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Key points summary: 21 
 22 
1. Neurons with grid firing fields are thought to encode estimates of location 23 
computed from self-motion signals. 24 
 25 
2. Evidence points towards continuous attractor networks as a substrate for 26 
grid firing, but the cellular mechanisms are not well understood. 27 
 28 
3.  Computational models of excitatory and inhibitory cells with realistic 29 
membrane dynamics account for grid firing and related network oscillations. 30 
 31 
4. We argue that investigation of predictions from models of this kind will be 32 
essential to establish mechanisms for grid firing and other cognitive 33 
computations. 34 
 35 
  36 
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Abstract 37 
Neurons in the medial entorhinal cortex encode location through spatial firing 38 
fields that have a grid-like organisation. The challenge of identifying 39 
mechanisms for grid firing has been addressed through experimental and 40 
theoretical investigations of medial entorhinal circuits. Here, we discuss 41 
evidence for continuous attractor network models that account for grid firing 42 
by synaptic interactions between excitatory and inhibitory cells. These models 43 
assume that grid-like firing patterns are the result of computation of location 44 
from velocity inputs, with additional spatial input required to oppose drift in the 45 
attractor state. We focus on properties of continuous attractor networks that 46 
are revealed by explicitly considering excitatory and inhibitory neurons, their 47 
connectivity and their membrane potential dynamics. Models at this level of 48 
detail can account for theta-nested gamma oscillations as well as grid firing, 49 
predict spatial firing of interneurons as well as excitatory cells, show how 50 
gamma oscillations can be modulated independently from spatial 51 
computations, reveal critical roles for neuronal noise, and demonstrate that 52 
only a subset of excitatory cells in a network need have grid-like firing fields. 53 
Evaluating experimental data against predictions from detailed network 54 
models will be important for establishing the mechanisms mediating grid firing. 55 
 56 
 57 
Abbreviations: MEC, medial entorhinal cortex; L2SCs, layer 2 stellate cells; 58 
L2PCs, layer 2 pyramidal cells; E-I, excitatory-inhibitory; PV, parvalbumin. 59 
  60 
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Introduction 61 
Neural representations of space within the hippocampus and medial 62 
entorhinal cortex (MEC) are critical for navigation and memory. Grid cells in 63 
the MEC have firing fields that encode position using an allocentric, regular 64 
triangular matrix or grid-like firing pattern (Hafting et al., 2005). Grid 65 
representations have the properties of a high capacity, high resolution and 66 
error correcting code for self-localisation (Fiete et al., 2008; Mathis et al., 67 
2012; Sreenivasan and Fiete, 2011). The spatially periodic features of grid 68 
firing fields have led to the view that they are the output of computation by a 69 
path integrator that translates self-motion signals into estimates of location 70 
(McNaughton et al., 2006). In this review, we will consider evidence that 71 
network attractor dynamics arising from excitatory-inhibitory interactions 72 
account for grid firing patterns within MEC circuits. 73 
 74 
The organisation within the MEC of spatial firing properties is an important 75 
constraint on mechanistic models for grid firing. Grid cells form networks in 76 
anatomically overlapping but functionally discrete modules, with cells of the 77 
same module sharing their grid spacing and orientation but having randomly 78 
distributed phases (relative offset of grid apices) (Barry et al., 2007; Hafting et 79 
al., 2005; Stensola et al., 2012). The highest density of grid cells is in layer 2 80 
of the MEC (Sargolini et al., 2006). Grid cells in this layer also show the 81 
greatest prospective bias in their code for location (Kropff et al., 2015). There 82 
are two major populations of excitatory cells in this layer. Neurons positive for 83 
the marker reelin have stellate morphology and project to the dentate gyrus of 84 
the hippocampus (Klink and Alonso, 1997; Varga et al., 2010), while neurons 85 
positive for calbindin have a more pyramidal morphology and project to the 86 
CA1 region of the hippocampus (Kitamura et al., 2014; Ray et al., 2014; 87 
Varga et al., 2010). We will refer to these cell populations as layer 2 stellate 88 
