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Abstract22

Community assembly is often treated as deterministic, converging on one or at most23

a few possible stable endpoints. However, in nature we typically observe continuous24

change in community composition, which is often ascribed to environmental change.25

But continuous changes in community composition can also arise in deterministic,26

time-invariant community models, especially food web models. Our goal was to27

determine why some models produce continuous assembly and others do not. We28

investigated a simple two trophic-level community model to show that continuous29

assembly is driven by the relative niche width of the trophic levels. If predators have30

a larger niche width than prey, community assembly converges to a stable equilib-31

rium. Conversely, if predators have a smaller niche width than prey, then community32

composition never stabilizes. Evidence that food webs need not reach a stable equilib-33

rium has important implications, as many ecological theories of community ecology34

based on equilibria may be difficult to apply to such food webs.35

Introduction36

Understanding how species assemble into communities is a central issue in commu-37

nity ecology (Fukami, 2015; Song et al., 2021; Serván & Allesina, 2021). Community38

assembly is typically modeled as a sequence of invasions of species from a regional39

species pool into a local patch, where the success of each invasion may depend on40

both the environmental conditions as well as the local community itself (HilleRis-41

Lambers et al., 2012; Barbier et al., 2021).42

How we view community structure affects how we interpret community assem-43

bly (Tilman, 2004). A view based on niche theory typically implies a deterministic44

community assembly process, where composition converges on the community best45

adapted to the environment (MacArthur, 1970; Tilman et al., 1982; Cressman et al.,46

2017; Kremer & Klausmeier, 2017). For example, with competition for a single lim-47

iting resource, the species with the lowest resource requirement R∗ replaces all its48

competitors with higher resource requirements (Tilman et al., 1982; Tilman, 2004).49

Similar rules allow us to predict community assembly under competition for two re-50

sources (Tilman et al., 1982), with predators (Holt & Lawton, 1994) or with mutualists51

(Johnson & Bronstein, 2019). In these models, resource competition leads determin-52

istically to a single community in which every available niche is occupied (Tilman,53

2004; Cressman et al., 2017), independent of the assembly processes.54
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Communities with priority effects, or other historical contingencies, are no ex-55

ception: they also converge towards a predictable outcome of community assembly56

(Fukami, 2015; Serván & Allesina, 2021). However, in these cases the outcome can57

depend on the starting point and potentially on the community assembly process it-58

self. Understanding when and how the sequence of community assembly affects the59

final community may not be simple (Fukami et al., 2016; Vannette & Fukami, 2014;60

Song et al., 2021; Huisman & Weissing, 2001; Barbier et al., 2021), but we still expect61

assembly to converge on one of several possible stable, uninvadable communities62

(Mordecai, 2011; Ke & Letten, 2018; Song et al., 2021).63

Conversely, we rarely observe stable community compositions in natural com-64

munities (Blowes et al., 2019; Dornelas et al., 2019; Hamm & Drossel, 2021). Rather65

natural communities appear to be in a continuous community assembly process. Of-66

ten, we observe a set of permanent species, typically called core species, and a set67

of transient species, typically called satellite species (Nee et al., 1991). Typical ex-68

planations for these patterns include environmental change (Dornelas et al., 2019) or69

neutral or stochastic processes (Hubbell, 2005). We accepted this view until recently70

when we investigated a two trophic-level plankton community model with mecha-71

nistic species interactions (Spaak et al., 2022). In this model, community composition72

changed continuously over time, despite the lack of external environmental changes73

or any stochastic processes.74

As demonstrated by our plankton community model, patterns of continuous com-75

munity assembly can also arise from internal species interactions in food web models76

that are purely deterministic and time-invariant (Hamm & Drossel, 2021; Morton77

& Law, 1997; Steiner & Leibold, 2004). Such models capture many of the patterns78

observed in nature such as food-chain length, number of average links per species,79

species-area relationships and average persistence time (Williams & Martinez, 2000;80

Loeuille & Loreau, 2005). However, not all food-web models lead to a continuous81

assembly pattern (Loeuille & Loreau, 2005) and some lead to a continuous assembly82

pattern only for higher trophic levels (Allhoff et al., 2015). The drivers of continu-83

ous community assembly are understood in some simple phenomenological models84

(Bunin, 2017), but these models are based on randomly generated matrices of species85

interaction coefficients, which do not reflect natural communities (Eklöf et al., 2013; Li86

et al., 2022). Interaction strengths in food web models and real food webs are highly87

structured, so continuous assembly in food web models is a different phenomenon.88

For example, predation strength in many food web models is based on a Gaussian89

function of differences in body sizes, yet while some of these models lead to contin-90
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uous turnover others do not. Currently, we do not know which of the underlying91

assumptions of food web models are responsible for continuous community assem-92

bly.93

Understanding the properties that lead to continuous community assembly is im-94

portant, as many of our ecological theories are based on assumptions of stable com-95

munity composition and equilibrium dynamics. For example, modern coexistence96

theory is based on invasions into stable communities at equilibrium (Ellner et al., 2019;97

Spaak et al., 2021; Barabás et al., 2018), studies of biodiversity-ecosystem function typ-98

ically measure both biodiversity and ecosystem function at equilibrium (Loreau &99

