
 
 

University of Birmingham

Continuous control of the nonlinearity phase for
harmonic generations
Li, Guixin; Zhang, Shuang; Chen, Shumei; Pholchai, Nitipat; Reineke, Bernhard; Wong, Polis
Wing Han; Yue Bun Pun, Edwin; Cheah, Kok-wai; Zentgraf, Thomas

DOI:
10.1038/nmat4267

License:
None: All rights reserved

Document Version
Peer reviewed version

Citation for published version (Harvard):
Li, G, Zhang, S, Chen, S, Pholchai, N, Reineke, B, Wong, PWH, Yue Bun Pun, E, Cheah, K & Zentgraf, T 2015,
'Continuous control of the nonlinearity phase for harmonic generations', Nature Materials, vol. 14, no. 6, pp. 607-
612. https://doi.org/10.1038/nmat4267

Link to publication on Research at Birmingham portal

Publisher Rights Statement:
Published as above, final version of record available at 10.1038/nmat4267

Checked 14/5/18

General rights
Unless a licence is specified above, all rights (including copyright and moral rights) in this document are retained by the authors and/or the
copyright holders. The express permission of the copyright holder must be obtained for any use of this material other than for purposes
permitted by law.

•	Users may freely distribute the URL that is used to identify this publication.
•	Users may download and/or print one copy of the publication from the University of Birmingham research portal for the purpose of private
study or non-commercial research.
•	User may use extracts from the document in line with the concept of ‘fair dealing’ under the Copyright, Designs and Patents Act 1988 (?)
•	Users may not further distribute the material nor use it for the purposes of commercial gain.

Where a licence is displayed above, please note the terms and conditions of the licence govern your use of this document.

When citing, please reference the published version.

Take down policy
While the University of Birmingham exercises care and attention in making items available there are rare occasions when an item has been
uploaded in error or has been deemed to be commercially or otherwise sensitive.

If you believe that this is the case for this document, please contact UBIRA@lists.bham.ac.uk providing details and we will remove access to
the work immediately and investigate.

Download date: 25. Aug. 2022

https://doi.org/10.1038/nmat4267
https://doi.org/10.1038/nmat4267
https://birmingham.elsevierpure.com/en/publications/8408e104-cb0e-4089-8005-43bcba6bd594


  

 

 

 

Continuous control of nonlinearity phase for harmonic generations 

 

Guixin Li
1,2†, Shumei Chen

1,2†, Nitipat Pholchai
3,4,5

, Bernhard Reineke
3
, Polis Wing Han Wong

6
, 

Edwin Yue Bun Pun
6
, Kok Wai Cheah

2
*, Thomas Zentgraf

3
*, and Shuang Zhang

1
* 

1
School of Physics & Astronomy, University of Birmingham, Birmingham, B15 2TT, UK 

2
Department of Physics, Hong Kong Baptist University, Kowloon Tong, Hong Kong 

3
Department of Physics, University of Paderborn, Warburger Straße 100, D-33098 Paderborn, Germany 

4
Department of Industrial Physics and Medical Instrumentation, King Mongkut's University of 

Technology North Bangkok, 1518 Pibulsongkram Road, Bangkok 10800, Thailand 

5
Lasers and Optics Research Group, King Mongkut's University of Technology North Bangkok, 1518 

Pibulsongkram Road, Bangkok 10800, Thailand 

6
Department of Electronic Engineering, City University of Hong Kong, 83 Tat Chee Ave, Hong Kong 

*email:  kwcheah@hkbu.edu.hk; thomas.zentgraf@uni-paderborn.de; s.zhang@bham.ac.uk; 

 

 

The capability of locally engineering the nonlinear optical properties of media is crucial in 

nonlinear optics. While poling is the most widely employed technique for achieving locally 

controlled nonlinearity, it only leads to a binary nonlinear state, which is equivalent to a discrete 

phase change of π in the nonlinear polarizability. Here, inspired by the concept of spin rotation 

coupling, we experimentally demonstrate nonlinear metasurfaces with homogeneous linear 

optical properties but spatially varying effective nonlinear polarizability with continuously 

controllable phase. The continuous phase control over the local nonlinearity is demonstrated for 

second and third harmonic generations by using nonlinear metasurfaces consisting of 

nanoantennas of C3 and C4 rotational symmetries, respectively. The continuous phase 

engineering of the effective nonlinear polarizability enables complete control over the 

propagation of harmonic generation signals. Therefore, it seamlessly combines the generation 

and manipulation of the harmonic waves, paving the way for highly compact nonlinear 

nanophotonic devices.  



