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Abstract

We present a new continuous data assimilation algorithm based on
ideas that have been developed for designing finite-dimensional feedback
controls for dissipative dynamical systems, in particular, in the context of
the incompressible two-dimensional Navier–Stokes equations. These ideas
are motivated by the fact that dissipative dynamical systems possess finite
numbers of determining parameters (degrees of freedom) such as modes,
nodes and local spatial averages which govern their long-term behavior.
Therefore, our algorithm allows the use of any type of measurement data
for which a general type of approximation interpolation operator exists.
Under the assumption that the observational measurements are free of
noise, our main result provides conditions, on the finite-dimensional spa-
tial resolution of the collected data, sufficient to guarantee that the ap-
proximating solution, obtained by our algorithm from the measurement
data, converges to the unknown reference solution over time. Our algo-
rithm is also applicable in the context of signal synchronization in which
one can recover, asymptotically in time, the solution (signal) of the un-
derlying dissipative system that is corresponding to a continuously trans-
mitted partial data.
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1 Introduction

The goal of continuous data assimilation, and signal synchronization, is to use
low spatial resolution observational measurements, obtained continuously in
time, to accurately find the corresponding reference solution from which fu-
ture predictions can be made. The motivating application of continuous data
assimilation is weather prediction. The classical method of continuous data as-
similation, see Daley [12], is to insert observational measurements directly into
a model as the latter is being integrated in time. We propose a new approach
based on ideas from control theory, see Azouani and Titi [2]. A slightly similar
approach in the context of stochastic differential equations, using the low Fourier
modes as observables/measurements, appears in a recent work by Blömker, Law,
Stuart and Zygalakis [4]. Rather than inserting the measurements directly into
the model, i.e. into the nonlinear term, we introduce a feedback control term
that forces the model toward the reference solution that is corresponding to the
observations. This is motivated by the fact that it is often difficult to insert ob-
servational data into the model. For example, if the measured data is obtained
as the values of the exact solutions at a discrete set of spatial nodal points, then
it difficult to insert this data directly into the underlying equation, because it
is not possible to obtain the exact values of the spatial derivatives. One should
observe that in order to guarantee a unique corresponding reference solution
one has to supply observational data with enough spatial resolution. This is the
object of this paper.

While the classical method of continuous data assimilation is simple in con-
cept, special care has to be taken concerning how the observations are inserted
into a model in practice. For example, it is generally necessary to separate the
fast and slow parts of a solution before inserting the observations into the model.
The method proposed here does not require such a decomposition. Since the
observations are not directly inserted into the model, we can rely on the dissipa-
tion already present in the dynamics to filter the observed data, i.e. the viscous
term will suppress the “spill over” oscillations in the fine scales. The advantage
of this approach is that it works for a general class of interpolant observables
without modification.

Let u(t) represent the state at time t of the dynamical system in which
we are interested, and let Ih(u(t)) represent our observations of this system
at a coarse spatial resolution of size h. Given observational measurements,
Ih(u(t)), for t ∈ [0, T ], our goal is to construct an increasingly accurate initial
condition from which predictions of u(t), for t > T , can be made. We do this
by constructing an approximate solution v(t) that converges to u(t) over time.

Suppose the time evolution of u is governed by a given evolution equation
of the form

du

dt
= F (u), (1)

where the initial data, u0, is missing. Our algorithm for constructing v(t) from
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the observational measurements Ih(u(t)) for t ∈ [0, T ] is given by

dv

dt
= F (v)− µIh(v) + µIh(u), (2)

v(0) = v0, (3)

where µ is a positive relaxation parameter, which relaxes the coarse spatial
scales of v toward those of the observed data, and v0 is taken to be arbitrary. It
is worth stressing that our algorithm is designed to work for general dissipative
dynamical systems of the form (1). Such systems are known to have finitely
many degrees of freedom in the form of determining parameters of the type
Ih(u), see, for example, Cockburn, Jones and Titi [10], Foias, Manley, Rosa and
Temam [15], Foias and Prodi [16], Foias and Temam [17], [18], Jones and Titi
[23], [24], and references therein. The incompressible two-dimensional Navier–
Stokes equations provide a concrete example of a dissipative dynamical system
of this type.

Note that the equations used in numerical weather forecasting are compress-
ible three-dimensional equations involving variable density and a velocity equa-
tion that is coupled to a whole set of state variables. Our approach assumes the
global existence of the underlying model, and the estimates we provide use the
available estimates for the globally existing solutions. Therefore, we will not be
able to prove any theorems regarding even the three-dimensional Navier Stokes
equations using our techniques. Note, however, that Korn [25] shows the three-
dimensional Lagrangian-averaged Navier–Stokes-α model of turbulence posses
a finite number of determining observations and uses this fact to obtain results
about the classical method of data assimilation. Therefore, it should be pos-
sible to obtain results for the new method of data assimilation presented here
for solutions governed by the three-dimensional Lagrangian-averaged Navier–
Stokes-α model. Similarly, the three-dimensional Leray-α model [9] and the
three-dimensional primitive equations [8] are other systems known to be glob-
ally well-posed to which our algorithm and analysis should apply. Although our
analysis doesn’t apply to complex systems in which there is no proof of global
existence, it would still be interesting to numerically test our algorithm in more
realistic cases. In particular, there is significantly more work to do before the
data assimilation algorithm presented here can be applied to numerical weather
forecasting.

To demonstrate our approach and data assimilation algorithm we consider
the incompressible two-dimensional Navier–Stokes equations. These equations
serve as a paradigm because they are amenable to mathematical analysis while
at the same time posses non-linear dynamical properties similar to the equations
used in realistic weather models. Thus, our study of data assimilation for the
incompressible two-dimensional Navier–Stokes equations should be viewed as
a mathematical problem motivated by real-world applications. With this in
mind we suppose that the evolution of u is governed by the two-dimensional
Navier–Stokes system

∂u

∂t
− ν∆u+ (u · ∇)u+∇p = f (4)
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∇ · u = 0, (5)

in the physical domain Ω, with either no-slip Dirichlet, or periodic, boundary
conditions with zero spatial average. Here u(x, t) represents velocity of the fluid
at time t at position x, ν > 0 represents the kinematic viscosity, p(x, t) is the
pressure and f(x, t) is a time dependent body force applied to the fluid.

In the case of no-slip Dirichlet boundary conditions we take u = 0 on ∂Ω.
The domain Ω is an open, bounded and connected set in R2 with C2 boundary,
such that ∂Ω can be represented locally as the graph of a C2 function. In
the case of periodic boundary conditions we require u and f to be L−periodic,
in both x1 and x2 directions, with zero spatial averages over the fundamental
periodic domain Ω = [0, L]2.

Continuous data assimilation, in the context of the incompressible two-
dimensional Navier–Stokes equations, was first studied by Browning, Henshaw
and Kreiss in [7], later by Henshaw, Kreiss and Yström in [22] and also by
Olson and Titi in [27] and [28], motivated by the concept of finite number of
determining modes which was introduced for the first time in [16] (see also [15],
[27], and references therein). These studies treated the case of periodic bound-
ary conditions, where the observations of the velocity field were given by the
low Fourier modes with wave numbers k, such that |k| ≤ 1/h. Since the low
modes essentially represent the large spatial scales of the solution, the classi-
cal data assimilation algorithm works well for this type of observations. We
treat more general observations of the velocity field. Observations of vorticity
or of the stream function should be treatable using similar analysis; however,
observations of the pressure field pose additional difficulties.

It is worth mentioning that the method of data assimilation studied here is
consistent with some of the signal synchronization algorithms. Most recently,
a similar idea has also been introduced in [14] to show that the long-time dy-
namics of the two-dimensional Navier–Stokes equations can be imbedded in an
infinite-dimensional dynamical system that is induced by an ordinary differential
equations, named determining form, which is governed by a globally Lipschitz
vector field.

