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Although continuous heat- and mass-transfer processes are 
usually conducted in countercurrent flow, there are certain 
cases in which the cocurrent flow can be used to  some advan- 
tages from an operation point of view. For example, in the 
packed adsorption column, flooding due to  high vapor or gas 
flow rate can be eliminated if cocurrent flow is employed. Use 
of cocurrent flow can also reduce the pressure drop require- 
ment in the packed column. Reiss (1967) discussed several 
instances in which cocurrent mode operation may be favored 
over countercurrent flow. In the case of heat transfer, cocur- 
rent flow is also suitable for some special situations. For in- 
stance, if it is necessary to  limit the maximum temperature of 
cooler fluid or if it is important to  change the temperature of 
at least one fluid rapidly (McCabe et al., 1985). The transient 
behaviors of both cocurrent and countercurrent processes are 
important in the startup and control of mass- and heat-transfer 
operations. Previously, numerical solutions based on a method 
of characteristics was used to  study the transients of counter- 
current processes (Tan and Spinner, 1984). Owing to  the split 
boundary conditions, analytic solutions are difficult to obtain 
even for the linear system. For cocurrent flow, compact an- 
alytic solutions in terms of well-known tabulated function can 
be derived. The purpose of this note is to  present the nonsteady- 
state behavior of continuous cocurrent flow of two contacting 
phases. The transient responses to  the inlet disturbances are 
derived based on a simple mathematical model. This simplified 
model is equally applicable to either mass- or heat-transfer 
processes. Laplace transformation method is used to  obtain 
compact analytic solutions. These solutions can be easily eval- 
uated with the aid of the known tabulated mathematical func- 
tions or charts. Both the derivation and the final form of 
solutions are easier to  apply in comparison to  the work of Li 
(1986). 

Model Equations and Solutions 
Plug flow, constant physical properties and no axial dis- 

persion are assumed. Linear driving force rate equations are 
used for both the mass- and heat-transfer processes. For mass 
transfer, the transfer species is assumed to  be dilute compared 
to  the carrier component. Thus, constant molar flow and linear 
isotherm assumptions are expected to be valid. The model 
equations for mass transfer are: 

AIChE Journal February 1994 

ax ax 
az at 

Gx - + Ox - = K,aS ( y - y * ) 

aY aY 
az at 

Gy - + 0, - = K, aS ( y * - y ) 

and for heat transfer 

(3) 

In Eqs. 1 and 2, with the linear isotherm assumption, 

Equations 1 and 2 and Eqs. 3 and 4 can be transformed to  
y* = m x ,  where m is the slope of the linear isotherm. 

the following identical form of dimensionless equations: 

ax ax 
ah ae -+-= y - x  

a y  a y  
ah ae A - + B - = X -  Y 

where the normalized variables and parameters are defined by: 
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To solve Eqs. 5 and 6 ,  we assume the following initial con- 
ditions X ( h ,  O)=X*(h)  and Y(h, 0)= Y*(h)  where X * ( h )  
and Y* ( h )  are the initial steady-state values given by: 

1 
A + l  

X* ( h )  =- [Xi + A  Yi] 

A * :  
+---[X, - Y,]exp 

A + l  

1 
A + l  

Y * ( h ) = - [Xi  + A Y;] 

- - [ X , * -  1 Y:]exp[ - 7 1  (A + l)h (8) 
A + l  

For the boundary conditions we consider the step input 
changes in which inlets of X and Yare suddenly changed from 
Xo* to  X, and Y,* to  Yo: 

X(0, 0>0) = X, and Y(0, 0>0) = Yo 

The initial conditions as stated imply that prior to the new 
solution front of the faster moving stream reaching the axial 
distance z ,  X and Y values will remain at initial steady state. 
Thus, if we assume that after the input change, the new solution 
front of Y advances ahead of new solution front of X (that 
is, B/A < 1) and then the initial conditions can also be expressed 
as: 

X ( h ,  0<Bh/A) = X * ( h )  and Y(h, B<Bh/A) = Y*(h)  

The quantity 0 - Bh/A thus represents the contact time for 
Y stream at a given location of z .  Define 0’=(0-Bh/A)/  
(1 -B/A) and by expressing X and Y in terms of deviation 
from the initial steady state, the following equations are derived 
from Eqs. 5 and 6: 

a 2  a 2  - - -+,= Y - x  
ah a0 

aE  - 
ah 

A-=X- Y 

(9) 

where x ( h ,  $ ’ ) = X ( h ,  8 ’ ) - X * ( h ) ,  P (h ,  8 ’ ) =  Y(h, 0’)  
- r‘ ( h )  with boundary conditions given by: 

X(0, O‘>O)=xO=XO-X:  

E(0, 0’>0)= Po= Yo- r: 

