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Abstract

Background: Surface electromyography (EMG) signals are often used in many robot and rehabilitation applications

because these reflect motor intentions of users very well. However, very few studies have focused on the accurate and

proportional control of the human hand using EMG signals. Many have focused on discrete gesture classification and

some have encountered inherent problems such as electro-mechanical delays (EMD). Here, we present a new

method for estimating simultaneous and multiple finger kinematics from multi-channel surface EMG signals.

Method: In this study, surface EMG signals from the forearm and finger kinematic data were extracted from ten

able-bodied subjects while they were tasked to do individual and simultaneous multiple finger flexion and extension

movements in free space. Instead of using traditional time-domain features of EMG, an EMG-to-Muscle Activation

model that parameterizes EMD was used and shown to give better estimation performance. A fast feed forward

artificial neural network (ANN) and a nonparametric Gaussian Process (GP) regressor were both used and evaluated to

estimate complex finger kinematics, with the latter rarely used in the other related literature.

Results: The estimation accuracies, in terms of mean correlation coefficient, were 0.85 ± 0.07, 0.78 ± 0.06 and

0.73 ± 0.04 for the metacarpophalangeal (MCP), proximal interphalangeal (PIP) and the distal interphalangeal (DIP)

finger joint DOFs, respectively. The mean root-mean-square error in each individual DOF ranged from 5 to 15%. We

show that estimation improved using the proposed muscle activation inputs compared to other features, and that

using GP regression gave better estimation results when using fewer training samples.

Conclusion: The proposed method provides a viable means of capturing the general trend of finger movements and

shows a good way of estimating finger joint kinematics using a muscle activation model that parameterizes EMD. The

results from this study demonstrates a potential control strategy based on EMG that can be applied for simultaneous

and continuous control of multiple DOF(s) devices such as robotic hand/finger prostheses or exoskeletons.

Keywords: Surface Electromyography (EMG), Muscle activation model, Finger kinematics, Neural networks,

Gaussian process regression

Introduction
Robotic hand assistive devices and tele-manipulation

devices are developing technologies that hold great

promise in revolutionizing modern hand rehabilitation

and prosthetic application. Today, many such robotic

hand prosthesis devices and exoskeletons with many
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degrees-of-freedom (DOF) have been and are continu-

ously being developed. Roughly about 30% to 50% of the

available prosthesis is based on myoelectric control [1].

Tele-operated devices controlled by neural signals can

give unconstrained and precise movement control in dif-

ferent environments [2]. Surface electromyogram (EMG)

signals are often used in prosthesis controls and reha-

bilitation support applications because these reflect the

motor intention of a user prior to the actual movements

[3]. These signals not only provide little delay when used
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in human interfaces, but have also been shown to repre-

sent muscle tension and joint positions very well.

In the past 30 years, discrete classification of hand ges-

tures from EMG signals has been successful, consistently

reaching decoding accuracies of above 95% and classify-

ing more than 6 gestures, such as hand opening, closing

and others [4,5]. However, classification approaches have

been limited to use in controlled laboratory conditions

and have not been used by any current commercial myo-

electric prosthesis [6].

Despite the success of pattern classification approach to

EMG signals, this type of control strategy is inadequate for

actuating all the functions offered by the robotic device as

it uses a sequential strategy where only one class of move-

ment is active at a time [7]. Also, natural hand movements

are not limited to discrete gestures but are continuous,

coordinated and have simultaneous control of multiple

DOFs.

To realize a more intuitive and natural myoelectric con-

trol scheme, control strategies based on proportional and

simultaneous control are preferred over discrete classifi-

cation based control. This study aims to estimate simulta-

neous and multiple finger kinematics from surface EMG

signals.

An example of simultaneous control of multiple DOFs

was shown by Jiang et al. using muscle synergy strategies

extracted from a modified nonnegative matrix factoriza-

tion algorithm to estimate the torque [8] and kinematics

[9,10] of multiple DOFs produced at the wrists. Relating

to finger-based applications, studies have shown that it is

possible to extract fine finger movement information con-

tained in surface EMG signals. Afshar and Matsuoka [2]

were able to estimate the index finger joint angles from

fine-wire EMG embedded inside seven muscles that con-

trol the index finger. Similarly, Shrirao et al. [11] were able

to decode one index finger joint angle from surface EMG

signals. The finger motions involved in their study were

periodic flexion-extension movements at three different

speeds and they evaluated many different committees of

neural network but failed to get a consistent robust opti-

mal configuration. Furthermore, Smith et al. [12] were

able to asynchronously decode individual metacarpopha-

langeal (MCP) joint angles of all five fingers using an arti-

ficial neural network. Their study extracted time-domain

features from 16 general muscle locations in healthy sub-

jects. However, the number of channels involved may be

too many for practical applications, and movements were

limited to moving only one finger at a time despite simul-

taneous recording. In more recent developments, Hioki

et al. [13] estimated five proximal interphalangael (PIP)

joint angles using only four EMG channels and consid-

ered the dynamical relationship between the EMG and

the finger actuation by adopting time delay factors and

feedback stream into an artificial neural network. Their

method, however, has complex parameter configuration

wherein the number of parameters drastically varies with

different settings. In the previous studies [11-13], a time

delay between the onset of the EMG signal and the exerted

movement was present and observed. This time delay is

called hysteresis or electromechanical delay (EMD). Intro-

ducing EMG-tapped delay lines, which makes use of all

the immediate and past values of the EMG can consider

for this delay. However, doing so greatly increases the

dimension of the inputs and thus exponentially increases

the number of parameters of the regressor used. EMD can

vary depending on many different factors such as muscle

shortening velocity, type of muscle fiber, and fatigue [14].