Let us denote by Hm(Ω) the Sobolev space of index m, and by Ḣm(Ω) its
subspace of functions with zero spatial averages. The method of constructing
v, given by (2), allows the use of general interpolant observables, given by
interpolants Ih:H

1(Ω) → L2(Ω) (Ih: Ḣ
1(Ω) → L̇2(Ω) in the periodic case) that

are linear and satisfy the following approximation property:

‖ϕ− Ih(ϕ)‖2L2(Ω) ≤ γ0h
2‖ϕ‖2H1(Ω) (6)

for every ϕ ∈ H1(Ω). The orthogonal projection onto the low Fourier modes,
with wave numbers k such that |k| ≤ 1/h, mentioned above, is an example of
such interpolant observable. However, there are many other interpolant observ-
ables which satisfy (6). Note that ‖ϕ− Ih(ϕ)‖2L2(Ω) → 0 as h→ 0. This implies
our observational measurements are noise free. The case of stochastically noisy
data will be studied in a future work [3].
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The term general interpolant observable and its associated interpolant op-
erator Ih should be distinguished from the observation operators used in data
assimilation. The former perform a classical interpolation of the state vector
between resolutions, while the later map general observables that are related to
the state vector by an operator or a functional from the space of observations
to the space of the state vector. In the present context an operator that maps
pressure observations to the velocity space would be an example of an observa-
tion operator but not of an interpolant. Such observation operators will not be
considered here.

One physically relevant example of an interpolant which satisfies condition
(6) are the volume elements studied in [23] and [24] (see also Foias and Titi
[19]). In this case

Ih(ϕ)(x) =

N
∑

j=1

ϕ̄j

(

χQj
(x)− h2

L2

)

where ϕ̄j =
1

h2

∫

Qj

ϕ(x) dx,

and the domain Ω = [0, L]2, for the periodic boundary conditions case, has
been divided into N equal squares Qj , with sides h = L/

√
N . Volume elements

generalize to any domain Ω on which the Bramble–Hilbert lemma holds. An
elementary discussion of this lemma in the context of finite element methods
appears in Brenner and Scott [5].

In addition, we also consider interpolant observables given by linear inter-
polants Ih:H

2(Ω) → L2(Ω), that satisfy the following approximation property:

‖ϕ− Ih(ϕ)‖2L2(Ω) ≤ γ1h
2‖ϕ‖2H1(Ω) + γ2h

4‖ϕ‖2H2(Ω), (7)

for every ϕ ∈ H2(Ω). An example of this type of interpolant is given by mea-
surements at a discrete set of nodal points in Ω. Specifically, let h > 0 be given,
and let Ω = ∪Nh

j=1Qj , where Qj are disjoint subsets such that diamQj ≤ h, for
j = 1, 2, . . . , Nh, and let xj ∈ Qj be arbitrary points. Then set, for example,

Ih(ϕ)(x) =

Nh
∑

k=1

ϕ(xk)χQj
(x),

in the no-slip Dirichlet boundary conditions case. However, in the case of pe-
riodic boundary conditions we divide, as before, the domain Ω = [0, L]2 into
N identical cubes, {Qj}Nj=1, with sides h = L/

√
N , and take the interpolant

operator that is induced by the nodal values, Ih: Ḣ
2(Ω) → L̇2(Ω), to be

Ih(ϕ)(x) =

Nh
∑

k=1

ϕ(xk)
(

χQj
(x)− h2

L2

)

. (8)

Notice that, by construction, the spatial average of Ih(ϕ), given in (8), is zero.
Following ideas in [24] (see also [18]) we will show in Appendix A that the
interpolant operators, Ih(ϕ), defined by (8), satisfy the approximation property
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(7). Further details concerning smooth interpolant observables and operators
that satisfy (7), which are induced by nodal values, are included in Appendix A.
These smoother observables, and their analytic properties, are needed for the
study of a similar data assimilation algorithm with stochastic noisy data [3].

Our paper is organized as follows. First, we recall the functional setting of
the two-dimensional Navier–Stokes equations necessary for our analysis and then
use this setting to formulate our new method of continuous data assimilation.
After this we proceed to the task of finding conditions on h and µ under which
the approximate solution obtained by this algorithm converges to the reference
solution over time. From a physical point of view, the spatial resolution h of
the observational measurements is difficult and costly to change, whereas the
relaxation parameter µ is an easily changed mathematical constant. Our main
results, therefore, focus on finding bounds on h for which there exists a µ that
guarantees the success of our algorithm. We also prove a number of propositions
that provide estimates on µ. Section 3 treats the case of smooth, bounded
domains with no-slip Dirichlet boundary conditions, while section 4 treats the
case of periodic boundary conditions. Our main results may be stated as follows:

Theorem 1. Let Ω be an open, bounded and connected set in R2 with C2

boundary, and let u be a solution to equations (4)–(5) with no-slip Dirichlet
boundary conditions. Assume that Ih satisfies (6), with h small enough such
that

1/h2 ≥ c1λ1G
2,

where c1 is a constant given in (36). Then there exists µ > 0, given explicitly
in Proposition 1, such that ‖v − u‖L2(Ω) → 0 exponentially, as t→ ∞.

Here G denotes the Grashof number

G =
1

ν2λ1
lim sup
t→∞

‖f(t)‖L2 (9)

where λ1 is the smallest eigenvalue of the Stokes operator subject to homoge-
neous Dirichlet boundary conditions. Let us remark, again, that the constant
c1 depends only on γ0, given in (6), and the shape, but not the size, of the
domain Ω. In particular, c1 is given by (36) where the constant c is chosen so
the bound (16) on the non-linear term holds. Moreover, µ may be chosen equal
to 5c2G2νλ1 as indicated in Proposition 1, below.

Results similar to Theorem 1 hold when Ih satisfies (7), however, we omit
the proof of this result in the case of no-slip Dirichlet boundary conditions and
instead proceed directly to the the case of periodic boundary conditions where
sharper estimates may be obtained. In particular, we prove

Theorem 2. Let Ω = [0, L]2 and let u be a solution to equations (4)–(5) with
periodic boundary conditions. Let Ih satisfy either (6) or (7), with h small
enough such that

1/h2 ≥ c2λ1G
(

1 + log(1 +G)
)

,

where c2 is a constant given in (39). Then there exists µ > 0, given explicitly
in Proposition 2, such that ‖v − u‖H1(Ω) → 0 exponentially, as t→ ∞.
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Let us remark that c2 depends only on γ0 in the case Ih satisfies (6) and only on
γ1 and γ2 in the case that Ih satisfies (7). Also, µ may be chosen as 3c2νλ1G(1+
log(1 +G))/c0. In particular, µ is given in Proposition 2 and the constant c2 is
defined in (39) as an increasing function of c0 and c, where c0 is the constant
appearing in either (24) or (25) and c is chosen large enough so that the bounds
in both (22) and (37) hold.

Note that the estimate on the length scale h in Theorem 2 can be compared
to previous results reported in [27]. Let ṽ(t) be the approximate solution ob-
tained by the method of continuous data assimilation introduced in [27] for the
interpolant observable Ih(u) given by projection onto the Fourier modes with
wave numbers |k| < 1/h. In [27] it was shown, that for small values of h, such
that 1/h2 ∼ λ1G, ‖u(t) − ṽ(t)‖H1(Ω) → 0 exponentially fast, as t → ∞. Up to
a logarithmic correction term, Theorem 2 states similar estimates on h for the
new algorithm which covers a much wider class of interpolant observables.

The final section of this paper discusses numerical simulations, which are in
progress, related works, and closes with a few concluding remarks. We supple-
ment this paper with an appendix in which we introduce smooth interpolant
operators, that are induced by nodal values, and which satisfy inequality (7).