Hector, 2001; Loreau, 2010; Bannar-Martin et al., 2018), and ecosystem stability analy-100

sis is based on linear approximations around an equilibrium (May, 1972; Carpentier101

et al., 2021; Allesina & Tang, 2012, 2015).102

Here we analyze simple community models with one or two trophic levels103

(Macarthur & Levins, 1967; MacArthur, 1970) to answer two questions about con-104

tinuous invasion and extinction dynamics. 1. What are the necessary conditions for105

these dynamics to emerge? 2. Are there any constant properties within the disorder106

of continuous invasion and extinction?107

Methods108

Community model and assembly109

We first observed continuous invasion and extinction in a mechanistic phytoplankton-110

zooplankton model (Spaak et al., 2022). However, here we focus on a simpler two-111

trophic Lotka-Volterra community model because it offers greater generality and less112

complexity. The Lotka-Volterra community model is widely known and provides113

a phenomenological description of many different communities independent of the114

specific mechanisms underlying species interactions. Additionally, the Lotka-Volterra115

model is based on a few simple assumptions, which allows a more general under-116

standing of the phenomenon.117

We assumed a two trophic level Lotka-Volterra community model

1
Bi

dBi

dt
= µi − ∑

j
aijBj − ∑

k
bikPk (1)

1
Pi

dPi

dt
= µP

i + ϵ ∑
j

bjiBj (2)

4

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted March 10, 2023. ; https://doi.org/10.1101/2023.03.08.531662doi: bioRxiv preprint 

https://doi.org/10.1101/2023.03.08.531662


where Bi is the density of prey species i with intrinsic growth rate µi, aij is the species-118

specific interaction between prey species i and j, bik is the predation of predator k119

on prey species i, Pk is the density of predator k and µP
i is the mortality rate of the120

predator. We assumed that there are no direct interactions between predators. ϵ is the121

trophic conversion efficiency between consumption of prey biomass and production122

of predator biomass; we assumed a trophic efficiency of ϵ = 0.1.123

We defined the community parameters µi and aij according to Macarthur & Levins124

(1967) and Barabás & Meszéna (2009), which specifies a Lotka-Volterra model based125

on underlying competition of prey species for a resource continuum. Each prey126

species was identified by a single trait xi, e.g. body mass, which defined its resource127

consumption spectrum ui, i.e. ui(x) = uB exp
(
− (x−xi)

2

2(
√

2σB)
2

)
, where x is the resource128

identity, e.g. body mass of the resource, σB is the niche breath and uB is a normalizing129

constant. The competitive interaction between two prey species i and j is given by130

aij =
∫

ui(x)uj(x)dx = exp
(
− (xi−xj)

2

2σ2
B

)
, and the scaling constant uB was chosen such131

that aii = 1 (Barabás & Meszéna, 2009). The intrinsic growth rate µi depended on132

the carrying capacity of the resource R(x), which we assumed to be a Gaussian, i.e.,133

R(x) = R0 exp
(
− x2

2(ω2−2σ2
B)

)
, where R0 is the maximum resource availability and ω is134

the breath of the resource axis, such that µi =
∫

ui(x)R(x)dx − mi = K exp(− x2
i

2ω2 )−135

mi, where K denotes the maximum intrinsic growth rate, mi = 0.1 is the mortality136

rate and ω is the niche breadth.137

We also assumed a Gaussian predation kernel for the predators. Each predator138

species was defined by a single trait yj for predator species j which defined its pre-139

dation preferences. Predation coefficients were given by bij = exp(− (xi−yj)
2

2σ2
P

), where140

σP is the niche breath of the predator. Finally, we assumed that all predators have the141

same mortality rate µP
i = −0.1.142

Community assembly consisted of four steps:143

1. Generate a random invader: This invader has a random trait location xi ∼144

N (0, σ) and is either a prey or a predator species. σ = ω

√
2

2.5 log
(

K
mi

)
was145

chosen such that about 98% of the invading prey species had a positive intrinsic146

growth rate.147

2. Compute the invasion growth rate of the invader: The invasion growth rate148

is defined as ri = µi − ∑j aijB∗
j − ∑k bikP∗

k or µP
i + ϵ ∑j bjiB∗

j , depending on the149

trophic level of the invader, where P∗
k and B∗

j are the equilibrium densities of150
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the current community. If ri is negative the invasion fails and we move to the151

next time step.152

3. Test feasibility: Compute the new equilibrium of the invader plus the resident153

species, and if all species have positive equilibrium densities the invader suc-154

cessfully invaded and we move to the next time step. If one species has negative155

equilibrium density move to step 4.156

4. Find new resident community: If the invader replaced at least one species we157

need to find the new resident community. We computed the equilibrium of all158

possible sub-communities and removed all non-feasible sub-communities. For159

the feasible sub-communities we computed the invasion growth rates of the160

non-present species. If all non-present species have a negative invasion growth161

rate, the community is saturated. To determine the next resident community,162

we selected the most species-rich, feasible, saturated sub-community. If there163

were multiple communities of equivalent richness, we randomly selected one.164

This method of determining the new resident community led to the same qual-165

itative dynamics as introducing each invader at low densities in the model, and166

simulating the community dynamics until equilibrium was reached (Appendix167

S3, Figure S3)168

In the main text we focus on a simplified version of community assembly which169

assumes that the time between invasions was sufficiently large that the community170

would reach an ecological equilibrium between invasions (Serván & Allesina, 2021).171

Additionally, we ignored transient dynamics as well as potential non-equilibrium172

behavior (Serván & Allesina, 2021; Law & Morton, 1996). In the Appendix we show173

that these simplifications do not affect our main conclusions (Appendix S3).174

Results175

We simulated community assembly under two different conditions, with and without176

predators present (Fig. 1). Without predators, there was exactly one stable configu-177

ration of prey species, and the trait distance between prey species was roughly twice178

the niche breath of the prey species, i.e. 2σB (Macarthur & Levins, 1967; Barabás et al.,179