The local phase of the nonlinear polarizability determines how the generated nonlinear light in 

the material will interfere during its generation and propagation processes. In general one is 

interested in a constructive conversion of the fundamental to the nonlinear light while a wave is 

propagating through the material. However, the chromatic dispersion prevents from an efficient 

conversion due to the different propagation velocity of light for the different wavelengths. If the 

phase of the induced nonlinear material polarization can be controlled locally without modifying 

the linear properties such a mismatch can be avoided and the nonlinear process would be more 

efficient. Up to date there has been no demonstration of a material that allows continuous and 

arbitrary phase control for the local nonlinear polarizability. Such a nonlinear material would 

enable exact phase matching conditions for nonlinear optical processes, in contrast to the widely 

utilized quasi-phase matching scheme in which only the sign of the nonlinear polarizability can 

be manipulated
1-6

. It may remove additional undesired nonlinear processes which are introduced 

by the higher Fourier components of the nonlinear susceptibility in a periodically poled system. 

Metamaterials on the other hand provide a high degree of freedom for tailoring the local optical 

properties on a subwavelength scale. Nevertheless, they were mostly used for tailoring the linear 

optical properties. 

The phase control over the nonlinear polarizability of the metamaterial is inspired by the 

concept of spin rotation coupling of light which has been utilized to control the wavefront of 

light in the linear regime
7-11

. This novel concept has been applied to the design of various types 

of functional metasurfaces
12-16

. These types of metasurfaces, which consist of plasmonic 

structures with subwavelength feature size (sometimes called “artificial atoms”), can be 

engineered to show rotation controlled local geometric phase shifts. This concept has been 

employed for flat lens imaging, generation of vortex beams, three-dimensional holography, and 

optical spin-orbital interaction
12-17

. Here we apply the concept of spin rotation coupling of light 

to the nonlinear regime leading to a nonlinear material polarization with arbitrarily controllable 

phase profile. For demonstration we show that this concept can be implemented by metasurfaces 

containing plasmonic antennas. However, we like to note that the concept of continuous phase 

control is universal and can be applied also to dielectric and bulk-like metamaterials.  

 We start by considering a single subwavelength plasmonic or dielectric nanostructure 

(resembling a dielectric dipole) embedded in an isotropic nonlinear medium (Fig. 1a). We will 

show that when excited by a circularly polarized fundamental beam, the phase of the nonlinear 

polarization of the artificial atom can be controlled geometrically by the orientation of the 

structure through a spin rotation coupling. For an incident fundamental beam with circular 

polarization state σ propagating along +z direction, the electric field can be expressed 

as:
0( ) / 2

x y
E E e i e
σ σ= + , where 1σ = ± represents the state of left- or right- handed circular 

polarization, respectively. The excitation of the nanostructures (e. g. the plasmonic nanorods) 

together with the nonlinear medium in close vicinity of the structure where the field can be 

strongly enhanced, locally forms an effective nonlinear dipole moment: 

            ( )n n
p E

ω σ

θ θα=                                       (1) 

where θα  is the n
th

 harmonic nonlinear polarizability tensor of the nanostructure with orientation 

angle of θ . We employ a coordinate rotation to analyze the dependence of the nonlinear dipole 

moment on the orientation angle of the nanostructure. In the local coordinate of the nanostructure 

(referred to as local frame) as shown in Fig. 1a where the local coordinate (x’, y’) axes are 



rotated by an angle of θ with respect to the laboratory frame (x, y), the fundamental wave 

acquires a geometric phase due to the rotation spin coupling effect  

            
e
i

L
E E
σ σ σθ
=                                        (2) 

where the index ‘L’ denotes the nanostructure’s local coordinate frame. The n
th 

harmonic 

nonlinear polarizability in the structure’s local frame is simply α0 =αθ⏐θ=0. Thus, the n
th

 harmonic 

nonlinear dipole moment in the local frame is given by 
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The nonlinear dipole moment can be decomposed into two in-plane rotating dipoles 