The present study aims at overcoming the above lim-

itations by introducing EMD as a parameter, by using

a so-called EMG-to-muscle activation model [3,14,15],

which is determined along with other system parameters

through optimization. Very few studies have continuously

estimated more than five finger positions, but here we

present a method for the continuous extraction of con-

trol information during finger movements which involves

simultaneous activation of 15 DOFs provided by all five

finger joints. We concurrently recorded the kinematics

of all five fingers in one hand and the surface EMG

signals from muscles in the forearm while the subjects

performed both individual and simultaneous finger flex-

ion and extension tasks. Simultaneous estimation of the

finger kinematics is done and evaluated using both a fast

feedforward artificial neural network and a nonparamet-

ric Gaussian Process regression [16], with the latter having

the potential to give better estimation performance but

rarely used in myoelectric control literature.

This paper describes a new strategy to estimate complex

finger kinematics that can be used to augment current

myoelectric prosthetic control schemes. Simultaneous

and multiple finger joint positions, namely the metacar-

pophalangeal (MCP), proximal interphalangael (PIP) and

the distal interphalangeal (DIP) joints of all 5 fingers in

a hand are mapped from EMG signals using a model-

free based approach which involves the use of machine

learning regression techniques.

Methods
Participants

Similar to contemporary studies that proposed new EMG-

based control strategies for hand control [5,7,11-13],

healthy, able-bodied subjects participated in the experi-

ments, which can be an initial basis before testing with

disabled or amputated subjects. Ten healthy participants

(7 male, 3 female, aged 27±4 years), who gave informed

consent to participate in the experiment protocol, vol-

unteered in this study. The participants had no previous

experience with myoelectric control nor with any 3D

motion capture experiments.
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Experimental setup

The system is mainly composed of a wireless multi-

channel surface electromyograph and a 3D optical motion

capture device. Surface EMG signals, as well as the kine-

matics of unrestrained and continuous hand and finger

movements, were simultaneously recorded.

EMG recording

For all the subjects, surface EMG signals were extracted

from eight extrinsic muscles of the forearm that are

known to contribute to wrist and finger movements. Four

flexor muscles and four extensor muscles in the fore-

arm were targeted. These target muscles along with their

corresponding function related to any hand or finger

movements are listed in Table 1.

Eight bipolar active-type Ag-AgCl electrodes from

Ambu, with an average inter-electrode distance of 20 mm

were placed on the the subjects as shown in Figure 1. The

target muscles were mostly found by palpation, anatomi-

cal landmarks described in [17], and by visual inspection

of the signal that gave the best response to describe the

movements listed in Table 1. A single electrode was also

placed on the subject’s olecranon to serve as a ground

and reference electrode. The surface electrodes were con-

nected to a BA1104 pre-amplifier with a telemetry unit

TU-4 (Digitex laboratory co. ltd.). The hardware provided

a low-pass filter with cut-off frequency of 1 kHz during

the EMG data acquisition process. The EMG signals were

sampled at 2 kHz, and were digitized by an A/D converter

with 12-bit precision. The EMG signals were displayed

on a real-time monitor and visually inspected to ensure

quality of the signal.

Finger kinematics recording

While finger movements were made, the hand and fin-

germotionwere recorded simultaneously using aMAC3D

motion capture system (Motion Analysis Corp.). The

camera set-up using the mounted Eagle cameras is shown

in Figure 2. Twenty-two passive reflective markers for

motion capture were attached on the subject’s hand, with

Table 1 Selected EMG channels and the targetmuscles

Channel Target muscle Hand/Finger

1 Abductor pollicis longus Thumb abduction

2 Flexor carpi radialis Wrist, hand flexion and abduction

3 Flexor digitorum superficialis 2-5th finger PIP flexion

4 Flexor digitorum profundus 2-5th finger DIP flexion

5 Extensor digitorium 2-5th finger extension

6 Extensor indices Index finger

7 Extensor carpi ulnaris Wrist extension and abduction

8 Extensor carpi radialis Wrist and thumb

Source: Anatomy and Kinesiology of the Hand [17].

a marker located on each joint of the finger and three in

the wrist area (see Figure 3). Small 6-mm diameter mark-

ers were used to reduce switching marker errors and to

avoid getting the markers too close to each other. The

optical cameras were positioned and calibrated to cap-

ture a volume (500 × 700 × 500 mm) space that would

be able to effectively see and measure the small markers.

The Cortex software from Motion Analysis was used to

concurrently record the EMG and motion data. A sam-

ple skeleton model used in the marker data acquisition is

shown in Figure 3.

The marker trajectories were sampled at 200 Hz with

measurement units in millimeters, having residual errors

of less than 0.5 mm (as indicated during the Cortex cal-

ibration procedure). With the x, y, z positions of each

marker continuously recorded, the joint positions, namely

the MCP, PIP, and DIP joint angles, were calculated.