2012). Community assembly always converged towards this single stable configu-180

ration, independent of the invasion history, which aligns with previous theoretical181

predictions (MacArthur, 1970). Over time, the probability of successful invasion by182
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a new arrival decreased towards zero (blue shaded area, Fig. 1 A). Overall, results183

for the one trophic level community model are consistent with the expectation of184

convergence towards a stable endpoint known from previous models.185

The inclusion of a second trophic level qualitatively changed the dynamics. The186

two trophic level model did not lead to the typical trait distribution known from187

limiting similarity, with equally spaced species at a few unchanging trait values (fig.188

1A). Rather, the two trophic level community exhibited continuous invasion of new189

species and extinction of established species, although with no trend in species rich-190

ness. A late-arriving species did not have a lower probability of invasion success than191

an early-arriving one. Consequently, community assembly was not directed, and did192

not converge towards a stable end point.193

Intuitively, we can understand this continuous invasion and extinction by consid-194

ering an example with just two prey species, B1 and B2, and two predator species, P1195

and P2 (Schreiber & Rittenhouse, 2004). We assume that P1 is a better predator for196

B1 and P2 a better predator for species B2; the predators are equivalent in all other197

aspects. Given the community composition (B1, P1), the prey species B1 has low fit-198

ness because of strong predation pressure from P1. Therefore, prey species B2 can199

invade and exclude B1, leading to the community (B2, P1). However, P2 is a better200

predator for B2 and will consequently displace P1, leading to the community (B2, P2).201

Under these conditions B2 will have low fitness because of strong predation pressure202

from P2, therefore B1 will invade leading to (B1, P2). Finally, to close the cycle, P1 will203

replace P2 as it is a superior predator for species B1. Our model was driven by qual-204

itatively similar dynamics, though the randomness in the traits of potential invaders205

complicates the simple cycle.206

This cycle depends on sufficiently specialized predators such that the commu-207

nity (B1, B2, P1) is not stable (Schreiber & Rittenhouse, 2004). In our simulations,208

this meant that the niche width of the predator σP had to be smaller than the niche209

width of the prey species σB (Fig. 2). Results from limiting similarity theory give210

us an intuitive understanding of this condition. From limiting similarity we expect211

the coexisting species to be separated by roughly twice their niche breath, i.e. 2σ212

(Macarthur & Levins, 1967). This result is quite robust to changes in the fitness func-213

tion and the competition kernel (Barabás et al., 2012). Let Ω denote the length of the214

interval of feasible trait values for prey species, i.e. Ω = ω

√
2

2.5 log
(

K
mi

)
, which is215

also roughly the interval of feasible trait values for predator species. Then we expect216

∼ Ω/2σB prey species and ∼ Ω/2σP predator species in a stable configuration. How-217
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ever, at stable equilibrium the number of predator species cannot exceed the number218

of prey species (Tilman et al., 1982; Meszéna et al., 2006). We therefore conclude that219

a stable configuration implies σP ≥ σB (see Appendix S2 for a more precise proof).220

Note however, this argument only tells us that we should not expect a stable con-221

figuration for σP < σB, it does not necessarily imply that we should expect a stable222

configurations for σP > σB.223

Stability within the disorder224

The two trophic level community model led to unpredictable assembly, meaning that225

community composition cannot be predicted far into the future. In contrast, the226

trait distribution of the community (the number of species with traits in a particular227

interval of trait values) remained largely unchanged (Fig. 3). Typically, an invader re-228

placed a resident species with a similar trait, as the invader’s presence has the largest229

effect on similar species (Vannette & Fukami (2014) and Fig. 3 A, D). Consequently,230

each individual invasion had no large effect on the trait distribution. On a longer231

time scale, the prey species used essentially all available resources: if a certain range232

of the resource spectrum remained unused, then an invader soon filled this gap. As233

a result, the trait distribution of the prey species mimicked the underlying resource234

distribution (MacArthur, 1970), which was constant over time.235

Similarly, the trait distribution of the predator species was roughly constant, albeit236

more variable over time than the trait distributions of prey species. Intuitively, the237

predator trait distribution mimicked their underlying resource distribution, i.e. the238

abundance of prey species. However, this underlying resource distribution was not239

perfectly constant, but rather varied slightly over time. The trait distribution of the240

predator species is therefore a roughly constant approximation of the underlying241

roughly constant trait distribution of the prey species.242

A consequence of this stable trait distribution was the over-dispersion of species243

traits compared to a randomly selected community without competitive interactions244

(Fig. 4, C and D). Although we did not observe any strict lower limit to the trait245

difference between two coexisting competing species, we rarely observed coexisting246

species with very similar traits.247

8

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted March 10, 2023. ; https://doi.org/10.1101/2023.03.08.531662doi: bioRxiv preprint 

https://doi.org/10.1101/2023.03.08.531662


Discussion248

Our paper highlights the idea that community assembly does not always move to-249

wards a stable endpoint, but rather that communities can remain indefinitely in250

transient-like behavior with high species turnover. For such communities, the term251

community assembly is somewhat inappropriate, as there is no final community to252

be assembled. Our modeling results make it clear that this ”continuous assembly”253

dynamic depends only on the presence of sufficiently specialized predators (Fig. 1,254

