have been

propounded. The equations of motion have been written in lagrangian variables for a Timoshenko beam in order

to take into account the following forces due to the internal pressure and the shear behaviour of this kind of thin-

walled fabric structure. We first have dealt with the continuous element method to establish the dynamic stiffness

matrix, which allows us to get exact results. The finite element method stiffness and mass matrixes have been

derived from the CEM and also directly from the virtual work principle. In each case, the inflation pressure

appears in the matrixes. The natural frequencies have been calculated for a simply supported inflatable beam with

the dynamic stiffness matrix, and these results have been compared to FEM and to experimental ones. The

influence of the material parameters has been pointed out. The first frequency is mainly dependent on the Young

modulus and for a given Young’s modulus, the shear coefficient has a great influence on the interval between the

natural frequencies. The comparison between the experimental results and the theoretical results has shown the

importance of the pre-stress effect, which increases the radius and the length of the initial configuration. 
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