Because the thumb does not have a DIP joint, the car-

pometacarpal (CMC) joint was considered before the

MCP joint.

Data collection

The participants were individually seated on a regular

chair, with their hand and elbow comfortably positioned

on a flat surface table centered on the motion capture vol-

ume area. Each subject was tasked to do 3 different tasks.

For the first part of the experiment protocol, the subject

was tasked to move one finger at a time, in the flexion-

extension plane of each finger. The second task involved

the subject moving all fingers simultaneously in the same

flexion-extension plane. This motion resembled the open-

ing and semi-closing of the hand. Full closing of the hand

was not possible as some markers at the tip of the fin-

gers would not be seen by the motion capture system. In

these first two tasks, the subjects mainly did MCP flex-

ion and extension, in which the PIP and DIP followed the

movements of the MCP joint. Finally for the third and last

part of the experiment, the subject was tasked to move

any finger freely in any direction within the motion cap-

ture volume space while still maintaining a fixed neutral

position for the arm and elbow. Irregular movements and

different finger combinations for flexion and extension

movement were encouraged from the subject in this last

part of the experiment.

In any of the trials, the subjects were allowed to make

as many movements as they wanted to but were asked to

move in their own perceived normal velocity (which did

not exceed 2 cycles of flexion and extension movement

per second). The subjects were tasked to reach maximum

flexion and extension for each finger at least once at any

point in any of the trials. All the movements were lim-

ited to finger flexion and extension movements while the

rest of the arm (e.g. wrist, elbow, etc.) maintained a fixed

position upon instruction.Markers on the wrist joint were
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Figure 1 EMG placement. The surface EMG setup and the general view of EMG placement on a subject. The corresponding target muscle for each

channel is shown in Table 1.

also recorded to ensure that the wrist maintained a fixed

position, or at least minimal ulnar/radial angle deviation.

The first task consisted of 5 sets of movements, one for

each individual finger. While the second task consisted of

2 sets and the last task consisted of 1. Overall, the whole

experiment consisted of making 8 sets of movement tasks.

In each set, there were 5 trials, with each trial lasting 20

seconds. All trials were sequentially done and the subjects

were allowed to rest anytime throughout the experiment.

The subjects were also instructed to, as much as possible,

maintain the position of the whole arm in a neutral and

relaxed position while the fingers were moving, to reduce

fatigue.

After collecting the EMG data along with the motion

capture of the finger movements, separate trials were also

done to obtain a maximum voluntary contraction (MVC)

of eachmuscle. The subjects were asked to flex their hands

Figure 2 Camera Set-up. The overview of the 3D motion camera

system.

and fingers in all possible planes of movement to try and

induce maximum contractions for all the targeted muscles

in the forearm. However, it is very hard to obtain the true

maximum EMG values, so we instead obtained the maxi-

mum rectified EMG value from all the trials including the

separate trials for obtaining the MVC of each muscle.

Eighty percent of all the recorded data were used for

training and validation and the remaining twenty per-

cent were used for testing. All the data in each task

were concatenated together to form a larger training and

test dataset. However, the data were separated and were

analyzed separately for each subject.

Data processing

EMG-to-muscle activationmodel

For any intended motor action, it is known that there

occurs a time delay, which is known as the electrome-

chanical delay (EMD), between the onset of the EMG

signals and the exerting tension in the muscles. EMD

has been observed by previous studies in the leg and as

well as in the arm [11,14,18]. EMD has been reported to

range from 10 ms to about 150 ms, but varies differently

depending on the intended tasks [3]. Thus, EMD can-

not be ignored in EMG studies involving motor actions,

andmust be considered accordingly. In this study, through

visual inspection and by applying Fast Fourier Transform

(FFT) on the motion data, it was verified that the high-

est frequency of any periodic finger flexion and extension

movement did not exceed 2 Hz.

The raw EMG signals were first preprocessed into a

form, that after further manipulation, can be used to esti-

mate muscle activation [14]. The EMG signals were then

rectified, normalized by dividing by the peak rectified

EMG obtained, and low-pass filtered (4 Hz cut-off fre-

quency, zero-phase 2nd-order Butterworth filter). This is

done prior to obtaining the muscle activations, which are
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Figure 3Marker locations on the finger joints. (a) Twenty-two markers are attached on the hand. (b) Hand skeleton model on the motion

capture system.

highly related to muscle force found in low frequencies

[14]. The filtered EMG signals were then downsampled to

200 Hz to match that of the motion data.

To learn a suitable filtered signal which automatically

considers EMD, we introduce the use of a so-called

EMG-to-Muscle activation model, in place of using EMG

tapped-delay lines. EMG is a measure of electrical activity

that spreads across muscles, which causes the muscles to

activate. This results to the production of force, where the

model transforms the EMG signals to a suitable force or

muscle activation representation.