(characterized by the circular polarization states σ and -σ) as 
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After transforming back to the laboratory frame the two rotating dipole moments are given by 
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The nonlinear polarizabilities of the nanostructure can therefore be expressed as, 
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Thus, geometric phases of ( 1)n σθ− or ( 1)n σθ+ are introduced to the nonlinear polarizabilities 

of the n
th

 harmonic generation with the same or the opposite circular polarization to that of the 

fundamental wave, respectively. According to the selection rules for harmonic generation of 

circular polarized fundamental waves, a single nanostructure with m-fold rotational symmetry 

only allows harmonic orders of 1n lm= ± , where l  is an integer, and the ‘+’ and ‘-‘ sign 

correspond to harmonic generation of the same and opposite circular polarization, respectively
18-

21
. The phases of the nonlinear polarizability for an incident fundamental wave of circular 

polarization, for various orders of harmonic generation and nanostructures of various rotational 

symmetries, are given in the Supplementary Materials (Table S1).  

Hence for a nanorod structure with two-fold rotational symmetry (C2), THG signals with 

both the same and opposite circular polarizations as that of the fundamental wave can be 

generated. According to equation (6), they have a spin dependent phase of 2σθ and 4σθ, 

respectively (Fig. 1b). On the other hand, a nanostructure with four-fold rotational symmetry 

(C4) does not allow a THG process for the same polarization state as the incident polarization. 

Hence, only a single THG signal, that of the opposite circular polarization, is generated with a 

geometric phase of 4σθ  (Fig. 1c). Importantly, due to the local isotropic response of the C4 

structure, both the polarization state and the propagation of the fundamental wave will not be 

affected when transmitting through a metamaterial consisting of such C4 nanostructures of 

arbitrary orientations. Thus, by assembling the C4 nanostructures with spatially varying 

orientations in a 3-D or 2-D lattice, a nonlinear metamaterial or metasurface can be formed 

which show homogeneous linear properties, but locally a well-defined nonlinear polarizability 

distribution for a circularly polarized fundamental wave. 



 We verify this concept of spin-rotation induced nonlinear phase by designing and 

fabricating three nonlinear binary phase gratings consisting of 2D arrays of plasmonic 

nanocrosses with a local C4 rotational symmetry (Fig. 2a-c). These binary nonlinear phase 

gratings can be easily used to characterize the relative phase of the nonlinear polarization 

between C4 nanostructures of different orientations. Sample A consists of nanocrosses of 

identical orientation along the entire lattice and a periodicity of a = 400 nm in both x- and y- axis 

directions, while Sample B and Sample C consist of supercells of nanocrosses with two different 

orientations and a superperiod of P = 3.2 µm (eight crosses per unit cell). The difference between 

the orientation angles of the two subsets of nanocrosses within a unit cell is π/8 and π/4 for 

Sample B and C, respectively. For the C4 structures, only THG of the opposite circular 

polarization as that of the incident fundamental beam is generated with a geometric phase of 

4σθ . Thus, the introduced nonlinear phase for Sample B and Sample C correspond to nonlinear 

phase gratings with phase difference of π/2 and π between the two subunits, respectively. For the 

binary nonlinear grating with period larger than the THG wavelength, the distribution of the 

nonlinear signal in different diffraction orders is solely determined by the phase difference 

between the two subsets. Thus, by experimentally measuring the ratio between the 0
th

and the 1
st
 

order THG signals, we are able to verify the orientation controlled induced phase difference 

between the two subsets of nanocrosses within a unit cell in Sample B and C.  

 First, we coat a nonlinear active medium (PFO) on top of these three phase gratings to 

form a gold/PFO hybrid metasurface (see Methods Section). The linear optical properties of the 

hybrid phase gratings are characterized by using Fourier transformation infrared spectrometry. 

From the measured transmission spectra (Fig. 2d), we identify that the localized Plasmon 

resonance is around at wavelength: λ ~ 1230 nm for all three samples, and this also confirmed by 

the numerical simulation. Subsequently, we measured the THG signal from these three samples 

for a fundamental wavelength at the resonance dip to maximize the Plasmon enhanced nonlinear 

response from the samples. As shown previously
22-30

, the combination of the strong field 

enhancement and large nonlinear polarizability of the plasmonic structures gives rise to a large 

nonlinear optical effect in such plasmonic system, making it easy to detect the generated 

nonlinear signal. 