2 Preliminaries

This section reviews the functional setting of the two-dimensional Navier–Stokes
equations with no-slip and periodic boundary conditions, recalls some facts that
will be used in the remainder of the paper and then gives an explicit formulation
of our new method for continuous data assimilation in this context. Following
Constantin and Foias [11], Foias, Manley, Rosa and Temam [15], Robinson [29]
and Temam [30], we begin by defining a suitable domain Ω and space V of
smooth functions which satisfy each type of boundary conditions.

No-slip Dirichlet Boundary Conditions. Let Ω be an open, bounded
and connected domain with C2 boundary. Define V to be set of all C∞ vector
fields from Ω to R2 that are divergence free and compactly supported.

Periodic Boundary Conditions. Let Ω = [0, L]2 for some fixed L > 0.
Define V to be the set of all L-periodic trigonometric polynomials from R2 to
R2 that are divergence free and have zero averages.

Given V corresponding to either type of boundary conditions let H be the
closure of V in L2(Ω;R2) and V be the closure of V in H1(Ω;R2). The spaces
H and V are Hilbert spaces with inner products

(u, v) =

∫

Ω

u(x) · v(x) dx and ((u, v)) =
2

∑

i,j=1

∫

Ω

∂ui
∂xj

∂vi
∂xj

dx,

respectively. Denote the norms of H and V by

|u| =
√

(u, u) and ‖u‖ =
√

((u, u)),
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and the dual of V by V ∗ with the pairing 〈u, v〉 where u ∈ V ∗ and v ∈ V .
Define the Leray projector Pσ as the orthogonal projection from L2(Ω;R2)

onto H, and define the Stokes operator A:V → V ∗, and the bilinear term
B:V × V → V ∗ to be the continuous extensions of the operators given by

Au = −Pσ∆u and B(u, v) = Pσ(u · ∇v),

respectively, for any smooth solenoidal vector fields u and v in V.
Denote the domain of A by D(A) =

{

u ∈ V : Au ∈ H
}

. The linear operator
A is self-adjoint and positive definite with compact inverse A−1:H → H. Thus,
there exists a complete orthonormal set of eigenfunctions wi in H such that
Awi = λiwi where 0 < λi ≤ λi+1 for i ∈ N. Writing λ1 as the smallest
eigenvalue of A we have the following Poincaré inequalities:

if u ∈ V then λ1|u|2 ≤ ‖u‖2, (10)

if u ∈ D(A) then λ1‖u‖2 ≤ |Au|2. (11)

Note that for u ∈ H, |u| = ‖u‖L2(Ω) and for u ∈ V the Poincaré inequality
implies ‖u‖ is equivalent to ‖u‖H1(Ω).

The bilinear term B has the algebraic property that

〈

B(u, v), w
〉

= −
〈

B(u,w), v
〉

, (12)

for u, v, w ∈ V , and consequently the orthogonality property that

〈

B(u,w), w
〉

= 0. (13)

Here the pairing 〈·, ·〉 denotes the dual action of V ∗ on V . Details may be found,
e.g., in [11], [15], [29] and [30].

In the case of periodic boundary conditions the bilinear term possesses the
additional orthogonality property

(

B(w,w), Aw
)

= 0, for every w ∈ D(A); (14)

and consequently one has

(

B(u,w), Aw
)

+
(

B(w, u), Aw
)

= −
(

B(w,w), Au
)

. (15)

Note that the bilinear term satisfies a number of inequalities which hold for
either no-slip or periodic boundary conditions. These are

∣

∣

〈

B(u, v), w
〉∣

∣ ≤ c|u|1/2‖u‖1/2‖v‖|w|1/2‖w‖1/2, (16)

for every u, v, w ∈ V ,
∣

∣

(

B(u, v), w
)∣

∣ ≤ c|u|1/2‖u‖1/2‖v‖1/2|Av|1/2|w| (17)

for every u ∈ V , v ∈ D(A) and w ∈ H, and
∣

∣

(

B(u, v), w
)∣

∣ ≤ c|u|1/2|Au|1/2‖v‖|w|, (18)
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for every u ∈ D(A) and v, w ∈ V , where c is a dimensionless constant depending
only on the shape, but not the size, of Ω. These inequalities may be obtained
from the Hölder’s inequality, the Sobolev inequalities and Ladyzhenskaya’s in-
equality, see, e.g., [11], [15], [29] and [30].

We write the incompressible two-dimensional Navier–Stokes equations with
the above notation in functional form as

du

dt
+ νAu+B(u, u) = f (19)

with initial condition u(0) = u0. We have assumed f ∈ H so that Pσf = f .
As shown in [11], [15], [29] and [30] these equations are well-posed; and pos-
sess a compact finite-dimensional global attractor, when f is time-independent.
Specifically, we have

Theorem 3 (Existence and Uniqueness of Strong Solutions). Suppose u0 ∈ V
and f ∈ L∞

(

(0,∞), H
)

. Then the initial value problem (19) has a unique
solution that satisfies

u ∈ C
(

[0, T ];V
)

∩ L2
(

(0, T );D(A)
)

and
du

dt
∈ L2

(

(0, T );H
)

,

for any T > 0.

We now give bounds on solutions u of (19) that will be used in our later
analysis. With the exception of inequality (22) due to Dascaliuc, Foias and
Jolly [13] these estimates appear in any the references listed above.

Theorem 4. Fix T > 0, and let G be the Grashof number given in (9). Suppose
that u is the solution of (19), corresponding to the initial value u0, then there
exists a time t0, which depends on u0, such that for all t ≥ t0 we have:

|u(t)|2 ≤ 2ν2G2 and

∫ t+T

t

‖u(τ)‖2dτ ≤ 2
(

1 + Tνλ1
)

νG2. (20)

In the case of periodic boundary conditions we also have:

‖u(t)‖2 ≤ 2ν2λ1G
2,

∫ t+T

t

|Au(τ)|2dτ ≤ 2(1 + Tνλ1)νλ1G
2; (21)

furthermore, if f ∈ H is time-independent then

|Au(t)|2 ≤ cν2λ21(1 +G)4. (22)

We now write the continuous data assimilation equations (2) for the incom-
pressible two-dimensional Navier–Stokes equations. Let u be a strong solution
of (4)–(5), or equivalently (19), as given by Theorem 3, and let Ih be an inter-
polation operator satisfying (24) or (25). Suppose that u is to be recovered from
the observational measurements Ih(u(t)), that have been continuously recorded
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for times t in [0, T ]. Then, the approximating solution v with initial condition
v0 ∈ V , chosen arbitrarily, shall be given by

∂v

∂t
− ν∆v + (v · ∇)v +∇q = f + µ(Ih(u)− Ih(v)),

∇ · v = 0,

on the interval [0, T ]. Observe that in the periodic setting we demand, through
construction, that the spatial average of Ih(ϕ) is zero, for every ϕ in the relevant
domain of Ih. This is done for technical reason in order to guarantee that the
spatial average of v is preserved, and hence can be chosen to be constant zero.
Using the above functional setting the above system is equivalent to

dv

dt
+ νAv +B(v, v) = f + µPσ(Ih(u)− Ih(v)), (23)

on the interval [0, T ]. Furthermore, inequalities (6) and (7) imply

|Pσ(w − Ih(w))|2 ≤ |w − Ih(w)|2 ≤ c0h
2‖w‖2, (24)

for every w ∈ V , where c0 = γ0, and respectively

|Pσ(w − Ih(w))|2 ≤ |w − Ih(w)|2 ≤ 1

2
c0h

2‖w‖2 + 1

4
c20h

4|Aw|2, (25)

for every w ∈ D(A),where c0 depends only on γ1 and γ2.
If we knew u0 exactly, then we could take v0 = u0 and the resulting solution v

would be identical to u for all time; this is due to the uniqueness of the solutions
of (23) (see Theorem 5, below). However, if we knew u0 exactly, there would
be no need for continuous data assimilation in the first place and one could
integrate (19) directly with the initial value u0. Intuitively speaking it makes
sense to take v0 = PσIh(u(0)), which is the initial observation of the solution u.
However, v0 chosen in this way may not be an element of V . The main point of
the data assimilation method given in (23) is to avoid the difficulties which come
from the direct insertion of observational measurements into the approximate
solution. A choice for v0 in agreement with this philosophy is v0 = 0. In fact,
our results to hold equally well when v0 is chosen to be any element of V . In
either case we obtain an approximating solution v constructed using only the
observations of the solution Ih(u) and the known values of ν and f .