cells (L2SCs) and layer 2 pyramidal cells (L2PCs) respectively (Klink and 89 
Alonso, 1997)(L2SCs and L2PCs have also been referred to as ‘Ocean’ and 90 
‘Island’ cells (Kitamura et al., 2014)). Both L2SCs and L2PCs may have grid 91 
firing fields, although the majority of neurons in each population do not appear 92 
to generate typical grid firing patterns (Sun et al., 2015; Tang et al., 2014). 93 
During behaviours that produce grid firing, neurons in superficial layers of the 94 
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MEC also generate fast gamma frequency (60-140 Hz) oscillations that are 95 
modulated by the slower theta rhythm (Chrobak and Buzsaki, 1998; Colgin et 96 
al., 2009). While all grid cells encode location through their firing rate, some 97 
also represent location through timing of their action potentials relative to the 98 
network theta rhythm (Hafting et al., 2008; Reifenstein et al., 2012).  99 
  100 
Several conceptual models have been proposed to explain grid firing patterns 101 
(for reviews see (Burgess and O'Keefe, 2011; Giocomo et al., 2011; Zilli, 102 
2012)). However, implementing models in ways that are consistent with the 103 
biophysics and connectivity of entorhinal neurons is challenging (Pastoll et al., 104 
2012; Remme et al., 2010). Here, we will explore insights from models in 105 
which grid-like firing patterns emerge as a result of path integration in 106 
continuous attractor networks composed of excitatory and inhibitory neurons, 107 
with membrane potential dynamics that approximate real neurons (Figure 1). 108 
We will argue that this class of models is particularly useful as they can be 109 
constrained by experimentally measured synaptic connectivity and oscillatory 110 
network activity, as well as by action potential firing during spatial behaviours. 111 
They therefore generate specific predictions that are testable by diverse 112 
experimental approaches from anatomical analysis through to 113 
electrophysiological recordings of single cell and network activity. 114 
 115 
Continuous attractors networks as models for grid generation 116 
Continuous attractor networks are dynamical systems whose intrinsic 117 
properties drive activity towards a stable state; this can be visualised in a 118 
state space comprising an energy surface upon which stable states are 119 
represented by low energy regions (Brody et al., 2003). States existing 120 
outwith these regions will decay ‘downwards’ towards the low energy points. A 121 
network’s intrinsic connections can be configured so its preferred states will 122 
correspond to localised bumps of activity. Mathematical functions can then be 123 
implemented in the network’s state space by movement of the bumps of 124 
activity in response to inputs to the network (Conklin and Eliasmith, 2005; 125 
Eliasmith, 2005). In continuous attractor network models of spatial coding, the 126 
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computation performed is integration of velocity input to generate an estimate 127 
of location relative to a known start point, referred to as path integration 128 
(McNaughton et al., 1996; McNaughton et al., 2006; Samsonovich and 129 
McNaughton, 1997; Zhang, 1996). Such networks do not necessarily 130 
generate triangular grid-like firing fields, but can do so with appropriately 131 
configured connections. In networks that model grid firing, stable states 132 
manifest either as a bump (Figure 2A) or as multiple bumps of activity (Figure 133 
2B) on a two-dimensional sheet of phase-arranged grid cells (Fuhs and 134 
Touretzky, 2006; Guanella et al., 2007). Given velocity inputs the activity 135 
bump(s) represent movement in space by propagating across the sheet. This 136 
mechanism for path integration can be implemented by networks in which 137 
individual grid cells receive velocity inputs tuned to a particular movement 138 
direction, with the local connections of each grid cell offset so that an increase 139 
in its input will tend to push the activity bump in an appropriate direction 140 
across the neural sheet (Burak and Fiete, 2009; Fuhs and Touretzky, 2006; 141 
Guanella et al., 2007). Alternatively, path integration could be achieved 142 
through interactions between a layer of heading-independent grid cells and 143 
multiple layers of head direction-modulated grid cells, which each integrate a 144 
single head direction input with speed signals and feedback from the heading-145 
