

Continuous Data-driven Software Engineering – Towards a

Research Agenda
Report on the Joint 5th International Workshop on Rapid Continuous Software

Engineering (RCoSE 2019) and 1st International Workshop on Data-Driven

Decisions, Experimentation and Evolution (DDrEE 2019)
Ilias Gerostathopoulos1, Marco Konersmann2, Stephan Krusche1, David I. Mattos3, Jan Bosch3, Tomas

Bures4, Brian Fitzgerald5, Michael Goedicke6, Henry Muccini7, Helena H. Olsson8 (organizers)

Thomas Brand9, Robert Chatley10, Nikolaos Diamantopoulos11, Arik Friedman12, Miguel Jiménez13, Jan

Ole Johanssen1, Putra Manggala14, Masumi Koseki15, Jorge Melegati16, Nuthan Munaiah17, Gabriel

Tamura18, Vasileios Theodorou19, Jeffrey Wong20, Iris Figalist21 (contributing participants)

1Technical University Munich, 2University of Koblenz-Landau, 3Chalmers University of Technology, 4Charles University in
Prague, 5Lero, University of Limerick, 6University of Duisburg-Essen, 7University of L’Aquila, 8Malmö University, 9University

of Potsdam, 10Imperial College London, 11Independent, 12Atlassian, 13University of Victoria, 14Shopify, 15Hitachi, 16Free
University of Bozen-Bolzano, 17Rochester Institute of Technology 18Universidad Icesi, 19Intracom Telecom, 20Netflix,

21Siemens

gerostat@in.tum.de, konersmann@uni-koblenz.de, krusche@in.tum.de, davidis@chalmers.se, jan.bosch@chalmers.se,
bures@d3s.mff.cuni.cz, Brian.Fitzgerald@ul.ie, michael.goedicke@paluno.uni-due.de, henry.muccini@univaq.it,

helena.holmstrom.olsson@mau.se, thomas.brand@hpi.de, rbc@imperial.ac.uk, diamanto87@gmail.com,
afriedman@atlassian.com, miguel@uvic.ca, jan.johanssen@tum.de, putra.manggala@shopify.com,

masumi.koseki.wr@hitachi.com, jmelegatigoncalves@unibz.it, nm6061@rit.edu, gtamura@icesi.edu.co, theovas@intracom-
telecom.com, jeffreyw@netflix.com, iris.figalist@siemens.com

ABSTRACT

The rapid pace with which software needs to be built, together with the
increasing need to evaluate changes for end users both quantitatively

and qualitatively calls for novel software engineering approaches that
focus on short release cycles, continuous deployment and delivery,
experiment-driven feature development, feedback from users, and rapid
tool-assisted feedback to developers. To realize these approaches there
is a need for research and innovation with respect to automation and
tooling, and furthermore for research into the organizational changes
that support flexible data-driven decision-making in the development
lifecycle. Most importantly, deep synergies are needed between
software engineers, managers, and data scientists. This paper reports on

the results of the joint 5th International Workshop on Rapid Continuous
Software Engineering (RCoSE 2019) and the 1st International
Workshop on Data-Driven Decisions, Experimentation and Evolution
(DDrEE 2019), which focuses on the challenges and potential solutions
in the area of continuous data-driven software engineering.

Keywords

Continuous software engineering, data-driven, experimentation

1. INTRODUCTION
Systems we build are ultimately evaluated based on the value they
deliver to their users and stakeholders. Increasing the performance of a

software system or its robustness leads to faster responses to user
requests and less downtime, in turn resulting in smoother user
experience and higher adoption. Making a software system more
intuitive and easier to use for its end-users, yet maintainable and
evolvable for its developers, increases its chances of surviving in
today’s turbulent market. Current systems have to continue delivering
value despite their fast-paced evolution due to unpredictable markets,
complex and changing customer requirements, pressures of shorter

time-to-market, and rapidly advancing information technologies.

To address this situation, agile practices advocate flexibility, efficiency
and speed. Rapid continuous software engineering refers to the
organizational and technical capability to develop, release and learn
from software in rapid cycles, typically hours, days or very small
numbers of weeks [7]. This includes determining new functionality to
build, evolving and refactoring the architecture, developing the

functionality, validating it, and releasing it to users [17]. The capability
to perform all these activities in days or a few weeks requires significant
changes in the entire software engineering approach, including
parallelizing activities, empowering cross functional teams, mechanisms
that allow for rapid decision making and lightweight coordination
across teams. It also requires significant technical advances in the
engineering infrastructure, including continuous integration and
deployment, collection and analysis of post-deployment product usage
data, support for running automatic live experiments to evaluate

different system alternatives, e.g., A/B testing.