We now show the data assimilation equations (23) are well-posed. When
Ih satisfies (24) we show well-posedness for both no-slip Dirichlet and periodic
boundary conditions. When Ih satisfies (25) we will deal here, for simplicity,
with only the case of periodic boundary conditions.

Theorem 5. Suppose Ih satisfies (24) and µc0h
2 ≤ ν, where c0 is the constant

appearing in (24). Then the continuous data assimilation equations (23) possess
unique strong solutions that satisfy

v ∈ C
(

[0, T ];V
)

∩ L2
(

(0, T );D(A)
)

and
dv

dt
∈ L2

(

(0, T );H
)

, (26)

10



for any T > 0. Furthermore, this solution depends continuously on the initial
data v0 in the V norm.

Proof. Define g = f + µPσIh(u). Theorem 3 implies u ∈ C
(

[0, T ];V
)

. Conse-
quently

|PσIh(u)| ≤ |u− Ih(u)|+ |u| ≤
(

c
1/2
0 h+ λ

−1/2
1

)

‖u‖
implies that PσIh(u) ∈ C

(

[0, T ];H
)

. Hence g ∈ C
(

[0, T ];H
)

. This means there
is a constant M such that |g|2 < M for every t ∈ [0, T ].

We now show the existence of solutions v to (23) using the Galerkin method.
The proof follows the same ideas as the proof of Theorem 3. Let Pn be the n-th
Galerkin projector and vn be the solution to the finite-dimensional Galerkin
truncation











dvn

dt
+ νAvn + PnB(vn, vn) = Png − µPnIh(v

n)

vn(0) = Pnv0.

(27)

First, we observe that (27) is a finite system of ODEs, which has short time
existence and uniqueness. We focus on the maximal interval of existence, [0, Tn),
and show uniform bounds for vn, which are independent of n. This in turn will
imply the global existence for (27). Thus, our aim is to find bounds on vn which
are uniform in n. This will then show global existence of solutions to (23).

Begin by taking inner products of (27) with vn to obtain

1

2

d

dt
|vn|2 + ν‖vn‖2 = (g, vn)− µ

(

Ih(v
n), vn

)

= (g, vn) + µ
(

vn − Ih(v
n), vn

)

− µ|vn|2

≤ 1

2µ
|g|2 + µ

2
|vn|2 + µ

2

∣

∣Pσ(v
n − Ih(v

n))
∣

∣

2
+
µ

2
|vn|2 − µ|vn|2

≤ 1

2µ
|g|2 + µc0h

2

2
‖vn‖2,

where we used (24) in the above estimates. By hypothesis, the size of the cube,
h, is chosen to be small enough such that µc0h

2 ≤ ν. Therefore,

d

dt
|vn|2 + ν‖vn‖2 ≤ 1

µ
|g|2, (28)

and consequently

d

dt
|vn|2 + νλ1|vn|2 ≤ 1

µ
M, for every t ∈ [0, Tn). (29)

Multiplying (29) by eνλ1t and integrating yields

|vn(t)|2 ≤ |v0|2e−νλ1t +
M

µνλ1

(

1− e−νλ1t
)

≤ ρ2H , for every t ∈ [0, Tn),

11



where

ρ2H = |v0|2 +
M

µνλ1
.

As this bound holds uniformly in n for Tn arbitrarily large, we have global
existence on the interval [0, T ], for all T ≥ 0. Now, integrating (28) yields

|vn(t)|2 − |v0|2 + ν

∫ t

0

‖vn‖2 ≤ t

µ
M.

It follows that
∫ t

0

‖vn(τ)‖dτ ≤ σ2
V , for every t ∈ [0, T ],

where

σ2
V =

1

ν
|v0|2 +

T

µν
M.

Now, take inner products of (27) with Avn to obtain

1

2

d

dt
‖vn‖2 + ν|Avn|2 +

(

B(vn, vn), Avn
)

= (g,Avn)− µ(Ih(v
n), Avn).

Inequality (17) implies

∣

∣

(

B(vn, vn), Avn
)∣

∣ ≤ c|vn|1/2‖vn‖|Avn|3/2

≤ 1

4

(

63/4

ν3/4
c|vn|1/2‖vn‖

)4

+
3

4

(

ν3/4

63/4
|Avn|3/2

)4/3

≤ 54c4

ν3
|vn|2‖vn‖4 + ν

8
|Avn|2.

Furthermore,
∣

∣(g,Avn)
∣

∣ ≤ |g||Avn| ≤ 2

ν
|g|2 + ν

8
|Avn|2

and by (24) along with the assumption that µc0h
2 ≤ ν we obtain

−µ(Ih(vn), Avn) = µ(vn − Ih(v
n), Avn)− µ‖vn‖2

≤ µ2

ν

∣

∣Pσ(v
n − Ih(v

n))
∣

∣

2
+
ν

4
|Avn|2 − µ‖vn‖2

≤ µ2c0h
2

ν
‖vn‖2 + ν

4
|Avn|2 − µ‖vn‖2 ≤ ν

4
|Avn|2.

(30)

Therefore,
d

dt
‖vn‖2 + ν|Avn|2 ≤ 108c4

ν3
|vn|2‖vn‖4 + 4

ν
|g|2, (31)

and consequently

d

dt
‖vn‖2 − 108c4

ν3
|vn|2‖vn‖4 ≤ 4

ν
|g|2 ≤ 4

ν
M, (32)

12



for every t ∈ [0, T ]. Define

ψn(t) = exp

{

− 108c4

ν3

∫ t

0

|vn|2‖vn‖2
}

. (33)

Since
∫ t

0

|vn|2‖vn‖2 ≤ ρ2H

∫ t

0

‖vn‖2 ≤ ρ2Hσ
2
V <∞, for every t ∈ [0, T ],

we have that ψn(t) > 0 for every t ∈ [0, T ]. Multiplying (29) by ψn(t) and
integrating yields

‖vn(t)‖2 ≤ 1

ψn(t)

{

‖v0‖2 +
4

ν
M

∫ t

0

ψn(s)ds

}

≤ ρ2V , for all t ∈ [0, T ],

where

ρ2V =
1

ψn(T )

{

‖v0‖2 +
4T

ν
M

}

.

Now, integrating (31) yields

‖vn(t)‖2 − ‖v0‖2 + ν

∫ t

0

|Avn|2 ≤ 108c4

ν3

∫ t

0

(

|vn|2‖vn‖4 + 4

ν
|g|2

)

≤ σ2
D(A),

for every t ∈ [0, T ], where

σ2
D(A) =

108c4T

ν3

{

ρ2Hρ
4
V +

4

ν
M

}

.

The bounds ρV and σD(A) are uniform in n. Uniform bounds on |dv/dt|
then proceed in exactly the same way as for the two-dimensional Navier–Stokes
equations. Since the estimates on the Galerkin solutions are uniform in n,
Aubin’s compactness theorem [1] allows one to extract subsequences in such a
way that the limit v satisfies (23) and (26).

Next, we show that such solutions are unique and depend continuously on
the initial data. Let v1 and v2 be two solutions for (23) both satisfying the
conditions in (26). Choose K large enough such that ‖v1‖2 ≤ K and ‖v2‖2 ≤ K
for almost every t ∈ [0, T ]. Let δ = v1 − v2. Then δ satisfies

dδ

dt
+ νAδ +B(v1, δ) +B(δ, v2) = −µPσIh(δ).