independent grid layer (Samsonovich and McNaughton, 1997). While the 146 
latter class of models require many more neurons to account for path 147 
integration, because separate layers are required for each heading direction, 148 
they have the advantage that they naturally account for direction modulated 149 
(or conjunctive) grid cells as well as pure grid cells. 150 
 151 
Continuous attractor network models have been implemented at various 152 
levels of detail and a close correspondence to known neural connectivity or 153 
dynamics is not necessary to generate grid-like firing fields. Indeed, 154 
experimental observations have corroborated a number of generic predictions 155 
that are independent of the details of the circuitry used for model 156 
implementation (McNaughton et al., 2006). 1. Populations of grid cells are 157 
organised into modules in which each neuron has a common spatial phase 158 
and orientation (Stensola et al., 2012). 2. The spatial phase relationship 159 
between cells is maintained even following environmental manipulations that 160 
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restructure the spatial firing pattern of individual cells (Yoon et al., 2013). 3. 161 
The envelope of the membrane potential of grid cells changes slowly on entry 162 
to and exit from their firing fields (Domnisoru et al., 2013; Schmidt-Hieber and 163 
Hausser, 2013). 4. Removal of excitatory drive causes cells that previously 164 
had grid fields to encode head direction (Bonnevie et al., 2013), which is 165 
consistent with movement of activity bumps in continuous attractor networks 166 
relying on each grid cell receiving a tuned head direction input (Bonnevie et 167 
al., 2013; Burak and Fiete, 2009; Fuhs and Touretzky, 2006; Guanella et al., 168 
2007; Pastoll et al., 2013). 169 
 170 
While these observations are consistent with continuous attractor network 171 
models accounting for rate coded grid fields, most existing models do not 172 
readily account for precession in the timing of action potentials fired by some 173 
grid cells relative to the theta rhythm (Hafting et al., 2008; Reifenstein et al., 174 
2012). One-dimensional attractor networks, based on interaction between a 175 
direction-independent cell population and direction modulated cell 176 
populations, can generate repeating firing fields and phase precession 177 
(Navratilova et al., 2012). Extension of this mechanism to two dimensions will 178 
require additional neuronal layers for each heading direction (Samsonovich 179 
and McNaughton, 1997). An alternative is that phase precession and attractor 180 
states are established independently. For example, phase precession can be 181 
explained by hybrid models that include a mechanism for grid firing based on 182 
interference between oscillations (Burgess et al., 2007; Hasselmo et al., 183 
2007), in addition to mechanisms for generation of network attractor states 184 
(Bush and Burgess, 2014; Schmidt-Hieber and Hausser, 2013).  185 
 186 
Emergence of attractor states through excitatory-inhibitory interactions 187 
How might attractor mechanisms for grid firing be implemented in networks of 188 
neurons? Do the properties of neural circuitry in the MEC constrain models or 189 
lead to predictions that distinguish between different models? Grid 190 
computation in continuous attractor networks requires emergence of stable 191 
bumps of activity. This can be achieved using reduced models in which 192 
separate populations of excitatory and inhibitory neurons are not explicitly 193 
considered. In these models, either each neuron locally excites nearby 194 
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neurons and inhibits more distant neurons (Fuhs and Touretzky, 2006), or 195 
spatially structured inhibitory connections act in concert with excitatory drive 196 
to the whole network (Burak and Fiete, 2009; Couey et al., 2013). However, 197 
use of local excitatory connections is inconsistent with evidence that L2SCs 198 
are not directly connected to one another (Dhillon and Jones, 2000; Pastoll et 199 
al., 2013; Couey et al., 2013), but instead interact indirectly via inhibitory 200 
interneurons (Pastoll et al., 2013; Couey et al., 2013). Moreover, because grid 201 
cells are excitatory neurons, an inhibitory output from grid cells is inevitably an 202 
over-simplification. One could address this by assuming that the inhibitory 203 
output from grid cells is equivalent to an excitatory connection to a dedicated 204 