 In the next step we illuminated the samples with short laser pulses at 1240 nm and 

measured the THG signal on a CCD camera. Our THG measurements with circular polarized 

incident light confirm the selection rules for the C4 symmetry structure as the THG signals with 

identical polarization states as the fundamental wave (RCP-RCP and LCP-LCP) are very weak 

for all three samples and therefore not visible in Fig. 2e. Sample A, with spatially homogenous 

orientation of the nanocrosses, only gives rise to a 0
th

 order THG. On the other hand, Sample B 

and Sample C, with their superlattice periodicity greater than the wavelength of the THG light, 

emit THG into the first diffraction orders. For Sample B where the phase difference between the 

third order nonlinearity of the two subsets of nanocrosses is π/2 the ratio between the 0
th

 order 

and the 1
st
 order THG signals is predicted to be ~ 2.4:1 (see Supplementary Materials Fig. S1 

and the corresponding discussion). The measured ratio is around 2.8:1, which agrees very well 

with the theoretical prediction. The π phase difference between the nonlinear polarizabilities of 

the two subsets of the nanocrosses in Sample C is expected to result in a complete destructive 

interference for the 0
th

 order THG signal, which is confirmed by the measurement shown in the 

most right panel of Fig. 2e. The orientation angle dependent phase of nonlinearity is further 

confirmed by numerically calculating the contribution to the far field THG radiation from each 



local point in the nonlinear medium, as shown in the Supplementary Materials Fig. S2 and S3. 

The simulation results provide an intuitive picture how the phase of the contribution varies with 

the orientation angle of the nanostructure for circularly polarized incident light.  

 Having confirmed the possibility for the geometric phase control of the nonlinear 

polarizabilities through variation of the orientation of the nanoantennas, we construct and 

fabricated two metasurfaces consisting of an array of plasmonic nanostructures with C2 

(nanorod) and C4 (nanocross) rotational symmetry. For these samples, the orientation angle 

between the neighboring structures is linearly varied in order to obtain a linear phase gradient for 

the nonlinear polarization along the surface direction (Fig. 3a and Fig. 3b). Such phase gradient 

will lead to a tailored diffraction for the THG signal where the diffraction angle is determined by 

the phase gradient. 

 The linear diffraction of these metasurfaces for the fundamental beam is characterized at 

the wavelengths of 1.2 µm and 1.25 µm for the C2 and C4 metasurfaces, corresponding to their 

respective resonance wavelengths. The diffraction pattern, captured by an infrared CCD camera, 

is shown in Fig. 3c. For the C2 metasurface, the local anisotropy leads in the linear optical case 

to conversion between LCP and RCP, with a geometric phase given by twice the orientation 

angle of the nanorods. While the 0
th

 order has the same circular polarization as the incident 

beam, the beam with the opposite circular polarization is diffracted into the +1 or -1 order, 

depending on the incident circular polarization state. This diffraction effect arises from the spin 

dependent geometric phase in the linear regime, which has been investigated previously
12

. On 

the other hand, there is no diffraction observed for the C4 metasurface since locally the 

nanocrosses exhibit isotropic linear optical properties. Therefore, the C4 metasurface can be 

considered as a homogeneous optical surface in the linear regime, despite the spatial variation of 

the orientation angle along the surface. 

 THG measurements on the C2 and C4 metasurfaces for circularly polarized incident 

beams are subsequently carried out and the expected results for these two surfaces with the linear 

phase gradient are schematically illustrated in Fig. 4a. We observe that the THG signal with 

same and opposite polarization as that of the incident fundamental beam are generated on the C2 

metasurface, while only the THG with opposite circular polarization is generated on the C4 

sample. This again agrees with the selections rules of THG for nanostructures with different 

local symmetries. For the C2 sample (Fig. 4b), the THG signal is generated in four different 

diffraction orders, -2, -1, +1 and +2, which correspond to the incident/transmitted polarization of 

RCP/LCP, RCP/RCP, LCP/LCP and LCP/RCP, respectively. This can be explained by equation 

(5), where the nonlinear phase for the co-polarization and opposite polarization are 2σθ  

and4σθ , respectively, corresponding to the ±1 and ±2 diffraction orders for the C2 metasurface 

with a period of the orientation angle:Δθ =π. On the other hand, for the C4 metasurface, only 

THG with polarization opposite to that of the incident beam is generated with the phase gradient 

of4σθ , which corresponds to the first diffraction orders for the C4 metasurfaces with period of 