Taking inner product with Aδ yields

1

2

d

dt
‖δ‖2 + ν|Aδ|2 +

(

B(v1, δ), Aδ
)

+
(

B(δ, v2), Aδ
)

= −µ(Ih(δ), Aδ).

Here we used the fact that

1

2

d

dt
‖δ‖2 =

(dδ

dt
, Aδ

)

,

13



which can be justified by Lemma 1.2 in Chapter 3 of Temam [31] or Theorem 7.2
in Robinson [29] which is due to Lions–Magenes [26]. Estimate the right-hand
side of this equation as in (30) to obtain

−µ(Ih(δ), Aδ) ≤
µ2c0h

2

2ν
‖δ‖2 + ν

2
|Aδ|2 − µ‖δ‖2 ≤ ν

2
|Aδ|2.

Here we have again used (24) and the hypothesis that µc0h
2 ≤ ν. It follows

that
1

2

d

dt
‖δ‖2 + ν

2
|Aδ|2 ≤

∣

∣(B(v1, δ), Aδ)
∣

∣+
∣

∣(B(δ, v2), Aδ)
∣

∣. (34)

The proof of uniqueness and continuity now proceeds as for the incompress-
ible two-dimensional Navier–Stokes equations. In particular, estimate the non-
linear terms on the right-hand side of (34) using (17) and (18) as

∣

∣(B(v1, δ), Aδ)
∣

∣ ≤ c|v1|1/2‖v1‖1/2‖δ‖1/2|Aδ|3/2 ≤ 27c4K2

4ν3λ1
‖δ‖2 + ν

4
|Aδ|2,

and
∣

∣(B(δ, v2), Aδ)
∣

∣ ≤ c|δ|1/2‖v2‖|Aδ|3/2 ≤ 27c4K2

4ν3λ1
‖δ‖2 + ν

4
|Aδ|2.

Therefore,
d

dt
‖δ‖2 ≤ 27c4K2

2ν3λ1
‖δ‖2, for all t ∈ [0, T ].

Integrating yields

‖δ(t)‖2 ≤ ‖δ0‖2 exp
{

27c4K2

2ν3λ1
t

}

.

Thus, the solutions v to (23), which satisfy (26), also satisfy v ∈ C([0, T ], V ),
and depend continuously on the initial data in the V norm.

Theorem 6. In the case of periodic boundary conditions suppose that Ih sat-
isfies (25), and µc0h

2 ≤ ν, where c0 is the constant appearing in (25). Then
the continuous data assimilation equations (23) possess unique strong solutions
that satisfy (26), for any T > 0. Furthermore, this solution is in C

(

[0, T ], V
)

and depends continuously on the initial data v0 in the V norm.

Proof. The proof is similar to the proof of Theorem 5 but makes use of the
identity (14) to obtain estimates on ‖v‖ and

∫ t

0
|Av|2 directly.

The algorithm given by equation (23) for constructing the approximate solu-
tion v contains two parameters h and µ. The first parameter h has dimensions
of length and corresponds to the resolution of the observational measurements
represented by Ih(u). Smaller values of h correspond to spatially more accurate
resolved measurements. The relaxation parameter µ controls the rate at which
the approximating solution v is forced toward the observable part of the refer-
ence solution u. Larger values of µ cause Ih(v) to faster track Ih(u). It is the

14



parameter µ which distinguishes (23) from the previous methods of continuous
data assimilation studied in [7], [22], [27] and [28].

The condition that µc0h
2 ≤ ν, given in Theorem 5, places a restriction on

the size of µh2 compared to the viscosity ν, sufficient to ensure the data as-
similation equations are well-posed. This restriction is due to the fact that the
the interpolant operator µIh might generate large gradients and spatial oscilla-
tions (“spill over” to the fine scales) that need to be controlled (suppressed) by
the viscosity term. Notice that in the case when Ih = Pmh

, where Pmh
is the

orthogonal projection onto the linear sub-space spanned by the Fourier modes
with wave numbers |k| ≤ mh = 1

h , such oscillations are not generated, since
−(µIh(v), v) = −µ|Pmh

v|2 and −(µIh(v), Av) = −µ‖Pmh
v‖2. Consequently,

there is no restriction on µh2 and µ can be taken arbitrary large. In the limit
when µ → ∞ one obtains exactly the same algorithm introduced in [27] (see
also [21]). In particular, one has Pmh

v = Pmh
u, and all that one needs to do is

to solve for q = (I−Pmh
)v, for which an explicit evolution equation is presented

in [27].
Next, we give further conditions on h and µ which guarantee that the dif-

ference between the approximating solution v and the reference solution u con-
verges to zero as t→ ∞.

3 No-slip Dirichlet Boundary Conditions Case

In this section we prove Theorem 1. We first recall the following generalized
Gronwall inequality proved in Jones and Titi [23] (see also [15]).

Lemma 1 (Uniform Gronwall Inequality). Let α be a locally integrable real val-
ued function on (0,∞) satisfying for some 0 < T <∞ the following conditions:

lim inf
t→∞

∫ t+T

t

α(s)ds > 0 and lim sup
t→∞

∫ t+T

t

max(−α(s), 0)ds <∞.

Suppose Y is an absolutely continuous non-negative function on (0,∞) such that
dY/dt+ α(t)Y ≤ 0 a.e. on (0,∞). Then Y (t) → 0 exponentially as t→ ∞.

We now state and prove a lemma leading to our main result.

Proposition 1. Let Ω be an open, bounded and connected set in R2 with C2

boundary, and let u be a solution of the incompressible two-dimensional Navier–
Stokes equations (19) on Ω with no-slip Dirichlet boundary conditions. Let v
be the approximating solution given by equations (23). Then |u − v| → 0, as
t→ ∞, provided µc0h

2 ≤ ν and µ ≥ 5c2G2νλ1.

Proof. Consider the time evolution of w = u− v. Since

B(u, u)−B(v, v) = B(u,w) +B(w, v) = B(u,w) +B(w, u)−B(w,w)

and
Ih(u)− Ih(v) = Ih(w),
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subtracting equation (23) from equation (19) yields

dw

dt
+ νAw +B(u,w) +B(w, u)−B(w,w) = −µPσIh(w). (35)

Taking the inner product of (35) with w, and using again (24), we obtain

1

2

d

dt
|w|2 + ν‖w‖2 +

(

B(w, u), w
)

= −µ(Ih(w), w)

= µ(w − Ih(w), w)− µ|w|2

≤ µ

2

∣

∣Pσ(w − Ih(w))
∣

∣

2
+
µ

2
|w|2 − µ|w|2

≤ µc0h
2

2
‖w‖2 − µ

2
|w|2 ≤ ν

2
‖w‖2 − µ

2
|w|2.

Since (16) implies

∣

∣(B(w, u), w)
∣

∣ ≤ c‖u‖|w|‖w‖ ≤ c2

2ν
‖u‖2|w|2 + ν

2
‖w‖2,

we obtain
d

dt
|w|2 +

(

µ− c2

ν
‖u‖2

)

|w|2 ≤ 0.

Denote

α(t) = µ− c2

ν
‖u‖2.

Taking T = (νλ1)
−1 in Theorem 4 we have for t ≥ t0 that

∫ t+T

t

‖v‖2 ≤ 2(1 + Tνλ1)νG
2 = 4νG2.

Thus

lim inf
t→∞

∫ t+T

t

α(s)ds ≥ µ

νλ1
− 4c2G2 ≥ c2G2 > 0,

and by Lemma 1 it follows that |w| → 0, exponentially, as t→ ∞.

Proof of Theorem 1. The hypothesis of Proposition 1 require that

µc0h
2 ≤ ν and µ ≥ 5c2G2νλ1.

Therefore
1

h2
≥ µc0

ν
≥ c1G

2λ1 (36)

where c1 = 5c0c
2.
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4 Periodic Boundary Conditions Case

In this section we prove Theorem 2. We begin with an elementary inequality
which will be referred to in the sequel.