inhibitory interneuron. However, this is inconsistent with convergent (many to 205 
one) and divergent (one to many) connectivity between excitatory and 206 
inhibitory networks (Couey et al., 2013), and with there being many more 207 
excitatory than inhibitory neurons in layer 2 of the MEC (Canto et al. 2008). 208 
Thus, while offering conceptually important explanations for grid firing, 209 
reduced models are limited in their ability to evaluate consequences of 210 
experimentally determined connectivity.   211 
 212 
Models that explicitly consider interactions between separate populations of 213 
excitatory and inhibitory neurons inevitably differ from reduced models, 214 
leading to new insights and predictions (Pastoll et al., 2013; Solanka et al., 215 
2015; Widloski and Fiete, 2014). Given appropriately structured network 216 
connectivity these excitatory-inhibitory (E-I) models generate network attractor 217 
states (Figure 2). Structured connectivity can be implemented by varying the 218 
strength of connections between neurons according to their position in the 219 
network, while maintaining a fixed probability of a connection being present 220 
(Pastoll et al., 2013; Solanka et al., 2015; Widloski and Fiete, 2014). 221 
Alternatively, synaptic strength can remain fixed but the probability of 222 
connections varied as a function of distance between pre- and postsynaptic 223 
neurons on the neural sheet (Solanka et al., 2015). Evidence that the 224 
amplitude of inhibitory inputs to stellate cells has a bimodal distribution is 225 
consistent with structuring of connection probability rather than the strength of 226 
connections (Couey et al 2013). Models based on E-I interactions also 227 
demonstrate that velocity inputs, which are required for movement-dependent 228 
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translation of their activity bumps, may target either interneurons or excitatory 229 
cells (Pastoll et al. 2013). While spatial firing of cells with inhibitory output is 230 
implicit in reduced models, in E-I models interneurons have spatial firing fields 231 
that depend on the wiring of the network. For example, either surround 232 
inhibition or surround excitation supports grid firing by excitatory cells, but in 233 
the latter case interneurons have inverted grid fields, whereas in the former 234 
they have grid-like fields (Pastoll et al. 2013). 235 
 236 
Two important recent experimental studies introduce challenges beyond 237 
simply accounting for grid firing by excitatory cells. First, while the firing fields 238 
of parvalbumin (PV) positive interneurons have significant spatial stability, 239 
they typically have grid scores below the threshold for grid firing, only rarely 240 
appear to have a clear grid like organisation (Buetfering et al. 2014), and on 241 
visual inspection also do not appear to have inverted firing fields although this 242 
is difficult to establish quantitatively. Second, when layer 2 cells are imaged in 243 
freely moving animals, only about 10 % of identified L2SCs and L2PCs have 244 
grid-like firing fields (Sun et al., 2015). This is surprising given that neurons 245 
within each population appear to have similar synaptic connectivity and 246 
intrinsic properties. This could suggest that the grid firing neurons correspond 247 
to sub-groups of cells with distinct, but not yet identified, cellular or circuit 248 
properties. Otherwise, models for grid firing must explain how grid patterns 249 
are produced by only a subset of neurons that at a cellular and circuit level 250 
are indistinguishable from non-grid cells. 251 
 252 
These challenges may be addressed using E-I networks and by considering 253 
that in vivo entorhinal neurons may receive spatial signals that can be 254 
considered as noise in the sense that they are not used to promote grid firing. 255 
Thus, when E-I models are extended to include random spatial input to 256 
interneurons, excitatory neurons in these networks continue to generate grid-257 
like firing fields, but the hexagonal symmetry of interneuron firing fields is 258 
reduced (Figure 3)(Solanka et al. 2015). In these networks the fraction of 259 
excitatory and inhibitory cells classified as grid cells drops substantially, with 260 
almost no interneurons classified as having grid fields (Figure 3). Thus, the 261 
finding that only a subset of layer 2 cells have grid-like firing fields need not 262 