By Laplace transformation of Eqs. 9 and 10 it can be shown 
that: 

X , ( A ~ +  I)+AE, x=  
s [ ( A p +  l ) ( p + ~ +  1)- 11 

where s is the transform variable with respect to 0‘  and p is 
the transform variable with respect to  h. The inversions of the 
above equations are: 

- 1  A 
X=- [2, + A Po] + - [x,, - Po] exp 

A + 1  A + 1  

A 
A + l  

+g(h-O‘)-[XO-EO] 

A 
A + l  -XoJ ( 0’ , - +g(h-O’)-[x,- ~ , ] e x p  

1 
A + l  

- g ( h  - 0’ ) - [Xc1-- Yo] exp 

(h-20’)  $ h - 0 ’ , -  (14) 
x [ y  I( 2) 

The Heaviside function, g, is defined such that g ( h  - 0 ’ )  = 1 
if h r 8 ’  and g ( h - B ’ ) = O  if h < 0 ’ .  Both solutions for x a n d  
P contain two mathematical functions. One of these, the J 
function, is available in tabulated form and on charts (Sher- 
wood et al., 1975; Hougen and Watson, 1947). The other 
mathematical function, $, is derived from the convolution 
integral in which 

where I ,  is the modified Bessel function of the first kind of 
order zero. The $ function was used in the analysis of transients 
of a shell and tube heat exchanger (Tan and Spinner, 1978). 
Both J a n d  $ function can be evaluated by the following series 
form: 

co u”A,(u) 
J(u, U )  = 1 - c--- 

k!k! 

where 

A , = ] - e x p ( - u ) ,  A k = k A , _ , - u k e x p ( - u ) ,  for k r l  

where 

B,=l- .exp(-u) ,  B k = u k - k B k _ , ,  for ks-1 
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The first two terms on righthand side of both Eqs. 13 and 
14 represenr the deviation of the final steady state from the 
initial stead) state. They are exactly identical in form to Eqs. 
7 and 8 with X,: replaced by .?* and Yo* replaced by Po. 

The transient response of 2 and P in Eqs. 13 and 14 can 
also be normalized in terms of deviation between final steady 
state and initial steady state. Thus, 8 / 8 * ( h )  and P / / P * ( h )  
represent the fractional attainment of final steady state for X 
and Y respectively, where 8' ( h )  and P' ( h )  denote the dif- 
ference betneen the two steady-state values. 

From the properties of J arid I) functions, it is known that 
J(0,  L') = I and $(O, v )  =0, thus when 6 '  r h ,  the final steady 
state is reached for Y stream, as can be seen from Eq. 14. The 
presence of two Heaviside functions in Eqs. 13 and 14 suggests 
that there are three regions which separate the initial, transient 
and the final steady state of both X and Y streams. Figure 1 
is a sketch o n  the time-distance diagram which indicates the 
location of these three regions. For a step input change in 
either X and I' inlets, a conc:entration or temperature jump 
(discontinuity) for the faster moving stream is expected at  6' = 0 
for a given location of h. Discontinuity will also occur at 8 ' = 1, 
i f  there is a step change in the slower moving stream. 

A special case to the solutions of Eqs. 13 and 14 is when 
A = B. This means that both .X and Y solution front will ad- 
vance at the aame speed and both streams have identical contact 
time. For this special case, the steady state is immediately 
reached after the elapse of one residence time. Thus, for 8' r h ,  
both X and Y assume the stea.dy-state solution in the form of 
Eqs. 7 and 8 By means of linear superposition and application 
of Duhamel formula, Eqs. 13 and 14 can also be used to  derive 
the transieni responses for time-dependent input changes. 
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Figure 1. Position of regions for step input changes. 
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Numerical Examples 
For a cocurrent gas-liquid contacting system 

in a packed column, the transient responses of the exit X and 
Y to  a step input change in Y stream are to  be determined 
from the following data: Xo* = 0; YJ = 1 To; X, = 0; Yo = 2%; 
m= 1; G,=2,000 kmol/h; G,=2,000 kmol/h; 6, = 12 kmol/ 
m; p, = 1 kmol/m; L = 5 m; S= 2 m'; K,.a = 400 kmol/m-'. h. 

The calculated dimensionless parameters are -4 = 1, B = 1 /12 
and H = 2, where H is the total length parameter corresponding 
to the value of h at z = L .  

By setting h = H  and applying Eqs. 13 and 14, the exit 
X and Y in terms of  deviation variables, X ( H ,  8 ' )  and 
P ( H ,  O f ) ,  are calculated. Knowing the initial steady-state value 
of X * ( H )  and Y * ( H )  and the relation between 8' and real 
time, the results obtained are plotted in terms of mole To of 
X and Y against absolute time, as shown in Figure 2. The 
evaluation of Eqs. 13 and 14 is facilitated by the use of the 
available tables and charts. 