Lemma 2. Let φ(r) = r − β(1 + log r) where β > 0. Then

min{φ(r) : r ≥ 1} ≥ −β log β.

Proof. Note first that

φ(1) = 1− β and lim
r→∞

φ(r) = ∞.

The derivative φ′(r) = 1− β/r is zero if and only if r = β. Therefore

min{φ(r) : r ≥ 1} =

{

1− β if 0 < β ≤ 1
−β log β if 1 < β.

Observe that over the interval 0 < β ≤ 1 we have 1 − β ≥ −β log β, which
concludes our proof.

We now state and prove a lemma leading to the proof of Theorem 2.

Proposition 2. Let Ω = [0, L]2, for some fixed L > 0. Let u be a solution of
the incompressible two-dimensional Navier–Stokes equations (19) on Ω equipped
with periodic boundary conditions. Let v be the approximating solution given by
equations (23), where Ih satisfies (24). Then ‖u− v‖ → 0, as t→ ∞, provided
µc0h

2 ≤ ν and µ ≥ 3νλ1
(

2c log 2c3/2 + 4c log(1 +G)
)

G.

Proof. The proof makes use of the orthogonality properties (14) and (15) along
with the Brézis–Gallouet inequality [6] which may be written as

‖u‖L∞(Ω) ≤ c‖u‖
{

1 + log
|Au|2
λ1‖u‖2

}

, (37)

which will allow us to obtain sharper estimates than for the case of no-slip
boundary conditions (see also [32] for similar, and other, logarithmic estimates
for the nonlinear term of the NSE).

Take the inner product of equation (35) with Aw and and use the orthogo-
nality relations (14) and (15) to obtain

1

2

d‖w‖2
dt

+ ν|Aw|2 =
(

B(w,w), Au
)

− µ(Ih(w), Aw).

Using (37) and the hypothesis µc0h
2 ≤ ν we have

∣

∣

(

B(w,w), Au
)
∣

∣ ≤ c‖w‖2
{

1 + log
|Aw|2
λ1‖w‖2

}

|Au|,
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and thanks to (24) as in (30) we have

−µ(Ih(w), Aw) ≤
µ2c0h

2

2ν
‖w‖2 + ν

2
|Aw|2 − µ‖w‖2 ≤ ν

2
|Aw|2 − µ

2
‖w‖2.

Therefore,

d‖w‖2
dt

+ ν|Aw|2 ≤
(

2c|Au|
{

1 + log
|Aw|2
λ1‖w‖2

}

− µ

)

‖w‖2,

or

d‖w‖2
dt

+

(

νλ1
|Aw|2
λ1‖w‖2

− 2c|Au|
{

1 + log
|Aw|2
λ1‖w‖2

}

+ µ

)

‖w‖2 ≤ 0.

Now setting

β =
2c|Au|
νλ1

and r =
|Aw|2
λ1‖w‖2

in Lemma 2, and noting that r ≥ 1, by Poincaré’s inequality (11), we obtain

d‖w‖2
dt

+

{

µ− 2c|Au| log 2c|Au|
νλ1

}

‖w‖2 ≤ 0.

By (22) we estimate

2c log
2c|Au|
νλ1

≤ c3 + c4 log(1 +G) =: J, (38)

where c3 = 2c log 2c3/2 and c4 = 4c. It follows that

d‖w‖2
dt

+
{

µ− J |Au|
}

‖w‖2 ≤ 0,

and by virtue of Young’s inequality we have

d‖w‖2
dt

+
1

2

{

µ− J2

µ
|Au|2

}

‖w‖2 ≤ 0.

Denote

α(t) =
1

2

{

µ− J2

µ
|Au(t)|2

}

.

Taking T = (νλ1)
−1 in Theorem 4 we have for t ≥ t0 that

∫ t+T

t

|Au|2 ≤ 2(1 + Tνλ1)νλ1G
2 = 4νλ1G

2.

By hypothesis µ ≥ 3νλ1JG. Thus,

lim inf
t→∞

∫ t+T

t

α(s)ds ≥ µ

2νλ1
− 2νλ1

µ
J2G2 ≥ 5

6
JG > 0,

and consequently ‖w‖ → 0 exponentially, as t→ ∞.
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Proposition 3. Let Ω = [0, L]2, for some fixed L > 0. Let u be a solution of
the incompressible two-dimensional Navier–Stokes equations (19) on Ω, equipped
with periodic boundary conditions. Let v be the approximating solution given by
equations (23) where Ih satisfies (25). Then ‖u − v‖ → 0, as t → ∞, provided
µc0h

2 ≤ ν and µ ≥ 3νλ1
(

2c log 2c3/2 + 8c log(1 +G)
)

G.

Proof. The proof is the same as the proof of Proposition 2 except that we use
(25) so that the estimate for −µ

(

Ih(w), Aw
)

has to be modified as

−µ(Ih(w), Aw) ≤
µ2c0h

2

2ν
‖w‖2 + µ2c20h

4

4ν
|Aw|2 + ν

4
|Aw|2 − µ‖w‖2

≤ ν

2
|Aw|2 − µ

2
‖w‖2.

Then, the rest of the proof follows without change.

Proof of Theorem 2. The hypothesis of Proposition 2 or Proposition 3 require
that

µc0h
2 ≤ ν and µ ≥ 3νλ1JG.

Therefore,
1

h2
≥ µc0

ν
≥ c2λ1G

(

1 + log(1 +G)
)

, (39)

where c2 = 3max{c3, c4}.

5 Conclusions

As shown in this paper, the algorithm given by (2), for constructing v(t) from
the observations Ih(u(t)), yields an approximation for u(t) such that

‖u(t)− v(t)‖L2(Ω) → 0 exponentially, as t→ ∞, (40)

provided the observations have fine enough spatial resolution. This result has
the following consequence. To accurately predict u(t) for time T into the future
it is sufficient to have observational data Ih(u(t)) accumulated over an interval
of time linearly proportional to T in the immediate past.

In particular, suppose it is desired to predict u(t) with accuracy ǫ > 0 on the
interval [t1, t1 + T ∗], where t1 is the present time and T ∗ > 0 determines how
far into the future to make the prediction. Let h be small enough and µ large
enough so that Theorem 1 implies (40). Thus, there is α > 0 and a constant
C > 0 such that

‖u(t)− v(t)‖L2(Ω) ≤ Ce−αt for all t ≥ 0.

Now use v(t1) as the initial condition from which to make a future prediction.
Let w be a solution to (19) with initial condition w(t1) = v(t1). Known

results on continuous dependence on initial conditions, see, for example, [11],
[21], [29] or [30], imply there is β > 0 such that

‖w(t)− u(t)‖L2(Ω) ≤ ‖w(t1)− u(t1)‖L2(Ω)e
β(t−t1) for t ≥ t1.
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Therefore

‖w(t)− u(t)‖ ≤ Ce−αt1+βT < ǫ for t ∈ [t1, t1 + T ]

provided αt1 ≥ βT + ln(C/ǫ). Thus w(t) predicts u(t) with accuracy ǫ on the
interval [t1, t1 + T ].

Work is currently underway to numerically test Theorem 2 in the case of
determining finite volume elements and nodes. A particular focus is how to
tune the parameter µ. If µ is very large, then the effects of “spill over” into
the fine scales may become significant, whereas if µ is small, then convergence
of the approximate solution may be slow or not happen at all. Preliminary
numerical simulations performed by Gesho [20] for the two-dimensional incom-
pressible Navier–Stokes equations confirm that the continuous data assimilation
algorithm given by equation (2) works directly, without additional filtering, for
observational measurements at a discrete set of nodal points, where Ih is given
by (8). Although our analytical estimates are comparable to previous results on
data assimilation using Fourier modes, as with those results, sharper analysis
appears to be required for sharp bounds on h. In particular, as with previous
computational work (cf. [21],[27] and [28]) the approximating solution v(t) con-
verges to the reference solution u(t) under much less stringent conditions than
required by our theory.