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imply that grid and non-grid cells are distinguished by distinct cellular or circuit 263 
properties, while the absence of a clear grid signature in the firing of individual 264 
interneurons may nevertheless be compatible with models based on E-I 265 
interactions.  266 
 267 
Single and multi-bump networks differ in their local and long-range 268 
connectivity 269 
Continuous attractor network models for grid firing exist in versions that differ 270 
in their number of activity bumps. These functional differences result primarily 271 
from connections spanning different distances relative to the size of the 272 
network. 273 
 274 
In single bump networks (also referred to as periodic networks, cf. Widlowski 275 
and Fiete, 2015) the planar attractor manifold is wrapped into a torus 276 
(Guanella et al., 2007; Pastoll et al., 2013; Samsonovich and McNaughton, 277 
1997). This conceptual torus structure is actuated in the synaptic connectivity 278 
of the network, with cells on one edge of the sheet connected to those on the 279 
opposite side (Figure 2A). When an animal travels continuously in one 280 
direction the activity bump moves periodically around the network. Generation 281 
of a triangular rather than rectangular organisation of grid fields is dependant 282 
on the addition of a phase shift in one axis resulting in a twisted torus attractor 283 
manifold (Figure 2A).  284 
 285 
Networks with multiple bumps of activity also have their neurons arranged on 286 
a two dimensional manifold, however, a hexagonal population activity bump 287 
organisation arises from the most energetically efficient packing of the rings of 288 
inhibition; each circle of inhibition repels neighbouring circles to a maximal 289 
distance until stabilising into a grid of activity bumps (Figure 2B)(Burak and 290 
Fiete, 2009; Couey et al., 2013; Fuhs and Touretzky, 2006). During 291 
movement the bumps of activity propagate across the network and individual 292 
neurons generate grid firing patterns. Multi-bump networks can either be 293 
implemented with periodic boundaries (also referred to as partially periodic 294 
networks), so that much as in single bump models the activity bump wraps to 295 
the other side of the network. Alternatively, they can have boundaries (also 296 
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referred to as aperiodic networks). In this case, when bumps reach the edge 297 
of the network they disappear, while on the opposite side of the network local 298 
competitive synaptic interactions cause new bumps to spontaneously form as 299 
existing bumps move away (Burak and Fiete, 2009; Fuhs and Touretzky, 300 
2006). 301 
 302 
When single bump attractors are implemented in E-I networks, each neuron’s 303 
connections extend over a relatively large fraction of the network (Figure 2A). 304 
Thus, neurons making surround connections have their highest connection 305 
probability, or connection strength, with neurons at a distance of 306 
approximately half the width of the untwisted neural sheet. This distance 307 
refers to separation based on the order of connectivity in the network rather 308 
than anatomical distance (cf. (Widloski and Fiete, 2014)). Indeed the 309 
anatomical organisation of cell bodies of neurons with repeating firing fields 310 
appears relatively weak compared to the organisation of neural sheets in 311 
continuous attractor network models (Heys et al., 2014), suggesting that 312 
synaptic connectivity required for grid firing can be established without 313 
ordering of neuronal cell bodies (Widloski and Fiete, 2014). In contrast to 314 
single bump networks, the connectivity in multi-bump attractors is much more 315 
localised relative to the overall size of the network (Figure 2B). This suggests 316 
that quantification of the extent of connectivity between excitatory and 317 
inhibitory neurons could be used to distinguish between single and multi-318 
bump models. Local circuit perturbations through thermo- or chemo- 319 
modulation in conjunction with multi-unit recordings might also distinguish 320 
between single and multi-bump networks (Widloski and Fiete, 2015). 321 
 322 
Excitatory-inhibitory interactions provide a common mechanism for grid 323 
firing and network oscillations 324 
Successful models of brain circuits should account for network dynamics as 325 
well as the firing patterns of individual cells. Dynamics can be modelled by 326 
simulating networks of integrate and fire neurons. In these models synaptic 327 