Zajac modeled the muscle activation dynamics using

a first-order recursive filter [15]. Although a first-order

differential equation does a fine job of characterizing acti-

vation, Buchanan et al. created a second-ordermodel filter

that works efficiently to model the relationship between

EMG and muscle activation [14]. In this study, we make

use of the filter in an approximate discrete function given

by:

uj(t) = αej(t − d) − β1uj(t − 1) − β2uj(t − 2) (1)

where ej(t) is the normalized, rectified and filtered EMG

of muscle j at time t. In this model, α, β1 and β2 are

recursive coefficients of the filter and d is the EMD. Filter

stability is guaranteed by subjecting α, β1, and β2 to the

following constraints:

β1 = γ1 + γ2 (2)

β2 = γ1 · γ2 (3)

|γ1| < 1, |γ2| < 1 (4)

α − β1 − β2 = 1 (5)

In this model, neural activation u(t) depends not just on

the current level of EMG but also on its recent history and
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is constrained from 0 to 1. Studies have also shown that

while some muscles have linear isometric EMG-to-force

relationship, the relationship for other muscle conditions

are nonlinear in nature [14]. This nonlinearity between

muscle activation vj and its neural activation u(t) can be

modelled as:

vj =
eAjuj(t) − 1

eAj − 1
(6)

where Aj is constrained between −3 and 0, with −3 being

highly exponential and 0 being linear.

Using this muscle activation model not only solves the

EMD of the muscle, but also requires only a few param-

eters. The parameters of this filter, γ1, γ2, d, and A are

obtained by using constrained nonlinear programming

in Matlab Optimization Toolbox (Mathworks, Inc.) to

minimize a mean-square error cost function given by:

1

N

∑

t

(θest − θtarget)
2

where N is the total number of samples, and θest and

θtarget are the estimated and measured finger joint angles,

respectively.

Other EMG features

Because of the great success in movement classifica-

tion from myographic signals, time-domain features have

been extensively used. To show that the finger kinematic

estimation performance was better using the proposed

muscle activation model that considers electromechani-

cal delay, we used four conventional time domain (TD)

features, namely the Mean of the Absolute Value (MAV),

Waveform Length (WL), Willison Amplitude (WA) and

Variance (VAR) [19,20]. These features provide different

information such as those pertaining to signal amplitude,

frequency, extent of muscle contraction, and extent of

the firing of motor unit action potentials. The length of

the sliding window was 200 ms with a 25 ms overlap. In

the preliminary investigation (not reported) of this study,

other time and frequency domain features gave high cor-

relation with the four features used and did not provide

better estimation performance. These features were also

used by most of the previous studies that performed fin-

ger joint kinematic and dynamic estimation from EMG

[2,11-13].

Hand/Finger kinematics

Each of the five fingers produced all three joint angles of

interest. The tasks were constrained to moving the fingers

only in the flexion and extension plane, thus, a total of 15

DOFs were considered. The joint angles were computed

from the recorded marker trajectories. A low-pass filter

with cut-off frequency of 10 Hz was also applied on the

motion data, to remove any noise and jitters in the signal.

The range of motion given for each of the 15 DOFs is

presented in Table 2 taken from the average of all the sub-

jects. Thesewere based from theminimum andmaximum

value of the computed joint angle kinematics. Table 2

reflects the variability in range of finger motions that the

subjects are capable of. Attributes such as the physical

lengths and widths of the finger joints contributed to the

change in range of motions.

In the regression step, however, to standardize and scale

all the joint angle values, we normalized each finger DOF

to show a scaled value from 0 to 1. Normalization of each

joint angle data was done by subtracting the minimum of

the joint angle to each sample and dividing it by the dif-

ference between the maximum and minimum measured

joint angle.

Feedforwardartificial neural network

In general, neural networks (NN) are considered to be

attractive for nonlinear modelling because of its ability

to approximate any arbitrary function [21]. A multi-layer

feed forward neural network was used to learn a map-

ping between the EMG signals and the corresponding

hand/finger kinematics. All 15 DOFs of the fingers were

simultaneously and continuously estimated using the neu-

ral network:

θest(t) = NN(v(t),w) (7)

where θest(t) ∈ R15×1 is the estimated finger joint angle,

v(t) ∈ R8×1 is the muscle activation input, and w contains

the weight parameters which represent the links between

the nodes or neurons. The network is made up of an input

layer, a hidden layer with a tan-sigmoidal activation func-

tion, and a single linear output layer. The neural networks

were implemented using the Netlab toolbox [22]. Param-

eters of the network were obtained by minimizing a mean

square error function. The network’s performance was

evaluated with various numbers of neurons in the hidden

layer, ranging from 5 to 350. Using a fixed training set,

we chose the specific number of neurons in the hidden

layer based on which solution gave the smallest average

error on an unseen test set. To avoid overfitting, only 80%

of the total dataset was used for training and validation

and an early stoppingmethod was applied during training

iterations [23].

Gaussian process for regression

Neural networks are used in almost all studies related

to human kinematics and kinetics estimation from EMG

despite the fact that its structure is heuristic and gives

a “black box” model approach to estimation. However,

the choice of a neural network is justified as this gives

very fast computation time even when estimating in

an online fashion. In this study, we wanted to verify if

using a nonparametric Bayesian regressor could greatly
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Table 2 Finger joints normal range of motion