Appendix S2). The open question then is how widespread we should expect such255

dynamics to be in nature.256

Whether this mechanism is actually present in natural communities is currently257

difficult to answer, as three conceptually different mechanisms can lead to the con-258

tinuous assembly observed in nature (Dornelas et al., 2019). Specifically, continuous259

assembly can be driven by external environmental changes (Dornelas et al., 2019),260

stochastic fluctuations based on neutral dynamics (Hubbell, 2001) or internal dynam-261

ics as described here. Yet, these different underlying mechanisms lead to different262

links between invasion and extinction events. In the neutral model invasion and ex-263

tinctions are independent of each other. In the case of external environmental change,264

the invasion and extinction are not causally linked but are both driven by the same265

external factor. We would therefore expect a correlation, but no causal link. Finally,266

in the case of internal dynamics, invasions cause extinctions and vice-versa, and we267

would therefore expect a causal link as well as a positive correlation.268

The BioTIME data set offers a possibility to assess whether invasions and extinc-269

tions are correlated and potentially linked. As a cursory analysis, we investigated270

the correlations between invasions and extinctions in the BioTIME data (Appendix271

S1). We found that in 24 of the 44 datasets (∼ 55%), the observed correlation was272

significantly higher than expected by chance, i.e., p < 0.05 (Fig 5). For 17 of the 44273

datasets (∼ 40%), the observed correlation was stronger than any correlations found274

in 1000 randomizations. Aquatic ecosystems in particular showed a stronger correla-275

tion than expected by chance. Interestingly, Li et al. (2022) found that predation kernel276

width scales differently with body size in aquatic ecosystems compared to terrestrial277

ecosystems, which potentially explains why continuous assembly is more frequent278

in aquatic communities. The strong correlation between invasion and extinctions is279

consistent with either internal or externally driven invasion and extinction, however280

we were not able to test whether there is indeed a causal link between invasions281

and extinctions. Additionally, one might test whether invasion and extinction events282
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correlate with strong changes in environmental factors to understand whether and283

which external factors drive this continuous community assembly.284

Why do we see continuous assembly?285

Our first research question focused on the conditions necessary for continuous assem-286

bly to emerge in our model. We found that sufficient specialization of the predators287

was the key condition (Schreiber & Rittenhouse, 2004, Appendix S2), because it allows288

prey species to competitively exclude other prey while not sharing their predators. To289

understand this dynamic intuitively, we observe that a prey species with no special-290

ist predator will have high fitness, allowing it to reach high abundance and displace291

competitors with similar traits. However, as the prey species reaches high abundance,292

a niche is created for a predator with the corresponding trait to invade. The preda-293

tor then reduces the prey species’ fitness and abundance, opening the possibility for294

other prey species with similar traits to invade. If predators are sufficiently special-295

ized, some of these new invading prey species will not experience high predation296

pressure and will have high fitness. Predators do not drive the prey species to extinc-297

tion directly, rather they reduce the fitness of their prey to the point where they can298

no longer compete with neighboring prey species that experience far less predation299

pressure.300

Abrams & Matsuda (1997) described a similar pattern of continuous assembly in301

evolutionary dynamics. They investigated a community with two prey species B1 and302

B2 and one predator which alters its predation preference either through evolution303

or behavioral changes. Whenever a prey species becomes abundant the predator304

shifts its preference towards this prey species, reducing its abundance. The other305

prey species, without any predation pressure, becomes abundant until the predator306

switches its preference again. Essentially, the predator is chasing the food in the307

trait-space. In our model, the same dynamics drive continuous assembly, though308

individual predators do not change their predation preferences, but rather a new309

predator invades the community.310

We emphasize that building a model capable of producing continuous assem-311

bly is relatively easy. Continuous assembly has emerged independently in several312

different community models of various complexity, including our two-trophic Lotka-313

Volterra model, a size based predation model (Law & Morton, 1993; Morton & Law,314

1997), a two-trophic level mechanistic resource competition model based on empirical315

plankton traits (Spaak et al., 2022), various food-web models (Hamm & Drossel, 2021;316
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Allhoff et al., 2015; Loeuille & Loreau, 2005) and Lotka-Volterra community models317

with random species interactions (Bunin, 2017; Barbier et al., 2018). In addition, the318

evolutionary dynamics of Abrams & Matsuda (1997) have been confirmed in other319

theoretical models (Cortez & Ellner, 2010; Cortez, 2016) and empirical observations320

(Becks et al., 2010). To our knowledge, none of these investigators designed their321

model to produce continuous assembly – it emerged on its own, indicating that the322

phenomenon is robust to different model assumptions.323

Continuous assembly has also been described in Lotka-Volterra community mod-324

els with random species interaction matrices (Bunin, 2017), but the underlying mech-325

anism appears to be different. The random interaction models show continuous com-326

munity assembly if the circle containing the eigenvalues of the interaction coefficients327

matrix approaches 0, which is related to the variance of inter-specific interaction328

strengths (Bunin, 2017) and conceptually similar to the classical diversity-stability329

debate (May, 1972; Allesina & Tang, 2012). However, the eigenvalue distributions330

for the two trophic level community model investigated here are not similar to the331

eigenvalue distributions of random interaction coefficient matrices.332

What remains stable in this disorder?333

While the continuous assembly process leads to unpredictability in community com-334

position in our model, we found that species richness and the trait distribution re-335

mained largely constant over time (Fig. 3, Appendix S4, Figure S5). The stable trait336

distribution matches experimental findings from Goldford et al. (2018), who assem-337

bled multiple microbial communities and found large differences in species com-338

position among replicates. However, the relative abundance of taxonomic families339

remained largely constant across different replicates, similar to how the trait distri-340

bution remained constant in our model. Similarly, the fraction of predator species341

remained relatively stable, despite the continuous turnover of species. This matches342

findings from food-web models which found a continuous community assembly, but343

relatively stable trophic level distributions (Hamm & Drossel, 2021; Allhoff et al.,344