input to a neuron charges its membrane capacitance, which is in turn 328 
discharged through a resistance. Action potentials occur when the membrane 329 
potential crosses a threshold. In exponential integrate and fire neurons the 330 
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spike threshold has been replaced with an exponential function in order to 331 
obtain more realistic spike initiation dynamics (Fourcaud-Trocme et al., 2003). 332 
Although integrate and fire models neglect details of morphology and ion 333 
channel biophysics, their dynamics are a good approximation for physiological 334 
synaptic integration, making them an important bridge between abstract 335 
theoretical and more detailed cellular models. 336 
 337 
Models of interacting populations of excitatory and inhibitory exponential 338 
integrate and fire neurons can account for both grid firing and gamma 339 
oscillations (Pastoll et al. 2013, Solanka et al. 2015). When the models 340 
receive theta modulated input the gamma oscillations are nested at a fixed 341 
phase within each theta cycle (Figure 4). This is consistent with experimental 342 
findings that theta modulated optogenetic activation of layer 2 circuits is 343 
sufficient to generate nested gamma activity resembling that observed in 344 
behaving animals (Pastoll et al. 2013, Chrobak et al. 2000). In these 345 
experiments, and in the corresponding models, gamma oscillations emerge 346 
through fast time scale E-I interactions. On each gamma cycle a subset of 347 
excitatory neurons fire action potentials. Because the output from each 348 
excitatory neurons diverges to many interneurons (Figure 2A), and as each 349 
interneuron receives convergent input from many excitatory cells (Figure 2A), 350 
this output is sufficient to rapidly trigger action potentials in a large fraction of 351 
interneurons. Divergent projections from interneurons send inhibitory 352 
feedback to excitatory cells, including those that did not spike. A second 353 
gamma cycle is initiated on recovery from this inhibition. The divergent 354 
connectivity effectively implements a competitive mechanism that limits the 355 
number of excitatory cells active on each theta cycle (Tiesinga and Sejnowski, 356 
2009). While E-I models account for both rate coded firing and nested gamma 357 
oscillations, a possible limitation of existing models is that theta input is 358 
implemented as a common drive to E and I cells. In contrast, only 359 
interneurons in the MEC appear to receive inhibitory pacemaker input from 360 
the medial septum (Gonzalez-Sulser et al., 2014) while the origin of excitation 361 
during theta is currently unknown.  362 
 363 
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Models that account for grid firing and nested gamma oscillations exclusively 364 
through E-I interactions have been extended to incorporate additional features 365 
of MEC circuitry (Solanka et al. 2015). Experimental observations indicate that 366 
inhibitory neurons in layer 2 of the MEC may synapse with one another 367 
(Pastoll et al. 2013). Addition to E-I models of connections between 368 
interneurons stabilises grid firing and increases the frequency of nested 369 
gamma oscillations (Solanka et al. 2015). The resulting E-I-I models more 370 
easily produce theta oscillations with frequency that matches that of gamma 371 
activity in vivo (cf. Chrobak et al. 1998, Colgin et al. 2012). Although E-I 372 
models were initially motivated by the indirect connectivity between L2SCs, 373 
grid cells are found in deeper layers in which excitatory cells are likely to 374 
communicate directly with one another (Dhillon and Jones, 2000). Moreover, 375 
while many models for grid firing have focussed on L2SCs, L2PCs also have 376 
grid firing fields (Sun et al., 2015), and the synaptic mechanisms through 377 
which they interact may differ. When E-I models are extended to include 378 
structured connectivity between excitatory neurons in addition to structured E-379 
I interactions they continue to generate grid firing patterns (Widloski and Fiete, 380 
2014) and nested gamma oscillations (Solanka et al. 2015). However, when 381 
these models were modified further so that inhibitory connectivity is random 382 
and only excitatory connectivity is structured they were unable to generate 383 
stable grid firing fields (Solanka et al. 2015). We suspect this results from 384 
requirements for precise tuning of connections in continuous attractor 385 