Continuous experimentation is an industry-driven approach for inferring

the effect of software changes on key metrics of user acceptance [1]. It
is used for improving the feedback loop between development and
assessment of new features. Its main idea is often incarnated into A/B
testing that compares two system variants (the one that contains a
feature under test and the one that does not contain it) on their effect on
important business metrics such as click-through rates and revenue [13].
This offers a systematic way for developers to hypothesize about the
effect of a new feature or change and evaluate their hypotheses by
collecting data from real users. Experimentation brings a number of

challenges ranging from organizational and cultural ones (e.g. how to
change the structure and culture of development teams to embrace data-
driven practices) to technical ones (e.g. how to run different
experiments in parallel and at scale) to methodological ones (e.g. which
statistical method to use for comparison of different metric values).
Nevertheless, it has gained great interest and enjoys large adoption by
many web-facing companies including Microsoft, Google, Netflix, and
Facebook.

We believe that continuous software engineering and experimentation
go hand-in-hand and can jointly be used for continuous data-driven
software engineering, as has been proposed e.g. in the HYPEX model
[18]. The goal is to rely on data (including data collected from
experiments) on different phases of the development lifecycle, which

should be short in order to accommodate change. Automated testing,
continuous integration, deployment, and experimentation are all
emerging phases that fill-in the discontinuities that the software
development life cycle presents, pushing it further toward the idea of
continuous data-driven software engineering.

This new area comes with its own set of challenges, both technical and
organizational, and requires deep synergies between software engineers,
managers, and data scientists. This report aims to summarize the
discussions that took place at the RCoSE/DDrEE 2019 workshop
towards a research agenda for continuous data-driven software
engineering.

2. RCoSE/DDrEE WORKSHOP
The RCoSE/DDrEE workshop1 aims to bring the research communities
of the aforementioned areas together to exchange challenges, ideas, and
solutions to bring software engineering a step further to being a holistic
continuous process. The intention is to create a highly interactive
environment where different results, but also opinions and views, can be
exchanged on the topics of continuous and data-driven software
engineering. The overall aims of RCoSE/DDrEE are to (i) identify the

problems in adoption and use of continuous software engineering and
data-driven decisions, (ii) discuss new ideas that apply successful and
established concepts to other domains and use cases, and (iii) build a
community between software engineers and data scientists working on a
common research agenda.

The first joint workshop RCoSE/DDrEE was co-located with ICSE
2019, the International Conference on Software Engineering (see
https://2019.icse-conferences.org), in Montréal, Canada. The workshop
attracted 9 submissions, out of which 6 were accepted. In total, there
were 25 participants. The workshop started with a keynote from Jeffrey
Wong from Netflix about “Mathematical Engineering in an

Experimentation Platform's Measurement Ecosystem”. The rest of the
morning and the first session after lunch was dedicated to paper
presentations.2 The afternoon was devoted to discussion in breakout
groups, where the participants focused on topics of common interest.
The workshop ended with a plenary report session.

3. KEYNOTE
The keynote was delivered by Jeffrey Wong, Senior Modeling Architect

for Netflix's Experimentation Platform (XP). At the talk, Jeffrey gave
an overview of how XP is used to improve products, operations, and
marketing campaigns. As an example, different artworks of a Netflix
movie or series are compared to each other based on the effect they
have in streaming engagement of users. The analysis of the effect of
experiments is based on different causal inference algorithms, which
have to be generalizable to different types of experiments and extremely
scalable to be usable at the scale of Netflix (150 million users and
hundreds of experiments). Jeffrey used the term mathematical

engineering to refer to the engineering of high-performance scientific
libraries for causal inference in production. Challenges in mathematical
engineering include (1) programmatic ways (e.g. application
programming interfaces, domain-specific languages) to describe causal
effects problems, (2) generic ways to compute causal effects, and (3)
scalable computation. Connecting mathematical engineering with
algorithmic decision making, Jeffrey concluded with a list of remaining
challenges that are high in the list of Netflix’s experimentation research

1 http://www.continuous-se.org/2019

2 The slides of all presentations (including the keynote) are available at
http://www.continuous-se.org/2019/#program

and include (1) maintaining controlled, randomized, environments, (2)
investigating Bandit algorithms with delayed effects (e.g. how to
measure the effect of an advertisement placed one month before making
a movie available), and (3) making decisions when choices change.

4. WORKSHOP THEMES
The joint workshop focused on important and timely topics related to
continuous feedback in software development and data-driven
decisions. In particular, the six talks belonged to one of the following
themes: providing feedback to developers, experiment-driven
development and operation, and data-driven runtime decisions,
overviewed below.

4.1 Feedback in the development life cycle
The first theme of the workshop focused on how to provide developers
and managers with feedback about different aspects of the artifacts they
build, including products they release. Providing quick, accurate, rich,
and customer-oriented feedback is crucial in a continuous software
engineering setting where each change should be evaluated based on the
degree it contributes to the success of the system under development.