2015).345

Limitations and future work346

Our theoretical model predicts that the relative niche breadth of the trophic levels347

have strong implications for the stability of the emerging community. But what348

does this mean in a natural community? In building our model we imagined a349
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trophic food-web where predation is driven by body-size, e.g. zooplankton as the350

prey species and small fish as the predator species (Hamm & Drossel, 2021; Allhoff351

et al., 2015; Williams & Martinez, 2000). In this context, different niche breadth im-352

plies that the fish consume a smaller range of different zooplankton body-sizes than353

the range of different phytoplankton body-sizes the zooplankton consume. Unfortu-354

nately, we do not know whether higher trophic levels actually are more specialized355

than lower trophic levels. Li et al. (2022) analyzed the ratio of predator to prey body356

masses and found that larger species tend to have slightly wider niches than smaller357

species. However, Li et al. (2022) analyzed link probability and did not include any358

information about link strength. Additionally, they focused on the effect of predator359

body size on niche width, and not how trophic status itself affects niche width, al-360

though trophic status and body size are generally well correlated (Riede et al., 2011).361

What niche breadth implies in a context of plants and herbivores is less clear. Per-362

haps it means that herbivore diets have tighter stochiometric constraints than plant363

resource requirements. On the other hand, we know of many specialist predators and364

pathogens (Bever et al., 2012) which might promote a continuous assembly pattern365

(Schreiber & Rittenhouse, 2004).366

Our model was relatively simple, allowing only for two-trophic levels and no367

omnivory or cannibalism, which is widespread in natural communities (Williams368

& Martinez, 2000; Allhoff et al., 2015). It would be interesting to see whether our369

findings apply to more complex niche-based food-webs. Currently food-web models370

typically assume that predation kernels are independent of trophic status or body371

size (Loeuille & Loreau, 2005; Emmerson & Raffaelli, 2004; Allhoff et al., 2015; Hamm372

& Drossel, 2021; Williams & Martinez, 2000; Brose, 2010). That is, these models as-373

sume σB = σP, which is exactly what we have identified as the boundary between374

continuous assembly and stable equilibria. This potentially explains why some of375

these show a pattern of continuous assembly (Hamm & Drossel, 2021; Allhoff et al.,376

2015), while others show stable community compositions (Loeuille & Loreau, 2005).377

However, the models also differ in other aspects, such as the response function to378

predation or the number of traits per species. It is currently unclear which of these379

model differences affect the community assembly process.380

If the changes in community composition observed in natural communities are in-381

deed driven by internal mechanisms as described here, then we would have to recon-382

sider core concepts of community ecology which are based on equilibrium dynam-383

ics. Specifically, modern coexistence theory and its dependence on invasion growth384

rates into stable equilibrium dynamics (Ellner et al., 2019; Spaak & De Laender, 2020;385
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Barabás et al., 2018), ecosystem stability based on linearization of the community dy-386

namics near the equilibrium (May, 1972; Allesina & Tang, 2012, 2015) and potentially387

biodiversity ecosystem-function relationships, which are typically evaluated after the388

community has fully assembled (Bannar-Martin et al., 2018; De Laender et al., 2016).389
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Figure 1: We simulated community assembly in one- (A) and two-trophic-level (B)
communities. Each year (x-axis) a new species with a random trait (y-axis) is in-
troduced to the community and potentially replaces residents. A: In the absence of
predators, the prey species self-organize into a regular pattern known as limiting
similarity. This final composition is stable and does not depend on the community
assembly process. B: The inclusion of predators changes the community assembly
from being deterministic and stable to unpredictable, characterized by continuous
invasions and extinctions. There is no stable, uninvadable configuration. Shaded
regions indicate trait values for which a potential invader would be successful. With-
out predators, these regions disappear over time. Conversely, in the presence of
predators, invasion by a prey species tends to increase the potential for invasion by
predator species, and vice versa.
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Figure 2: We simulated the two-trophic community with different values of niche
width for predator and prey communities for 2000 invasion cycles. A-D show ex-
amples of community dynamics, the arrows show to the corresponding niche width
values. E: We report the Jaccard similarity of the community at the end and the com-
munity 200 steps before the end point. Communities with higher prey niche width
(y-axis) than predator niche width (x-axis) show continuous assembly patterns (e.g.
Panel A and B). Conversely, communities with higher predator niche width converge
towards a stable community (Panel C and D). The environmental niche breath was
chosen as ω = 3σP to avoid boundary issues (Appendix S2).
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Figure 3: A,D: The specific species composition at each time-point is stochastic and
changes very fast. B,E: We computed the trait distribution with a Gaussian kernel
density estimate, the kernel size is shown with the inlet. Each line corresponds to a
given time point. The resulting trait distribution is largely stable for both predator
and prey species. D,F: The resulting trait distribution is less stable at a smaller kernel
size. Generally, we expect the trait distribution to be roughly stable if the kernel size
corresponds to the competition kernel of the species.
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Figure 4: We compared the trait distribution resulting from the community assem-
bly (blue for prey species [left column] and red for predator species [right column])
to distributions from random species selection (yellow). A,B: The trait mean from
the community assembly did not differ from a randomly selected sample of species.
C,D: However, the species traits were overdispersed over the available trait space,
compared to randomly selected species. A-D: Lines show median across replicate
simulations, shaded areas show 25-75% percentile lines.
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Figure 5: We report the p-value of the correlation between invasions and extinc-
tions observed in the BioTIME datasets compared to correlations based on random
rearrangements of the years in each dataset. For around 50% of the data sets the cor-
relation was significantly higher than expected by chance, as expected from theory.
This pattern appears to be driven by freshwater and marine communities.
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elheide, H., Budy, P., Carvalho, F., Castañeda-Moya, E., Chen, C.A., Chamblee, J.F.,460