networks based on structured excitation (cf. (Seung et al., 2000)). 386 
 387 
The strong theta frequency modulation of activity in the MEC raises the 388 
question of how attractor states might be maintained during phases of the 389 
theta cycle in which activity is suppressed. In principle if activity is suppressed 390 
for a sufficient duration then when activity resumes the network has no 391 
memory of the location of the previous bump. The spatial representation 392 
necessary for path integration is then lost. This loss of bump stability can be 393 
prevented by synaptic or intrinsic conductances with slow dynamics 394 
(Navratilova et al., 2012; Pastoll et al., 2013; Solanka et al., 2015). For 395 
example, on the start of each new theta cycle the residual excitatory NMDA 396 
receptor current ensures bumps re-form in their previous location (Figure 4). 397 
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While there is evidence that NMDA receptors in entorhinal interneurons have 398 
sufficiently slow kinetics to perform this role (Jones and Buhl, 1993), it is 399 
possible that other biophysical processes that have slow dynamics such as 400 
intracellular Ca2+ signalling or kinetics of the action potential 401 
afterhyperpolarisation could also stabilise attractor states across theta cycles 402 
(Navratilova et al., 2012). Alternatively, theta modulation may not completely 403 
inactivate entorhinal networks, in which case bump location could be 404 
maintained through neurons that remain active across the full theta cycle. 405 
Further experimental testing of these ideas will require a better understanding 406 
of cellular mechanisms underlying modulation of entorhinal activity during 407 
theta states. 408 
 409 
Noise enables independent control of theta nested gamma oscillations 410 
and grid firing by modulation of excitatory-inhibitory interactions 411 
Because E-I models account for rate coded grid computation and gamma 412 
frequency network activity, they provide an opportunity to investigate 413 
relationships between these phenomena. Many cognitive functions, in addition 414 
to spatial computation by grid networks, are associated with modulation of 415 
gamma activity (Uhlhaas and Singer, 2012). In turn, both cognitive function 416 
and gamma activity correlate with changes in E-I interactions. However, the 417 
causal relationships between the strength of excitatory and inhibitory 418 
synapses, gamma oscillations and computations that might underlie key 419 
cognitive functions have been difficult to establish. Systematic investigation of 420 
E-I models suggests that these relationships are complex (Solanka et al. 421 
2015). First, nested gamma oscillations and grid firing are both promoted by 422 
an optimal level of noise within a network. If noise is too low seizure-like 423 
states that suppress grid firing tend to emerge, whereas if noise is too high 424 
grid fields drift and gamma becomes less coherent. Second, intermediate 425 
noise levels maximise the range of excitatory and inhibitory synaptic strengths 426 
that support grid firing. Third, gamma activity is a poor predictor of grid firing. 427 
Thus, varying the strength of inhibitory or excitatory connections can tune the 428 
frequency and power of gamma oscillations without affecting grid firing.  429 
Fourth, tuning of intrinsic connections could be used to modulate oscillation-430 
based codes while maintaining grid firing, for example to determine the 431 
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response of downstream neurons to convergent input from different grid 432 
modules. Thus, synchronisation of gamma activity between grid modules 433 
might promote, and discordant tuning of gamma between modules might 434 
oppose, downstream integration. Therefore, the potential for independent 435 
control of gamma oscillations and grid firing, even though both phenomena 436 
arise from a common circuit mechanism, has implications for physiological 437 
and pathological states of MEC circuits. 438 
 439 
 440 
Conclusion 441 
Because multiple abstract models are able to produce grid-like periodic spatial 442 
firing patterns, additional experimental constraints are required to establish 443 
mechanisms used by the brain to generate grid firing. We have considered 444 
evidence that continuous attractor networks that use velocity inputs to 445 
compute grid codes for location can be implemented through E-I interactions 446 