Finger joint DOF Type ofmotion Theoretical range Measured range

Thumb CMC 1 Hyperextension/Flexion −10/55 deg 9.86± 21.17/50.06± 11.39 deg

Thumb MCP 2 Hyperextension/Flexion −10/55 deg −3.05± 4.94/56.51± 8.34 deg

Thumb IP 3 Hyperextension/Flexion −15/80 deg −4.52± 8.40/57.27± 18.01 deg

Index MCP 4 Extension/Flexion −45/90 deg −39.97± 15.00/62.29± 14.27 deg

Index PIP 5 Extension/Flexion 0/100 deg −14.95± 12.42/72.55± 16.87 deg

Index DIP 6 Extension/Flexion 0/80 deg −16.96± 13.97/45.51± 22.25 deg

Middle MCP 7 Extension/Flexion −45/90 deg −34.07± 10.29/69.39± 11.61 deg

Middle PIP 8 Extension/Flexion 0/100 deg −16.87± 12.88/80.07± 16.52 deg

Middle DIP 9 Extension/Flexion 0/80 deg −15.15± 11.77/57.07± 22.42 deg

Ring MCP 10 Extension/Flexion −45/90 deg −26.35± 10.71/62.51± 11.04 deg

Ring PIP 11 Extension/Flexion 0/100 deg −15.34± 11.44/88.58± 14.21 deg

Ring DIP 12 Extension/Flexion 0/80 deg −14.52± 11.36/58.94± 19.99 deg

Little MCP 13 Extension/Flexion −45/90 deg −14.31± 12.59/69.27± 6.07 deg

Little PIP 14 Extension/Flexion 0/100 deg −14.66± 12.59/72.94± 14.27 deg

Little DIP 15 Extension/Flexion 0/80 deg −10.09± 8.45/84.54± 12.60 deg

improve estimation performance [24]. Recently, more

popular nonparametric Bayesian approaches such as the

Gaussian Process (GP) Regression have gained attention

in being able to improve estimation performance in cer-

tain cases. GP regression is fundamentally different from

feed-forward networks. Rather than capturing regularities

in the training data via updating neuron weights, it applies

a Bayesian inference to explicitly compute a posterior dis-

tribution over possible output values y given all the data

and the new input x [16,25]. In this study, a GP regressor

was used and evaluated:

θest(t) = GP
(

m(v), k
(

v, v′
))

(8)

where v is the muscle activation input, θest is the estimated

kinematics and the Gaussian process is determined by a

mean functionm(v) and covariance function k
(

v, v′
)

.

The GP regression was implemented using Gaussian

Process Regression and Classification Toolbox [26]. The

muscle activation training data were standardized to have

zero mean and unit variance on each dimension while

the test data were standardized to have its mean cen-

tered around the training mean. This standardized data

was also used for the neural network for an objective

comparison between the two regressionmethods. The GP

configuration assumed a zero mean function, a Gaussian

likelihood function (with one hyperparameter σn), and a

squared exponential covariance function (with two addi-

tional hyperparameters: a characteristic length-scale l and

unit signal standard deviation σf ) [16].

m(v) = 0 (9)

k
(

v, v′
)

= σ 2
f exp

[

−
(

v − v′
)2

2 l2

]

(10)

The reliability of the GP regression is highly dependent

on the chosen covariance function. A maximum posterior

estimate of the hyperparameters w (e.g. w =
{

σf , σn, l
}

)

occurs when the posterior probability p(w | x, y) is at its

greatest. Baye’s theorem tells us that, assuming there is

little prior knowledge about what w should be, this cor-

responds to minimizing the negative log likelihood given

by:

ln p(θ |v,w) = −
1

2
θ⊤K−1θ −

1

2
ln|K | −

N

2
ln 2π (11)

An exact inference method was used and optimized to

get good choices for w [16].

Unlike in the use of the artificial neural network where

one network produced all 15 joint angle outputs simul-

taneously, a dedicated GP regressor was created for each

DOF. In the training stage, 15 GP regressors were indi-

vidually trained and then used to estimate simultaneous

movements of all 15 DOFs. Also, because the learning

from the log-likelihood involves the computation of the

inverse of K , which is the covariance matrix whose com-

plexity grows as the size of the input or output matrix

increases. We used a fixed interval sampling to reduce the

number of training samples which significantly reduces

the hyperparameter learning and training time needed.

Statistical analysis

A five-fold cross validation procedure was used to evalu-

ate the overall statistical performance of the two different

estimators and when different input features were used.

Two performance indices were chosen to evaluate how

accurately each finger DOF was estimated. The Pearson’s

correlation coefficient or the R-value index describes the

total variation between the actual and estimated samples,
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while the normalized root-mean square error (NRMSE)

describes the total residual error. These two performance

indices are defined as the following:

Ri=

∑N
t=0 (θact−µact) (θest−µest)

√

∑N
t=0 (θact−µact)

2
√

∑N
t=0 (θest−µest)

2

(12)

NRMSEi=

√

∑N
t=0 (θact − θest)

2

N
(13)

where θact and θest are the normalized actual mea-

sured and estimated DOFs, respectively, µ represents the

mean and Ri and NRMSEi are the correlation coefficient

and normalized root-mean-square error of the ith DOF,

respectively.

Three different statistical analysis procedures were

made in this study. A three-way analysis of variance

(ANOVA) was done to compare the effects of different

factors on the global estimation performance when NN

regression was used. The different factors that we consid-

ered were the subject (S1-S10), the finger DOFs (15 DOF)

and the type of input feature (filtered EMG, TD-based

or muscle activation) used. When significant interaction

was detected, focused ANOVA was conducted by fixing

the levels of one of the interacting factors [10]. When

no interaction was detected, a reduced ANOVA model

with only the main factor was performed. Tukey-Kramers

post-hoc comparison test was performed when signifi-

cance was detected. The second procedure was a one-way

ANOVA followed by the same post-hoc comparisons,

which was used to compare any significant differences

in the obtained parameters, such as the EMD between

subjects. The third and final one was to investigate the

effects of using different regression models or methods

(such as GP versus NN) on the global estimation perfor-

mance. Separate t-tests and ANOVA were used for this

procedure. The significance level was set to 95% and all

the procedures mentioning the global estimation perfor-

mance were performed on results of the test sets.