This theme was targeted by the first three presentations at the workshop.
Focusing on security, Nuthan Munaiah proposed to use vulnerability
discovery metrics, typically used to reveal engineering failures that may
have led to vulnerabilities, as “agents of feedback” for the developers
[16]. The presented study reports on the collection and analysis of ten

metrics on six open source projects and aims to answer (i) whether
vulnerability discovery metrics are similarly distributed across projects,
and (ii) whether thresholds of vulnerability discovery metrics are
effective at classifying risk from vulnerabilities. The work is part of the
authors’ vision to assist developers in engineering secure software by
providing a technique that generates scientific, interpretable, and
actionable feedback on security as the software evolves. Robert Chatley
presented a roadmap of ideas for how new tools could be developed that

harness application performance data taken from production, and
present it back to developers in an actionable form [3]. He demonstrated
some prototype tools that capture performance statistics from running
Python web applications, calculate aggregate statistics, and use an IDE
plugin to render this information in-line with the source code. With a
tight development cycle, continuously deploying small changes, after a
change is deployed and a number of requests have been processed in
production, any effect on system performance can be visualized in the
developer’s IDE, giving rapid feedback. Jan Ole Johanssen et al.

introduced the Continuous Thinking Aloud (CTA) approach for
automating the Thinking Aloud method [11]. CTA allows developers to
collect feedback during the rapid development of features. As soon as a
user interacts with a new feature increment, CTA invites them to
verbalize their thoughts and initiates a recording. Hereafter, CTA
automatically transcribes the recordings and classifies the content into
sentences of insecure, neutral, positive, or negative sentiment. CTA
links the classification results to high-level changes of the feature. The

results are visualized as part of a widget to support developers during
the feature improvement, in particular with respect to usability.

4.2 Experiment-driven development and

operation
The second theme of the workshop was concerned with experimentation

as part of novel software development practices and operations [1].
More and more companies rely on data collected by experiments with
their users in order to take business-critical decisions, e.g. whether to
ship a particular version of a product [4]. Experimentation comes with
its own set of challenges ranging from organizational and cultural ones
(e.g. how to change the structure and culture of development teams to
embrace data-driven practices) over technical ones (e.g. how to run
different experiments in parallel and at scale) to methodological ones

(e.g. which statistical method to use for comparing different metric
values).

Jorge Melegati [15] presented a position paper proposing hypotheses
engineering, as a path to improving how hypotheses are managed in
experiment-driven software engineering. In general, Bosch et al. [2]
identified three approaches to software development: requirement-
driven development; outcome/data/experiment-driven development; and

AI-driven development. Experiment-driven software development is an
approach to software development based on the use of experiments in
order to build features that the user really wants, and it was influenced
by the Build-Measure-Learn loop from the Lean Startup methodology.3
Hypotheses engineering pushes for a more systematic approach to
handle hypotheses in experiment-driven software development in an
analogy of requirements engineering for requirement-driven software
development. It consists of practices to generate, document, analyze,

and prioritize hypotheses. To further develop these practices, the paper
poses the following research questions:

1. How can software development teams systematically define

hypotheses that need to be tested?
2. What artifact could be useful to represent hypotheses and

support experiments creation?
3. How could a hypothesis artifact be used to keep experiment-

useful information?
4. How could teams understand if a hypothesis can be

practically tested using an experiment?
5. How could teams understand dependencies among different

hypotheses?
6. How could hypotheses evolve over time?
7. Are current assumption prioritization techniques effective?
8. Could requirements prioritization techniques be adapted to

hypotheses in experiment-driven development?

As an example, Kaufman et al. [12] detailed how Booking.com

systemized their experimentation approach and the process they follow

when conducting and documenting experiments.

Viewing continuous experimentation as a way to support runtime
software evolution, Miguel Jiménez and Gabriel Tamura presented a
self-adaptive and metamodel-based framework for automating the
planning and execution of experiments, on a given software system. The

metamodels are used to define domain-specific languages for specifying
experiment designs, software structure, and virtual/physical hardware
infrastructure [10]. The modeled specifications are processed and
executed by a layered architecture of three feedback loops based on the
DYNAMICO reference model [20]. These feedback-loops instrument
the target software system under experimentation and use infrastructure-
as-code to model and reconfigure the virtual hardware infrastructure in
which the experiments are to be deployed and executed. In this way, the

experiment design considers the application of software patterns and
diverse system configurations based on the metamodels. Examples of
this include the use of domain-specific design patterns (e.g., master-
slave vs. producer/consumer) as variations for a part of the software
architecture, variations on the input or block size to split a problem,
different numbers of threads per processor core, and several
configurations of distributed processes into different number of
machines. The feedback loops, implementing self-adaptation properties,

transform the software and infrastructure specifications into executable
models (e.g., infrastructure- and configuration-as-code), and perform
deployment of the software and hardware combinations for each
experimental trial. While these trials are under execution, the software
and the infrastructure are monitored to compute quality metrics
associated with the patterns and configurations. From partial experiment
results, the feedback loops can determine whether to continue or to
abort the execution of each trial, as it can be resource- and time-

consuming even if performed automatically, as proposed. Finally, the
output from the experiment is the combination of patterns and strategies