that are consistent with known properties of microcircuits in the MEC. When 447 
implemented with realistic neuronal dynamics these models also account for 448 
theta nested gamma oscillations, although so far they are unable to explain 449 
theta phase precession in two dimensions without incorporation of additional 450 
mechanisms for path integration. Critical future tests of continuous attractor 451 
network hypotheses for grid firing include evaluation of predictions for the 452 
firing patterns and connectivity of excitatory and inhibitory cell populations. E-I 453 
models make further assumptions concerning integration of velocity signals 454 
(Pastoll et al. 2013), error correction by place and border input (Guanella et 455 
al., 2007; Hardcastle et al., 2015; Pastoll et al., 2013; Sreenivasan and Fiete, 456 
2011) and sources of tonic drive (Bonnevie et al., 2013; Burak and Fiete, 457 
2009; Pastoll et al., 2013) that we have not considered here. Experimental 458 
evidence for how these signals are integrated by MEC circuits will further 459 
constrain possible models. Progress in establishing experimentally 460 
constrained models for spatial representation by cell populations in the MEC 461 
may serve as a proof of principle for understanding cellular and synaptic 462 
mechanisms for high-level computations by cortical circuits in general. 463 
 464 
 465 
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Figure 1. Components of a generic E-I model for generation of grid firing 628 
and nested gamma oscillations 629 
Integration of velocity input by continuous attractor networks built from 630 
interacting excitatory and inhibitory neurons can generate grid firing fields. 631 
When the networks receive a theta modulated input they generate gamma 632 
frequency output that is modulated at theta frequency. A spatial input is 633 
required to oppose drift in the grid representation. Data are from Pastoll et al. 634 
(2013). 635 
 636 
 637 
Figure 2. Single and multi-bump attractor model of grid firing have 638 
distinct circuit organisation 639 
In single bump models grid firing of excitatory cells can be generated by 640 
synaptic profiles that produce either surround excitation or surround inhibition. 641 
The surround connectivity is strongest for connections to neurons at a 642 
distance of about one half the width of the sheet. Each neuron makes 643 
divergent connections to many target neurons, and receives convergent input 644 
from many pre-synaptic neurons. In multi-bump networks the strongest 645 
connections are onto neurons at a much shorter distance relative to the size 646 
of the sheet. The upper graphs plot synaptic strength as a function of position 647 
in the neural sheet, which is given a width of one. The plots below schematise 648 
the resulting E-I connectivity, illustrate the organisation of activity in the neural 649 
sheet and the organisation of excitatory cell activity in three dimensions. The 650 
connectivity profiles shown for the multi-bump models are based on networks 651 
containing only inhibitory neurons, with either surround inhibition (Burak and 652 
Fiete, 2009) or local inhibition (Couey et al., 2013). The networks could be 653 
considered as having dedicated interneurons receiving input from each 654 
excitatory neuron. 655 
 656 
 657 
Figure 3. Spatial firing of interneurons in E-I attractor models 658 
(A) Schematic organisation of an E-I network with additional random place 659 
field inputs to each interneuron (left). Example firing fields of I cells (middle) 660 
and E cells (right) are shown adjacent to the schematised neurons. (B) 661 
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Histograms of the spatial sparsity (upper) and gridness score (lower) for E-I 662 
networks simulated as in (A). Note that most interneurons and many 663 
excitatory cells have grid scores < 0.5. Data are from Solanka et al. 2015 664 
 665 
 666 
Figure 4. Theta nested gamma activity in E-I models 667 
Spike rasters for E cells (red) and I cells (blue) during two theta cycles (grey). 668 
The excitatory synaptic input to a representative I cell is illustrated below. 669 
Note that a substantial residual inward current (blue shading) is maintained 670 
during the phase of the theta oscillation when spike activity of excitatory cells 671 
is reduced. The residual current enables the bump of activity to be maintained 672 
across theta cycles. Data are from Pastoll et al. (2013) and Solanka et al. 673 
(2015). 674 