Results
With the neural network and Gaussian Process regressors

trained, all 15 finger DOFs were estimated simultane-

ously. Figure 4 shows a representative estimation result

taken from 1 test trial from a subject. In this result, the

subject performed simultaneous joint flexion and exten-

sion of all finger joints. Though only the MCP finger

joint angles are shown in the figure, the PIP and DIP

angles showed consistent results with the MCP angles

since this task involved the flexion and extension of all

joints simultaneously. The NN and GP regressors were

trained with 4800 samples. The average correlation coeffi-

cient of the GP-estimated results were significantly higher

than the NN-estimated results (R, 0.84 ± 0.0378 versus

0.71 ± 0.0981; P < 0.001). With more training samples

used, correlations between the actual and estimated value

for a single DOF reached as high as 0.92 for the MCP joint

angle estimation. While the DOFs for the smaller finger

PIP and DIP joints reached as high as about 0.85 and 0.79

in correlation, respectively.

The results in Figure 5 show that usingmuscle activation

input features not only parameterizes and considers EMD,

but also gives better estimation result. The global estima-

tion performance between three types of input: filtered

EMG without EMD considerations, TD-based features

and the proposed muscle activation inputs are shown.

The figure shows the overall mean correlation coefficients

and mean normalized root-mean-square error (NRMSE)

of the actual and estimated joint kinematics of all the

test data. In Figure 5(a), the proposed model using the

muscle activation inputs, shown in red, performed better

than other features shown in blue and green (averaging

7.38%±1.64% better than TD features and 13.13%±2.04%

better than filtered EMG features). Significant differences

were found when the correlation value using the muscle

activation inputs was compared to the TD-based features

(P < 0.006) and to the filtered EMG inputs (P < 0.001).

In Figure 5(b), the estimated finger kinematics using the

muscle activation inputs across all DOFs had an average

root-mean-square error of 11.53%±1.76%. Significant dif-

ferences were also found when NRMSE using the muscle

activation inputs was compared to the TD-based features

(P(R3, L2, L3) < 0.05; P(others) < 0.03) and to the filtered

EMG inputs (P(L3) < 0.05; P(others) < 0.01).

A three-way ANOVA testing the effects of different

factors such as across different input features, across

subjects and across finger DOFs showed significant dif-

ferences in the correlations of the resulting estimation

performance between the factor groups. Across the dif-

ferent input features used, the use of the proposed muscle

activation features had significant differences, perform-

ing consistently better than other types of features used.

Significant differences were also found between the dif-

ferent mean correlation coefficients across subjects and

the finger DOF groups (P < 0.001). Significant interac-

tions were found for the Subject-Finger DOF and Subject-

InputFeature pairs (P < 0.001), while no significant

interaction was found in the Finger DOF-Input Feature

interaction (P = 0.110). Tukey-Kramers’ comparison test

found that the estimation performance among the three

different input features used were different (correlation

coefficient: muscle activation>TD-based> filtered EMG

and NRMSE: muscle activation < TD-based < filtered

EMG).

In Figure 6, the obtained EMD parameter across the

10 subjects in different experiment trials are plotted. The

optimized EMD value ranged from 39.6 ms to 75 ms. No
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Figure 4 One representative subject data. 5 out of the 15 normalized finger joint angles are shown in blue solid lines, while the neural network

(NN) and Gaussian Process (GP) estimated results are shown in green and red, respectively. Below the joint angle results are the 8-channel

processed EMG from the subject which includes the following: rectified EMG (green), low-pass filtered EMG (blue) and the transformed muscle

activations (red). In this test data, the parameters obtained for the muscle activation model were: A = −3, d = 0.045, γ1 = γ2 = −0.9539. The labels

on the y-axis of the plots correspond to the target EMG channels which is listed in Table 1.

significant difference was found among the mean of the

EMD values obtained across the 10 subjects (P = 0.24).

This supports our assumption that the obtained EMD

across the subjects did not drastically change as the sub-

jects tried to do the target tasks at constant velocity or at

their normal and consistent pace across the trials. Obtain-

ing an optimal value for the EMD using the optimization

method described in the paper is important and can sig-

nificantly improve the estimation performance compared

to when no EMD is considered.

In Figure 7, the estimation performance is shown

between the two regression methods used, namely using

the NN and GP regressors. The estimation performance

comparing the results in NN and GP regression averaged

over 10 subjects are shown in this figure. For these results,

the GP performed consistently better in all the subjects

than the NN specially when training samples were suffi-

cient. GP showed an average of 7.18% higher correlation

performances than NN regression between the actual

and estimated finger kinematics and when trained with

4800 samples. There was also significant differences in

the obtained correlation coefficients between GP and NN

regression (P < 0.001). Overall, estimation of the MCP

joint angles performed consistently better than the PIP

and DIP estimation.