The main advantage of introducing a control term that forces the approxi-
mate solution toward the reference solution is that we can rely on the viscous
dissipation, already present in the dynamics, to filter the observational data
(that is, to suppress the spatial oscillations, i.e. the “spill over” into the fine
scales, that are generated by the coarse-mesh stabilizing term µIh(v)). In ad-
dition to working for a general class of interpolant observables this technique
also allows processing of observational data which contains stochastic noise. In
particular, the same algorithm can be used to obtain an approximation v(t) that
converges (in some sense) to the reference solution u(t), to within an error of
the order of µ times the variance of the noise in the measurements. This work
[3] is in progress.
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A Estimates for Nodal Interpolants

This appendix contains inequalities and estimates for interpolant operators that
will be used for observables obtained from nodal measurements of the velocity
field.

Consider a function u ∈ H2
per(Ω), where Ω = [0, L]2 is a basic domain of

periodicity. Let
√
N be a positive integer and partition Ω into N squares with

sides of length h = L/
√
N . Let J = { 1, 2, . . . ,

√
N }2 and for each α ∈ J define

the semi-open square

Qα = [(j − 1)h, jh)× [(k − 1)h, kh), where α = (i, j) ∈ J .

Moreover, for ϕ ∈ L1(Ω) we denote by:

〈ϕ〉 = 1

L2

∫

Ω

ϕ(x) dx.

Fix nodal points xα ∈ Qα, and suppose we are given the nodal values u(xα),
for every α ∈ J . Based on these nodal values, we define two interpolant opera-
tors, Ih and Ĩh, which we will show that they satisfy the approximation estimate
(7). Specifically, define

Ih(u)(x) =
∑

α∈J

u(xα)ψα(x), (41)

and
Ih(u)(x) = Ih(u)(x)− 〈Ih(u)〉 =

∑

α∈J

u(xα)
(

ψα(x)− 〈ψα〉
)

, (42)

where
ψα(x) =

∑

(j,k)∈Z2

χQα
(x1 + jL, x2 + kL),

is the L-periodic characteristic function of the semi-open square Qα. Next, we
define

Ĩh(u)(x) =
∑

α∈J

u(xα)ψ̃α(x), (43)

and
Ĩh(u)(x) = Ĩh(u)(x)− 〈Ĩh(u)〉 =

∑

α∈J

u(xα)
(

ψ̃α(x)− 〈ψ̃α〉
)

, (44)

where
ψ̃α(x) = (ρǫ ∗ ψα)(x)

is a mollified version of ψα by the mollifier ρǫ(x) = ǫ−2ρ(x/ǫ). Here we take

ρ(ξ) =







K0 exp
( −1

1− |ξ|2
)

for |ξ| < 1

0 for |ξ| ≥ 1,
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and

(K0)
−1 =

∫

|ξ|<1

exp
( −1

1− |ξ|2
)

dξ.

The mollification parameter ǫ will be chosen ǫ = h
10 .

Observe that 〈Ih〉 = 〈Ĩh〉 = 0, and that Ĩh(x) and Ĩh(x) are C∞ periodic
functions.

We now state as Proposition 4 the estimate that was proved by Jones and
Titi as inequality (6.2) in [24].

Proposition 4. Let Q be a square with sides of length ℓ > 0, and ϕ ∈ H2(Q).
Then for every x, y ∈ Q one has

|ϕ(x)− ϕ(y)| ≤ 2

(

4‖∇ϕ‖2L2(Q) + ℓ2
∥

∥

∥

∂2ϕ

∂x1∂x2

∥

∥

∥

2

L2(Q)

)1/2

.

We now use Proposition 4 to obtain estimate (7) concerning the accuracy of the
interpolant operators Ih and Ih. Namely, we have

Proposition 5. Suppose u ∈ H2
per(Ω), and let Ih(u) and Ih(u) be as in (41)

and (42), respectively. Then

(i)
∥

∥u− Ih(u)
∥

∥

L2(Ω)
≤ 4h

∥

∥∇u
∥

∥

L2(Ω)
+ 2h2

∥

∥

∥

∂2u
∂x1∂x2

∥

∥

∥

L2(Ω)
.

(ii)
∥

∥(u− 〈u〉)− Ih(u)
∥

∥

L2(Ω)
≤ 8h

∥

∥∇u
∥

∥

L2(Ω)
+ 4h2

∥

∥

∥

∂2u
∂x1∂x2

∥

∥

∥

L2(Ω)
.

Moreover, if 〈u〉 = 0, then there exists a constant c > 0 such that we can replace

the term
∥

∥

∥

∂2u
∂x1∂x2

∥

∥

∥

L2(Ω)
, in the above estimates, by c

∥

∥∆u
∥

∥

L2(Ω)
.

Proof. First observe that

∑

α∈J

ψα(x) = 1 for every x ∈ R2.

Therefore,

‖u− Ih(u)‖2L2(Ω) =

∫

Ω

∣

∣

∣
u(x)−

∑

α∈J

u(xα)ψα(x)
∣

∣

∣

2

dx

=

∫

Ω

∣

∣

∣

∑

α∈J

(

u(x)− u(xα)
)

ψα(x)
∣

∣

∣

2

dx

=

∫

Ω

∑

α,β∈J

(

u(x)− u(xα)
)

·
(

u(x)− u(xβ)
)

ψα(x)ψβ(x) dx.

Since

ψα(x)ψβ(x) =

{

0 if α 6= β
ψα(x) if α = β,
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the above gives

‖u− Ih(u)‖2L2(Ω) =

∫

Ω

∑

α∈J

∣

∣u(x)− u(xα)
∣

∣

2
ψ2
α(x) dx.

Applying Proposition 4 to the square Qα we obtain

|u(x)− u(xα)|2 ≤ 4

(

4‖∇u‖2L2(Qα) + h2
∥

∥

∥

∂2u

∂x1∂x2

∥

∥

∥

2

L2(Qα)

)

, for everyx ∈ Qα.

Hence

‖u− Ih(u)‖2L2(Ω) ≤
∑

α∈J

4h2
(

4‖∇u‖2L2(Qα) + h2
∥

∥

∥

∂2u

∂x1∂x2

∥

∥

∥

2

L2(Qα)

)

≤ 16h2‖∇u‖2L2(Ω) + 4h4
∥

∥

∥

∂2u

∂x1∂x2

∥

∥

∥

2

L2(Ω)
;

which proves (i).
Next, we focus on proving (ii). By virtue of the Cauchy-Schwarz inequality

we observe that

∥

∥〈u〉 − 〈Ih(u)〉
∥

∥

L2(Ω)
≤

∥

∥u− Ih(u)
∥

∥

L2(Ω)
.

Therefore, (ii) follows from combining the triangle inequality together with the
above observation, (41), (42) and part (i).

Finally, we recall the fact that for 〈u〉 = 0 one has
∥

∥u
∥

∥

H2(Ω)
≤ c

∥

∥∆u
∥

∥

L2(Ω)
,

which concludes the proof.

We now provide similar estimates for the C∞ periodic interpolants Ĩh and
Ĩh. In order to do this we make the assumptions that N ≥ 9 and ǫ = h

10 . Define

Q̃α = [(j − 2)h, (j + 1)h]× [(k − 2)h, (k + 1)h], where α = (k, j) ∈ J .

Since ǫ < h/2 we obtain that

Uα = Qα +B(0, ǫ) = {x+ y : x ∈ Qα and |y| < ǫ } ⊆ Q̃α, for α ∈ J ,

and
Cα = Uα \

⋃

β 6=α

Uβ 6= ∅, for α ∈ J .

The following two propositions now follow immediately from the definition of
ψ̃α and the fact that ǫ = h

10 .