Chase, T.J., Siegwart Collier, L., Collinge, S.K., Condit, R., Cooper, E.J., Cornelis-461

sen, J.H.C., Cotano, U., Kyle Crow, S., Damasceno, G., Davies, C.H., Davis, R.A.,462

Day, F.P., Degraer, S., Doherty, T.S., Dunn, T.E., Durigan, G., Duffy, J.E., Edelist,463

D., Edgar, G.J., Elahi, R., Elmendorf, S.C., Enemar, A., Ernest, S.K.M., Escribano,464

R., Estiarte, M., Evans, B.S., Fan, T.Y., Turini Farah, F., Loureiro Fernandes, L.,465

Farneda, F.Z., Fidelis, A., Fitt, R., Fosaa, A.M., Daher Correa Franco, G.A., Frank,466

G.E., Fraser, W.R., Garcı́a, H., Cazzolla Gatti, R., Givan, O., Gorgone-Barbosa, E.,467

Gould, W.A., Gries, C., Grossman, G.D., Gutierréz, J.R., Hale, S., Harmon, M.E.,468
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Appendix599

S1 BioTIME data600

We compared the patterns from the simulations to patterns in empirical data from Bi-601

oTIME, a database of community assemblage time-series across the world (Dornelas602

et al., 2018). We focused on presence-absence patterns and therefore aggregated each603

time-series to annual scale, i.e. a species was assumed to be present if it was observed604

at least once in a given year, otherwise it was assumed to be absent. To observe pat-605

terns over time, we focused on datasets with at least 30 years of sampling. We found606

a total of 44 suitable datasets representing different taxonomic groups (birds, fish, in-607

vertebrates, terrestrial plants, benthos, mammals and amphibians), different biomes608

(lakes, rivers, different marine waters, different types of forests and prairies) with609

latitude ranging from 62.1° south to 67.1° north. The species richness ranged from 1610

to 2000 per year and from 6 to 4120 over the respective observation periods.611

We computed species richness, the proportion of invasions, and the proportion of612

extinctions per year for each dataset. The proportion of invaders in year t was defined613

as the number of species present in year t which were not present in year t− 1 divided614

by the species richness in year t. Similarly, the proportion of extinctions in year t was615

the number of species present in year t but not in year t + 1 divided by the species616

richness in year t. We then computed the correlation between the proportion of617

invaders in year t and the proportion of species going extinct between year t and t− 1.618

We compared the observed correlation of each dataset to the correlation of invasions619

and extinctions in the same dataset if the years were randomly reshuffled. We report620

the p-value of observing a correlation as high or higher than 1000 randomizations.621

S2 Stable communities622

In the main text we have focused on the cases where the two trophic levels lead to623

continuous changes in community composition. Generally, this is observed to be the624

case if the niche width of the predator is smaller than the niche width of the prey.625

If the niche width of the predator is sufficiently large then a stable community is626

possible (Fig. 2). Note that “stable community” here means both internal and external627

stability: the species that are present are coexisting at a locally stable equilibrium, and628

no potential invader has a positive invasion growth rate.629
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In this section we prove that a stable community cannot occur if σP is sufficiently630

small compared to σB, under two additional assumptions.631

1. The prey species are evenly spaced at some distance DB.632

2. The niche space is very large, i.e. ω ≫ σB, and effectively infinite (the precise633

meaning of “effectively infinite” will be clarified below).634

3. The consumption kernels of the predators are sufficiently narrow that each635

predator effectively consumes only one prey species, i.e. σP is small relative636

to DB.637

In our simulations, stable communities (when they occur) always have prey species638

evenly spaced, except near the boundary of the niche space. Other theoretical studies639

(Szabó & Meszéna, 2006; Macarthur & Levins, 1967; Barabás et al., 2012) have also640

generally found that species are evenly spaced, for a wide range of intrinsic growth641

rates and competition kernels. When the trait space is unbounded, rescaling the niche642

axis relative to σB implies that the equilibrium prey spacing DB is proportional to σB.643

Assuming that σP is small relative to DB is thus equivalent to assuming that σP is644

small compared to σB. In our simulations, stability ceases to occur when σP is only645

slightly smaller than σB, but our arguments here only show that stability is impossible646

when σP is considerably smaller than σB.647

Assumption 2 implies that all prey species have identical intrinsic growth rates.648

Mathematically, we will use assumption 3 to show that each predator species must be649

located “on top of” a prey species (i.e., it must have the same trait value as one of the650

prey species). Assumption 1 will be used to show that a prey with a predator directly651

on top of it can be invaded by a prey species with a slightly similar trait value, hence652

a community with that feature cannot be stable. These two properties together imply653

that a stable community cannot occur.654

Importantly, without assumption 2, stable communities are possible even when655

σP is small. Specifically, if we assume ω < σP < σB, then one example of a stable656

consists of exactly one predator and one prey species, both having trait value 0 (Fig.657

S1).658

S2.1 Predators cannot be located between prey species in a stable659

community660

We show that each predator in a stable configuration must have a prey with identical

trait. We prove this by assuming that a predator j exists with trait xj, and the closest
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Figure S1: Similar to figure 2 we simulated the two trophic level community with
different values of niche width for predator and prey communities for 2000 invasion
cycles. However, we here chose a fixed environmental niche width of ω = 2.5. Be-
cause the predator niche width σP is comparable to the environmental niche width
ω communities can be stable despite σP < σB, e.g. panel B. A-D show examples of
community dynamics, the arrows show to the corresponding niche width values. E:
We report the Jaccard similarity of the community at the end and the community 200
steps before the end point.
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prey species has trait x0 ̸= xj. Then the growth rate of the predator, which must by

assumption be 0, is

0 =
1
Pj

dPj

dt
= µP

j + ϵ ∑
i

bjiBi (S3)