As the size of the training sample increases, NN per-

forms better or much closer to GP with no significant

increase in computation time, while GP computation suf-

fers with the increase. Figure 8 shows the global perfor-

mance of the estimators that we used, plotting the average
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Figure 5 Overall estimation performance. (a) The mean correlation coefficient and (b) the normalized root-mean-square error between the

measured and estimated finger angular positions of the hand using different feature sets are shown. The x-axis letter labels represent the thumb,

index, middle, ring, and little finger, while the numbers 1,2, and 3 are the CMC, MCP and PIP for the thumb and MCP, PIP and DIP for the rest of the

fingers, respectively.

RMSE of all the joint angles when the number of train-

ing samples was varied. As few as 250 samples for GP

can give almost equal or even better performance as when

more than 1800 samples are used to train a neural net-

work. With more and more training samples available

that captures more variability in the EMG and kinematics

data, the neural network performs better reaching to the

point where estimation performance is very close to GP

as shown in Figure 4, where the estimation results showed

the NN and GP performance over 4800 training samples.

Discussion
This paper is the first to demonstrate the feasibility of

estimating all finger joint kinematics using surface EMG

that even considers electro-mechanical delay present

in EMG-to-motion estimation applications and analysis.

Compared to the use of pattern classification techniques

used previously by many studies, we have presented

results in doing simultaneous and proportional control of

multiple finger DOFs comparing two different regression

methods using EMG.

This paper also presented results taken from the smaller

finger PIP and DIP joint angles, which have been rarely

reported in any previous studies. Overall, our pro-

posedmethod, which used the EMG-to-Muscle activation

model, showed comparable, and in some instances, amore

superior performance compared to that of the previous

studies.

From the results of the ANOVA tests, we have shown

that there are significant differences in mean estimation
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Figure 6 The EMD parameters obtained across all the subject participants. The electromechanical delay parameter obtained through

optimization across different trials ranges from 39.6 ms to 75 ms, with a mean of 42 ms.

performance across difference factor groups such as

across different types of input features used, across dif-

ferent subjects and across the finger DOFs. As mentioned

previously, the use of the proposed muscle activation

inputs gave a consistently better estimation performance

compared to when other types of features were used. For

the subject group used in this study, the 7 subjects’ esti-

mation performances, both correlation coefficients and

RMSE between the estimated and measured DOFs, were

slightly, significantly better than the other 3 remaining

subjects. It is not clear why some of the subjects per-

formed poorly than the others, although the choice of

random finger movements in the free movement task set

across the subjects were different. Some of the subjects

chose to do periodic flexion and extension movements

in the free moving task while others chose to do more

random, nonperiodic and more varying simultaneous and

multiple finger movements. As for the differences across

the finger DOF group, this can be attributed to the better

performance achieved in estimating the MCP joint DOFs

than in the PIP and DIP joint DOFs. The MCP DOFs

have more independent movements than the PIP and

DIP, which are more closely coupled and have dependent

movements.

On using the EMG-to-muscle activation model features

Processing the raw EMG signals into its muscle activa-

tion dynamics was straightforward. Training was fast and

requires only a few parameters which is suitable for practi-

cal applications. Formost trials, the EMDobtained ranged

from 45 to 65 ms, suitably aligning the EMG onset to

the motion data. We hypothesize that this model works

very well for motion with constant velocities, as EMD has

been known to change with the velocity and frequency

of the task movement [18]. In the paper [27], the authors

presented the time constants of the filters used in ana-

lyzing surface EMG, which ranged from 10 to 150 ms.

It was also mentioned that the time constant should be

changed adaptively to the data. In our method, the appro-

priate filter parameters, including the EMD in the muscle

activation model were obtained through an iterative opti-

mization procedure that minimized reconstruction error.

Figure 7 Comparing between the use of NN and GP regressors. The correlation coefficient (R) and the normalized root-mean-square error

(NRMSE) of the measured and estimated finger DOFs are shown when the NN and GP regressors were used.
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Figure 8 Learning curves of the neural network and Gaussian Process Regressor. The y-axis shows the average NRMSE while the number of

training samples was varied. The number of test data samples remained fixed across all the subjects.

In our previous study, for periodic motion, the PIP

and DIP angles followed movements similar to the MCP

angles, but for random motions, it may totally differ. The

input feature sets that we used do not give an explicit

feature that relates the angles to one another [28]. How-

ever, compared to feature sets used by previous studies,

the proposed set of muscle activation features performed

better.

Furthermore, compared to reported EMD values in the

other studies, the range obtained is comparatively smaller

compared to those taken from the lower limb during

cycling tasks [18] or from the upper limb during object-

carrying tasks [3]. This can be attributed to observations

such as the tasks involved in this experiment are faster,

have smaller deviation in movement trajectories, and that

the targeted muscles in the forearm are physically smaller.

However, it is hypothesized that as the frequency or veloc-

ity of the finger movement tasks increases, then the EMD

values may also significantly change.

Neural network versus Gaussian process regression

Currently, there is no existingmodel that can best describe

the relationship between EMG and finger joint kinemat-

ics. This is the main reason why we chose an artificial

neural network and a Gaussian Process regressor, as these

give a model-free approach in mapping the EMG signals

to the corresponding finger kinematics.