Δθ =π/2 for the orientation angle. For a circularly polarized dipole in the x-y plane, the emitted 

THG into a diffraction angle of ϕ in general contains both LCP and RCP components, with the 

ratio given by ).cos1/()cos1( ϕϕ +−  The periodicities of the nonlinear gratings in our work is 

3.2 µm and the THG wavelength is 416 nm for the C2 metasurfaces. The diffraction angle ϕ of 

the first diffraction order for the THG signal is calculated as 7.5°, agreeing well with our 

measurement. As the diffraction angle is small, the THG signal is nearly a circularly polarized 



beam, with the ellipticity given by 991.0)]/()[(tan 1
=+−=

−

LRLR
EEEEψ . This is in agreement 

with our observation that the nonlinear signal is almost purely circularly polarized (Fig. 4b). The 

measurement nicely demonstrates the high potential for such spin rotation induced nonlinear 

phases in metamaterials: The C4 nonlinear nanostructures have orientation independent linear 

properties while the phase of the nonlinear polarization is orientation controlled by the building 

blocks of the material. Such properties are highly attractive for constructing nonlinear photonic 

devices such as nonlinear photonic crystals. It should be noted that pumping light needs to be at 

normal incidence, so that the rotational symmetry of the overall system is maintained. For light 

from oblique incidence, it is expected that nontrivial effects due to superposition of multipole 

contributions will affect both the linear and nonlinear properties
31

. 

 As aforementioned, this concept of controlling the nonlinear phase is not confined to 

third harmonic generation, but can be applied to any harmonic order. As a confirmation of this 

claim we measured the second harmonic generation (SHG) for a metasurface consisting of C3 

rotational symmetric structures for a linear phase gradient in the nonlinear polarization 

(Supplementary Material Fig. S4). These measurements correspond to the same situation as 

shown in Fig. 4 but for SHG instead of THG and validates that the concept works also for other 

nonlinear processes. 

 Our work demonstrates that, through the spin rotation coupling of light with 

subwavelength sized nanostructures, a local continuous phase can be introduced into the 

nonlinear harmonic generation processes with metamaterials. We show that through this scheme 

we are able to continuously tune the phase of the nonlinear polarization in a metasurface 

consisting of nanocrosses with spatially varying orientations while preserving homogeneous 

linear optical properties. By controlling of local symmetry and global phase discontinuity, the 

spin dependent third harmonic diffraction from the nonlinear metasurface is experimentally 

demonstrated and agrees well with the theoretical predictions. Despite that we demonstrate a 

nonlinear metasurface with a phase gradient of the nonlinear polarizability along one direction, 

our metasurface can be readily designed and realized to have more complex phase profiles in the 

two in-plane directions, which is similar to the two dimensional (2-D) nonlinear photonic 

crystals first proposed by V. Berger
32

 and experimentally realized by Broderick et al
33

. On the 

other hand, our metasurface goes beyond those previous works because of the continuous 

nonlinear phase profile, providing more powerful selection of the nonlinear reciprocal vectors 

involved in the nonlinear processes (e.g. by removing the higher frequency components 

unavoidable with the discrete poling steps). One key application of the 2-D nonlinear 

metasurfaces is the realization of nonlinear holograms, where a beam at fundamental wavelength 

can be converted to arbitrary beam profile at different wavelength. The continuous nonlinear 

phase profile of our metasurface would enable better control of the beam profile, meanwhile 

removing the issue of twin image generation that is intrinsic to a binary hologram. This approach 

for continuously controlling the nonlinearity can be potentially extended to three dimensional 

metamaterials made from low loss nonlinear dielectric nanostructures, for achieving custom 

defined local effective nonlinear susceptibilities, and introducing new freedoms in designing 

nonlinear materials for satisfying perfect phase matching conditions, nonlinear photonic crystals 

with arbitrary nonlinear phase profiles, and manipulation of nonlinear signals in integrated 

photonic circuits or in the free space. 