≈ µP
j + B0ϵ exp

(
−
(xj − x0)

2

2σ2
P

)
(S4)

< µP
j + B0ϵ (S5)

From S3 to S4 we used the fact that prey species are equally spaced at distance DB,661

and the consumption rates of the predator j on all other prey species are therefore662

0. Equation S5 then shows that a invading predator with trait x = x0 would have a663

positive growth rate, so the the system is therefore not stable. Consequentially, each664

predator in a stable community is located exactly on top of a prey species.665

From the same calculation it follows that if a predator has the identical trait as a666

prey species, there can be no other predator j′ with trait value consuming the same667

prey species, for any such predator would have a negative population growth rate.668

This leads to two additional insights for situations where ω is large compared to669

σB but finite, and σP is small compared to σB:670

1. Each prey close to the center of the niche space has a predator with identical671

trait and all prey species close to the center of the niche have identical equilibrium672

abundance.673

2. All predators at the center of the niche have identical equilibrium abundance and674

are also equally spaced with distance DB.675

Note, this does not correspond to the stable systems observed in figure 2 because in676

those communities we do not have a small σP. For large σP a predator can (and will)677

have a trait value between prey species.678

S2.2 Predators cannot be located on prey species in a stable com-679

munity680

As shown above, in any stable community with sufficiently small σP we must have681

equidistantly spaced prey and predator species, separated by distance DB. Without682

loss of generality we can assume that one of the prey species has trait value x = 0 (i.e.,683

we pick one prey species, and measure traits relative to that of the chosen species).684

We will show that a species with some trait x = ε with |ε| ≪ 1 has a positive invasion685
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growth rate, therefore the community is actually not stable. This shows that a stable686

community cannot actually exist.687

Let r(ε) denote the invasion growth rate of a species with trait ε very close to 0.688

We must have r(0) = 0, as the species with trait value 0 is at equilibrium. Further,689

if r′(0) ̸= 0 at x = 0, then r(x) is positive for some x ≈ 0, implying a nonstable690

community. So it suffices to show that the second derivative r′′(0) is positive, because691

when r′(0) = 0 the second-order Taylor series r(ε) ≈ r(0) + 1
2 ε2r′′(0) implies that692

r(ε) > 0 for sufficiently small ε when r′′(0) > 0.693

Prey invasion growth rate in general is K − ∑j aijBj − ∑k bikPk, so the second

derivative is

r′′(0) = K′′(0)− ∑
j

a′′ij(0)Bj − ∑
k

b′′ik(0)Pk

where •′′ indicates the second derivative of the interaction coefficients with respect to694

trait x, evaluated at x = 0. Note that K′′ → 0 as ω → ∞ because K becomes constant;695

here we specify that ω is “effectively infinite” in the sense that K′′(0) is small relative696

to the other terms and can be neglected in calculating r′′(0).697

To evaluate the second derivatives we differentiate the Gaussian kernel twice,

d2

dx2

(
exp

(
− (x − x0)

2

2σ2

))
= −σ−2

(
1 − (x − x0)

2

σ2

)(
exp

(
− (x − x0)

2

2σ2

))
.

We therefore have (with all sums running over all species in the community)698

r′′(0) =
1
2

[
Bσ−2

B ∑
j

(
1 −

x2
j

σ2
B

)
exp

(
−
(xj)

2

2σB2

)

+ Pσ−2
P ∑

k

(
1 −

y2
k

σ2
P

)
exp

(
− (yk)

2

2σP2

)]
(S6)

The right-hand side in (S6) is positive when the sums run over the set Z of all integers;699

this follows the fact that700

∑
j∈Z

(
1 − j2

σ2

)
exp

(
j2

2σ2

)
> 0 (S7)

which we will prove below, and the fact that prey and predators occur at trait values701

±jDB, j = 0, 1, 2, · · · . We now specify that ω is “effectively infinite” in the sense that702

the set of species in the community (equally-spaced prey and predators, across some703
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symmetric neighborhood around 0) is broad enough that the sign of (S6) is already704

positive when the sums run over all species in the community, as it is when the sums705

run of Z. This implies r′′(0) > 0, so the only possible stable community is in fact not706

stable.707

To finish, we now prove (S7), using the Poisson summation formula

∑
j∈Z

f (j) = ∑
k∈Z

f̂ (k),

where f̂ is the Fourier transform of f , i.e. f̂ (k) =
∫ ∞
−∞ f (x) exp(−2iπkx)dx, where708

i is not an index but rather
√
−1. We now compute the Fourier transform of (1 −709

j2

σ2 ) exp
(
− j2

2σ2

)
as follows:710

f̂ (k) =
∫ ∞

−∞

(
1 − x2

σ2

)
exp

(
− x2

2σ2

)
exp(−2iπkx)dx

=
∫ ∞

−∞

(
1 − x2

σ2

)
exp

(
− (x + 2iπkσ2)2

2σ2

)
exp(−2π2k2σ2)dx

= exp(−2π2k2σ2)
∫ ∞

−∞

(
1 − x2

σ2

)
exp

(
− (x + 2iπkσ2)2

2σ2

)
= exp(−2π2k2σ2)