Using artificial neural networks has been the primary

choice in mapping the EMG to kinematics application,

however, in this study we present the use of a nonparamet-

ric Bayesian approach through the use of a GP regressor.

GP can give better estimation of the joint angles using

fewer training samples as shown in Figures 7 and 8. This

advantage is particularly important in not only reducing

the amount of training time but in potentially reducing

the amount of experiment protocol needed to capture

large variations in the training data. In many myoelectric

control strategies that are based on supervised learning,

subjects have to retrain day after day as EMG signals

are highly variable. With GP regressors, higher estima-

tion accuracy compared to using neural networks can be

achieved using fewer training data. Although not shown,

using GP outperformed any neural network configuration,

such as single output or multi-output network config-

urations [29], in the case of only few training samples

available.

However we should point out that, though GP can han-

dle missing data more readily than neural networks, the

computation time becomes significantly higher in the for-

mer as the size of the training data increases. It took about

10 times longer to train the GP than the neural network.

But with increasing computing capabilities of CPUs and

computers, it will be but a matter of time before Bayesian

regressors can be fully realized in practical applications.

Also, in this study, the choice of covariance function was

a standard Gaussian function. Other suitable choices for

the covariance and mean functions may exist that can bet-

ter improve the estimation performance, however, these

have not been explored in this study. For this work, using

GP regressors gave promising results in terms of getting

better estimation using fewer training samples.

Also, in this study, we are estimating 15 finger joint

kinematics simultaneously from eight muscle activation

inputs. However, a dimensionality analysis on the hand

kinematic data suggests that the effective dimension is less

than the total DOFs available anatomically on the hand.

By applying a Principal Component Analysis (PCA) on the

finger kinematics data, the analysis showed that only the

first 4 to 6 principal components explained the vastmajor-

ity of the variance in hand posture. PCA was performed
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not only on the joint angular position data, but also on

the joint angular velocities data because these are said to

be more closely related to the motor command’s driving

moment [30]. This is consistent with earlier studies, where

it was shown that despite the hand having more than 20

DOFs, the effective dimensionality is much lower [31].

This can be attributed to factors such as mechanical con-

straints in the structure of the hand, high correlations of

movements between joints and possibly the existence of

synergies [31,32]. However, the extent to which each of

these DOFs is independently controlled duringmovement

is still vague.

Implementation and limitations

Most of the analysis has been done offline, however the

proposed method is also suitable for real-time applica-

tions. In using the proposed muscle activation model,

training and optimization is fast as there are only a few

parameters needed in the transformation of the input fea-

tures. Simultaneous and proportional estimation of all

finger DOFs using the feedforward Neural Networks can

be done real-time with delays of less than 100 ms. Though

not reported in this study, a practical real-time applica-

tion using the proposed method with the neural network

in controlling a custom-built one-finger exoskeleton has

been done in our previous study [33]. In that previous

work, training was done using a mirror training scheme

where the EMG data were obtained from a contra-lateral

hand and were used to actuate the finger exoskeleton on

the opposite hand.

The current subjects have been limited to healthy, able-

bodied subjects to test the feasibility of our approach. This

can be used as a benchmark for future implementation

and validation for training amputees or subjects with hand

impairments. The estimation of finger joint kinematics

has also been confined to a static wrist and arm position.

Changing the wrist’s position may influence finger joint

estimation from EMG similar to those observed by Jiang

et al. [34]. One possible solution is to increase the amount

of training data by adding finger joint information at dif-

ferent positions of the arm and wrist. However, getting

this amount of data may be impractical to apply in the

real application setting. So there is a need to check if the

GP can handle variations in the arm and wrist position.

If dynamic arm and wrist position are to be considered,

some form of hierarchical model may be considered. Cur-

rently, only the neural network has been fully tested on a

real-time application. Other works are currently ongoing,

which includes implementing other regressionmethods in

real-time.

Conclusion and future works
This work has presented an alternative and improved

method in estimating simultaneous finger kinematics

from EMG using a muscle activation model that param-

eterizes electromechanical delay (EMD), which has been

observed by numerous investigators. Overall, our current

method captures the general trend of finger movements

and is able to estimate multiple finger DOFs with usable

and reasonable accuracies. Due to the high variability in

hand anatomy and internal control strategies, up to this

date, no existing biomechanical model can capture the

complex movement of the hand. Thus, using a model-

free approach such as an artificial neural network or a

nonparametric Gaussian Process is suitable in estimating

finger kinematics from muscle activation inputs. Though

neural networks are fast and perform robustly well when

the training data is sufficient, using a Gaussian Process

regressor gives better performance when the training

samples are small. This shows much promise in being

able to reduce the amount of experiment training proto-

cols substantially and can work better than using neural

networks.

The approach proposed in this paper presents a prac-

tical solution for a myoelectric control strategy for pro-

portional and simultaneous control of multiple DOFs in

robotic hand prostheses and finger exoskeletons. Though

ourmethod validates the feasibility of position-based con-

trol from surface EMG, manipulating small objects or

doing skillful tasks are much more complex. We need to

investigate further how we can deal with overall varia-

tions in hand movements such as dealing with the effects

of different positions of the arm or wrists. The future

work of our study involves investigating muscle activation

patterns for object manipulation and integrating a torque-

based control strategy that can further improve current

state-of-the-art myoelectric control strategies.
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