 



Methods 

Sample Fabrication. All the gold nanorods with thickness of 30 nm were fabricated on glass 

substrate using standard electron beam lithography (Crestec CABL-9510C) and followed by lift-

off processes. All the gold metasurface devices were coated with 100-nm-thick poly(9,9-

dioctylfluorence) (PFO) layer to form metal/organic hybrid nonlinear metasurfaces. Our previous 

studies have shown that the THG efficiency in the PFO/gold hybrid metasurface is much higher 

than that from PFO- or gold-only devices
21

, indicating that the high nonlinear response is a 

combination of the field enhancement from the plasmonic structures and the large nonlinear 

coefficient of the PFO. In this work, the enhanced THG from the hybrid metasurface enables the 

easier detection of THG signals by using CCD camera.  

THG Measurement. The diffraction of harmonic generations was measured using a 

femtosecond (fs) laser (repetition frequency: 80 MHz, pulse duration: ~ 200 fs) output from the 

optical parametric oscillator at wavelength which is close to the localized Plasmon resonance 

wavelengths of the nanostructures. The averaged power of the pumping laser is 30 mW. The 

laser with spot size of ~ 80 µm in diameter is normally incident on the metasurfaces after passing 

through an achromatic lens (f = 100 mm). The THG signals from gold/PFO metasurfaces are 

collected by an infinity-corrected objective lens (40x, NA = 0.6).The back-focal plane of the 

objective lens was imaged to a charge coupled device (CCD) camera after filtering the pumping 

laser using band-pass filters. 
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Figure 1| Illustration of geometric phase controlled nonlinear metamaterials. a, Rotating a 

nanostructure by an angle θ with respect to the laboratory frame will introduce a geometric 

phase. Hereby each nanostructure introduces a nonlinear geometric phase with a phase variation 

of (n-1)σθ or (n+1)σθ to the n
th

 harmonic generation for the same or the opposite circular 

polarization to that of the fundamental wave, respectively. b, For a C2 nanostructure, THG of 

both circular polarizations with phases of 2σθ and 4σθ are generated in the forward direction. c, 

For a C4 nanostructure, only THG with circular polarization opposite to that of fundamental 

wave is generated, which has a phase of 4σθ. 



 

 

 

Figure 2| Experimental verification of the nonlinear phase with nonlinear phase gratings. 

a-c, Scanning electron microscopy images of Sample A, B, and C fabricated by electron beam 

lithography. The width and length of each gold nanorod are 50 nm and 240 nm, respectively. The 

lattice size for the three metasurfaces are a= 400 nm along x- (H) and y- (V) axis directions; 

thickness of gold layer is t = 30 nm. The scale bar shows 400 nm. d, Measured and simulated 

transmission spectra for the PFO coated hybrid metasurfaces showing the plasmonic resonance 

of the gold nanostructures for horizontal (H-) polarized illumination (see inset for the orientation 

of the axes). e, Measured diffraction pattern of THG signals from metasurfaces A, B, and C. The 

THG signals of the first and second rows correspond to right circularly polarized (RCP) pumping 

laser; the third and fourth rows corresponds to the left circularly polarized (LCP) pumping laser.  



 

 

Figure 3| Diffraction of the fundamental wave on metasurfaces with linear phase gradients. 

a, b, Scanning electron microscopy images of metasurfaces consisting of C2 and C4 symmetry 

nanostructures. The lattice constant of the metasurfaces in both directions is a = 400 nm. Along 

the x direction (H) the nanostructures are rotated by an angle of π/8 for the C2 structures and 

π/16 for the C4 structures, respectively, resulting in the same superlattice period P=3.2 µm. scale 

bar: 400 nm. c, Measured diffraction pattern of the fundamental waves on theC2 (λ = 1250 nm) 

and theC4 (λ = 1200 nm) metasurfaces. The first and second rows were recorded using right 

circularly polarized (RCP) laser, while the third and fourth rows correspond to left circularly 

polarized (LCP) illumination. 



 

 

 

Figure 4| THG signals from metasurfaces with a phase gradient of the nonlinearity. a, 

Illustration of phase controlled diffractions of third harmonic generation (THG) for right 

circularly polarized (RCP) light at the fundamental frequency. The C2 symmetry metasurfaces 

diffract right- (RCP) and left- (LCP) circularly polarized THG signals to the first- and second- 

diffraction orders respectively; in comparison, the C4 symmetry metasurface only diffracts the 

opposite circularly polarized THG at first diffraction order direction. b, Measured diffraction 

pattern of the THG signals fromtheC2/PFO and C4/PFO metasurfaces for circular polarization 

states of the fundamental and the THG waves.  

 