√
2πσ2

(
1 − σ2 − (2iπkσ2)2

σ2

)
= exp(−2π2k2σ2)(2π)5/2σ3k2

(S8)

This last expression is positive for all k, therefore the sum ∑k∈Z f̂ (k) is also positive.711

The integral was evaluated using the fact that 1√
2πσ2

∫ ∞
−∞ exp

(
− (x−µ)2

2σ2

)
describes a712

normal distribution with mean µ and variance σ2.713
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Name Resource consumption uxi(x)

Gaussian a√
σ

exp
(
−1

2

(
xi−x

bσ

)2
)

Flattened Gaussian a√
σ

exp
(
−1

2

(
xi−x

bσ

)4
)

Flat kernel a√
σ

u[−1,1]

(
xi−x

bσ

)
Triangular kernel a√

σ
u[−1,1]

(
xi−x

bσ

)
·
(

1 −
∣∣∣ xi−x

bσ

∣∣∣)
Quadratic kernel a√

σ
u[−1,1]

(
xi−x

bσ

)
·
(

1 −
(

xi−x
bσ

)2
)

Asymmetric kernel a√
σ

u[−1,0)

(
1 −

∣∣∣ xi−x
bσ

∣∣∣)+ a√
σ

u[0,1)

(
1 −

∣∣∣ xi−x
3bσ

∣∣∣)
Table S1: The different competition kernels we have investigated. u[x1,y2] is the indi-
cator function of the interval [x1, x2], i.e. u[x1,y2](x) = 1 if x1 < x < x2, otherwise it is
zero. Fig. S2 shows a visual representation of these kernels. The scaling parameters
a and b are chosen such that

∫ ∞
−∞ uxi(x)dx =

∫ ∞
−∞(uxi(x))2dx = 1.

S3 More general cases714

In the main text we have, for simplicity, focused on specific model. We show here that715

our main finding, i.e. continuous community assembly, is robust to many different716

scenarios, including different resource consumption and competition kernels (Fig.717

S2), simulating population densities over time over time instead of computing the718

equilibrium dynamics directly (Fig. S3) and a finite regional species pool (Fig. S4).719

We investigate a total of six different competition kernels: Gaussian kernel, flat-720

tened Gaussian, flat kernel, triangular, quadratic and asymmetric (Table S1). Each721

resource consumption kernel uxi(x) is described by the location of maximal resource722

consumption xi, the width of the kernel σ and two scaling factors a and b. The co-723

efficient of competition between two prey species with traits xi and xj is given by724

a(xi, xj) =
∫ ∞
−∞ uxi(x)uxj(x)dx. The scaling factors are chosen such that a(xi, xi) = 1725

and
∫ ∞
−∞ uxi(x)dx = 1, i.e. the kernel only affects the shape of the competition, not726

however how strong intraspecific competition is, nor how much a predator consumes727

in total.728
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Figure S2: Community dynamics for different resource consumption kernels. For
all the different kernels we still observe the continuous community assembly. The
inset in each panel shows the resource consumption vector (blue) and the resulting
competition kernel for two competing prey species (orange).
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Figure S3: In the main text we did not simulate the community dynamics between
invasions, rather we assumed that invasions happen infrequently such that the local
community is always at equilibrium when a new species invades. Even if we relax this
assumption we still obtain the same the continuous assembly dynamics. A: Densities
over time for the last 20 years of the community assembly. Invaders are introduced at
density 10−2 and go extinct if they fall below 10−3 of the total density. B: Species traits
of the present species. The shaded areas show where traits of potentially successful
invaders.
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Figure S4: In the main text we assumed an infinite regional species pool. Here we
investigate the effects of finite species pools. A-I show sample runs with species rich-
ness ranging from 10 to 90 species. Some of these converge towards eventual stability
with respect to the regional species pool (A, B and C). The others are also driven
by continuous species turnover, although there might be a community composition
which is stable in each of these regional species pools, there are 2n possible communi-
ties which prohibits a complete search of all possibilities. K: We ran 100 simulations
for each species richness. Green dots show the proportion of stable communities,
increasing species richness implied lower probability of a stable community. Purple
lines show the Jaccard similarity of the end-point with the year 800.
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S4 Additional figures729
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Figure S5: Despite the changes in community composition the total biomass is rel-
atively stable. The blue line shows biomass over time in one specific run, the blue
shaded area indicates the 5 and 95% percentile curves of total biomass over multi-
ple runs. We compared this fluctuation in total biomass to a fluctuations in total
biomass stemming from a random walk (orange line and shaded area). At each year
biomass changes randomly, the changes in biomass are drawn from the actually ob-
served changes in biomass from the community model. As expected, the drift in
total biomass in the actual community model is much smaller than the drift in total
biomass stemming from the random walk.
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Figure S6: We compare the actual correlation of invasion and extinction in the Bio-
TIME datasets (red vertical line) to the correlation obtained by reshuffling the years
1000 times (histograms). We report the results for the 25 datasets with the lowest
p-values (shown in top left corner of each panel).
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Figure S7: The empirical data from BioTIME contained datasets with very strong fluc-
tuations of species richness (e.g. from over 100 species present to 1 species present
within one year). To ensure that our results are not driven by these questionable
underlying data we performed two additional tests. Panel A: We have excluded all
years in which species richness was below 5 (this threshold was chosen arbitrarily).
The total number of datasets remained unchanged by this. Panel B: We have com-
pletely excluded all datasets where the maximum species richness is at least four
times higher than the minimal species richness, which excluded 18 of the 44 total
communities. In both methods we retain the strong correlation of invasions and ex-
tinctions.
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