Proposition 6. The functions ψ̃α, for α ∈ J , form a smooth partition of unity
satisfying

(i) 0 ≤ ψ̃α(x) ≤ 1, and supp(ψ̃α) ⊆
(

Uα +
(

LZ
)2)

,
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(ii) ψ̃α(x) = 1, for all x ∈
(

Cα +
(

LZ
)2)

, and
∑

α∈J ψ̃α(x) = 1, for all
x ∈ R2,

(iii) 〈ψ̃α〉 =
(

h
L

)2
and 4

5h ≤
∥

∥ψ̃α

∥

∥

L2(Ω)
≤ 6

5h,

(iv) supp(∇ψ̃α) ⊆
((

Uα \ Cα
)

+ LZ2
)

,

(v) |∇ψ̃α(x)| ≤ ch−1, and | ∂2

∂xi∂xj
ψ̃α(x)| ≤ ch−2, for all x ∈ R2,

(vi)
∥

∥∇ψ̃α

∥

∥

L2(Ω)
≤ c.

Proposition 7. Let K = { 1−
√
N,−1, 0, 1,−1+

√
N }2. The functions ψ̃α are

nearly orthogonal in the following sense:

(i)

∫

Ω

ψ̃α(x)ψ̃β(x) dx =

∫

Ω

(

∇ψ̃α(x)
)

·
(

∇ψ̃β(x)
)

dx = 0 for all α, β ∈ J with

β − α /∈ K.

(ii)
∣

∣

∣

∫

Ω

ψ̃α(x)ψ̃β(x) dx
∣

∣

∣
≤ (h+2ǫ)2 =

36

25
h2, for all α, β ∈ J with β −α ∈ K.

(iii)
∣

∣

∣

∫

Ω

(

∇ψ̃α(x)
)

·
(

∇ψ̃β(x)
)

dx
∣

∣

∣
≤ c, for all α, β ∈ J with β − α ∈ K.

We are now ready to prove estimates concerning the accuracy of the inter-
polant operators Ĩh and Ĩh, that are the analog to those of Proposition 5.

Proposition 8. Suppose u ∈ H2
per(Ω), and let Ĩh(u) and Ĩh(u) be as in (43)

and (44), respectively. Then there exists a constant c > 0 such that

(i) ‖u− Ĩh(u)‖L2(Ω) ≤ c
(

h‖∇u‖L2(Ω) + h2
∥

∥

∥

∂2u
∂x1∂x2

∥

∥

∥

L2(Ω)

)

.

(ii) ‖
(

u− 〈u〉
)

− Ĩh(u)‖L2(Ω) ≤ c
(

h‖∇u‖L2(Ω) + h2
∥

∥

∥

∂2u
∂x1∂x2

∥

∥

∥

L2(Ω)

)

.

(iii) ‖∇Ĩh(u)‖L2(Ω) = ‖∇Ĩh(u)‖L2(Ω) ≤ c
(

‖∇u‖L2(Ω) + h
∥

∥

∥

∂2u
∂x1∂x2

∥

∥

∥

L2(Ω)

)

.

(iv) ‖∇(u− Ĩh(u))‖L2(Ω) = ‖∇(u− Ĩh(u))‖L2(Ω)

≤ c
(

‖∇u‖L2(Ω) + h
∥

∥

∥

∂2u
∂x1∂x2

∥

∥

∥

L2(Ω)

)

.

Moreover, if 〈u〉 = 0, then there exists a constant c > 0 such that we can replace

the term
∥

∥

∥

∂2u
∂x1∂x2

∥

∥

∥

L2(Ω)
, in the above estimates, by c

∥

∥∆u
∥

∥

L2(Ω)
.

24



Proof. In what follows we will use some of the properties stated in Proposition
6 and Proposition 7.

‖u− Ĩh(u)‖2L2(Ω) =

∫

Ω

∣

∣

∣
u(x)−

∑

α∈J

u(xα)ψ̃α(x)
∣

∣

∣

2

dx

=

∫

Ω

∣

∣

∣

∑

α∈J

(

u(x)− u(xα)
)

ψ̃α(x)
∣

∣

∣

2

dx

=

∫

Ω

∑

α,β∈J

(

u(x)− u(xα)
)

·
(

u(x)− u(xβ)
)

ψ̃α(x)ψ̃β(x) dx.

Since ψ̃α(x)ψ̃β(x) = 0 for α− β /∈ K (see Proposition 6) we have

‖u− Ĩh(u)‖2L2(Ω)

≤
∫

Ω

∑

γ∈K

∑

α∈J

|u(x)− u(xα)||u(x)− u(xα+γ)|ψ̃α(x)ψ̃α+γ(x) dx

≤
∑

γ∈K

(

∑

α∈J

∫

Ω

|u(x)− u(xα)|2
(

ψ̃α(x)
)2

dx

)1/2

×
(

∑

α∈J

∫

Ω

|u(x)− u(xα+γ)|2
(

ψ̃α+γ(x)
)2

dx

)1/2

= 9
∑

α∈J

∫

Ω

|u(x)− u(xα)|2
(

ψ̃α(x)
)2

dx ≤ 9
∑

α∈J

∫

Uα

|u(x)− u(xα)|2dx

≤ 9
∑

α∈J

∫

Q̃α

|u(x)− u(xα)|2dx.

Applying Proposition 4 to each of the squares Q̃α, for α ∈ J , the above implies

‖u− Ĩh(u)‖2L2(Ω) ≤ 9
∑

α∈J

36h2
(

4‖∇u‖2
L2(Q̃α)

+ h2
∥

∥

∥

∂2u

∂x1∂x2

∥

∥

∥

2

L2(Q̃α)

)

= 81
∑

α∈J

36h2
(

4‖∇u‖2L2(Qα) + h2
∥

∥

∥

∂2u

∂x1∂x2

∥

∥

∥

2

L2(Qα)

)

= γ1h
2‖∇u‖2L2(Ω) + γ2h

4
∥

∥

∥

∂u

∂x1∂x2

∥

∥

∥

2

L2(Ω)
.

where γ1 = 11664 and γ2 = 2916. By this we conclude (i).
The proof of (ii) follows from (i) by following the same lines as the proof of

part (ii) of Proposition 5.
Next, we focus on the proof of (iii). To this end we implement some of

the steps used in the proof of part (i), above, and the properties stated in
Proposition 6.
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‖∇Ĩh(u)‖2L2(Ω) = ‖
∑

α∈J

u(xα)∇ψ̃α(·)‖2L2(Ω)

= ‖
∑

α∈J

u(xα)∇ψ̃α(·)− u(·)∇
(

∑

α∈J

ψ̃α(·)
)

‖2L2(Ω)

= ‖
∑

α∈J

(u(xα)− u(·))∇ψ̃α(·)‖2L2(Ω)

≤ c
∑

α∈J

‖(u(xα)− u(·))∇ψ̃α(·)‖2L2(Q̃α)

≤ c

h2

∑

α∈J

‖(u(xα)− u(·))‖2
L2(Q̃α)

.

Applying Proposition 4 to each of the squares Q̃α, for α ∈ J , in the above
estimate to obtain

‖∇Ĩh(u)‖2L2(Ω) ≤ c
(

∑

α∈J

‖∇u‖2
L2(Q̃α)

+ h2
∑

α∈J

∥

∥

∥

∂2u

∂x1∂x2

∥

∥

∥

2

L2(Q̃α)

)

≤ 9c
(

∑

α∈J

‖∇u‖2L2(Qα) + h2
∑

α∈J

∥

∥

∥

∂2u

∂x1∂x2

∥

∥

∥

2

L2(Qα)

)

= c
(

‖∇u‖2L2(Ω) + h2
∥

∥

∥

∂2u

∂x1∂x2

∥

∥

∥

2

L2(Ω)

)

,

which concludes the proof of point (iii).
Point (iv) is an obvious consequence of (iii). The rest of the proof is similar

to Proposition 5.
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