It is interesting to note that for the step input change in 
cocurrent flow, the time required to reach the final steady state 
is solely depending on the residence time of X and Y streams. 
In this case, the one residence time for X stream is 108 s and 
for Y stream is 9 s. Due to  the step input change in Y inlet, 
there is a concentration jump at the outlet of the column after 
one residence time for Y stream. This discontinuity can be 
verified by substituting 8' = O  in Eq. 14. When the step input 
change is introduced, the exit X and Y streams remain at initial 
steady state prior to the elapsed of one residence time for Y 
stream. The final new steady-state conditions are realized after 
the completion of one residence time for X stream. In general, 
the transient period is shorter for cocurrent flow than in the 
case for countercurrent flow. 

A cocurrent flow heat-transfer problem with 
simultaneous step input changes in both TI and Tz streams is 
illustrated in this example. The following are the data employed 
for the calculation: T,*, = 35°C; &: = 10°C; T,,, = 60°C; Tz0 
=20°C; L = 15 m; G2=0.3 kg/s; GI =0.6 kg/s; C,,, = C,,, 
=4,200J/kg.K; U = 6 0 0 J / m 2 ~ s ~ K ; a S = 0 . 2 1  m'/m; p , = & = 2  
kg/m. 

Example I. 

Example 2. 
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Figure 2. Exit Xand Ycomposition response to a single 
step input change. 
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Figure 3. Exit temperature response to simultaneous 
step input changes. 

Values of the normalized parameters are therefore A = 2 ,  
B =  1 and H =  1.5. 

The residence time for TI stream is P,L/G, = 50 s while the 
residence time for T2 stream is P2L/G2= 100 s. 

Transient responses of exit temperatures are shown in Figure 
3. Note that the time scale is in terms of real absolute time, 
that is, the time after the step input changes are applied. Be- 
cause of the sudden step input change in the TI stream, there 
is a discontinuity when it emerges from the outlet after one 
residence time. Similarly, because of sudden step input change 
in T2 there is also adiscontinuity for this stream when it emerges 
from the outlet after completion of one corresponding resi- 
dence time. 

Conclusions 
Although continuous countercurrent mass- or heat-transfer 

processes yield better efficiency there are certain situations 
which require cocurrent mode of operation. These situations 
may be due to  operational difficulties or to the restriction on 
the conditions of the process variables. The understanding of 
transient behavior and startup operation is important for both 
countercurrent and cocurrent processes. In this note, we have 
presented an exact and compact analytic solution for cocurrent 
processes based on a linear mathematical model. The derived 
solutions are easy to  evaluate with the use of available tabulated 
functions and charts. The analytic solutions obtained also pro- 
vide an understanding on the dynamic behavior of the cocur- 
rent processes. 

Notation 
a = interfacial area per unit volume of the contacting equipment, 

m2/m3 
A = dimensionless parameter for mass-flow rate ratio 
B = dimensionless parameter for holdup ratio 

C, = heat capacity, J/kg-K 
C,, = heat capacity of stream 1 fluid 
C,, = heat capacity of stream 2 fluid 

G = mass- or molar-flow rate, kg/hr or kmol/hr 
GI = mass-flow rate of TI  stream 
G2 = mass-flow rate of T2 stream 
G, = molar-flow rate of x stream 
G, = molar-flow rate of y stream 

h = dimensionless axial distance variable 
H = dimensionless length parameter 
J = mathematical function, dimensionless 
K = overall mass-transfer coefficient 

K ,  = overall mass-transfer coefficient for the lighter phase 
L = total length of the contacting equipment, m 
n7 = slope of the linear isotherm, dimensionless 
S = cross-sectional area of the contacting equipment, m’ 
I = absolute time, s 

T = temperature, “C 
TI = temperature of stream I fluid 
T2 = temperature of stream 2 fluid 
Lr = heat-transfer coefficient, J/m’.s.K 
x = mole fraction of the transferring species in the heavy phase 
X = normalized composition or temperature variable 
y = mole fraction of the transferring species in the light phase 
Y = normalized composition of temperature variable 
z = axial distance of the contacting equipment, m 

Greek letters 
/3 = mass or molar holdup, kg/m or kmol/hr 

PI = mass holdup of TI stream per unit length of exchanger 
0: = mass holdup of T? stream per unit length of exchanger 
f l ,  = molar holdup of x stream per unit length of column 
/3, = molar holdup of y stream per unit length of column 
$ = mathematical function, dimensionless 
@ = dimensionless time variable 

Superscripts 
* = steady state, also for equilibrium value (as in y ‘ )  
- = deviation variable 

Subscripts 
x = heavy phase stream 
y = light phase stream 
1 = stream I 
2 = stream 2 
o = inlet condition 
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