3 http://theleanstartup.com/

amongst the tested ones that was the best, in terms of quality metrics. In
abstract, what this experimentation allows is the exploitation, at the
software (re)design phase, of data obtained from the software deployed
and executed in close-to-real infrastructure operation, for instance in
cloud environments, thus being an example of the DevOps’ shift-left

realization.

4.3 Data-driven runtime decisions
The last theme of the workshop was concerned with decisions that
systems need to take at runtime based on runtime data collected and
analyzed. This line of research is at the heart of research in self-adaptive
systems research showcased in dedicated venues such as the SEAMS
symposium and the SASO and ICAC conferences. A very interesting
research challenge for our workshop is to which extent data-driven

decision taken by humans can be extended to data-driven decisions
taken by the systems themselves while in operation.

Focusing on this challenge and specifically on data-driven decisions for
runtime deployment, Vasileios Theodorou and Nikos Diamantopoulos
presented a novel approach for the elastic distribution of analytics tasks
at runtime, between (1) powerful, centralized Data Centers (i.e., the
cloud) and (2) Edge/Fog nodes closer to physical entities where data is
actually produced (i.e., the edge) [19]. Working on the intersection of
Infrastructure Virtualization, Edge Computing and Data Analysis, the
authors identified and introduced the Architectural Pattern of the "Data
Lagoon", as an analogous of the Data Lake at the edge, according to

which data ingestion is decoupled from data processing, thus enabling
rapid deployment of intelligence at Edge Gateways, as per runtime
evolving requirements. This work introduced the components of a
modular architecture supporting the automated spinning-up of analytics
processes at the edge or their off-loading to the cloud inspired from
challenging data-intensive use cases (Internet of Things (IoT)
applications, Content Delivery Networks (CDN) etc.). In this direction,
the authors introduced a system architecture of the Data Lagoon based

on state-of-the-art technologies that can scale intelligence at run-time in
dynamic and resource-limited edge environments, based on monitored
QoS metrics and/or evolving application features.

5. OPEN RESEARCH TOPICS
The afternoon session of the workshop was dedicated to discussions in
breakout groups. Each group consisted of 4-5 participants and focused
on one research topic out of the four identified: “data sources,
collection, and usage”, “online experimentation”, “education and

communication”, “synergies between disciplines”. In the following, we
provide an overview of the main findings of each group.

5.1 Data sources, collection, and usage
The group “data source, collection, and usage” focused on three main
aspects: (1) how to combine qualitative and quantitative methods and
analysis together for software improvement, (2) developers as an
additional source of data, and (3) the use of continuous-* techniques not
only for the improvement of user-related metrics but also for developer

experience.

The discussion on the combination of quantitative and qualitative

methods reinforced the need for better processes, tools and analytic
systems, capable of combining instrumented data from both the system
and the user behavior, with qualitative feedback given in multi-vocal
sources such as blog reviews, online stores and product feedback boxes.
Tools and processes that combine and streamline the analysis of both
types of data can provide valuable improvement opportunities for
companies and developers alike. Structured frameworks [8] and case
studies [9] can inform and improve the development of such tools and
processes.

The discussion on the use of developers as an additional source of data
and the use of continuous-* techniques for improvement of developer

experience were motivated by Robert Chatley’s presentation, where
field and product data are combined, passed and integrated from
production to improve the development. Research has focused on

product improvement and instrumentation mainly for users. How to
systematically integrate instrumentation for user improvement with
instrumentation for developer needs is still an open research area.

5.2 Online experimentation
The discussion of the online experiment group focused on two main
problems: (1) how to draw causal inference continuously and (2) how to
conduct different experimental designs (as opposed to the traditional
randomized controlled experiment) in software systems.

The discussion on drawing inference continuously was anchored in the
keynote presentation by Jeffrey Wong. Experimentation still presents
the open challenge on how to describe and compute general causal
inference problems for online experiments. Specifically, the discussion
reinforced the need for:

• Domain specific languages for online experiments, where
engineers and scientists can formulate their problem with
flexibility that goes beyond A/B testing.

• The need for better data structures and algorithms that can
deal with this additional problem flexibility.

• The need to identify and separate short-term from long-term
effects as well as delayed effects when a treatment is
introduced in software systems.

The discussion on conducting different experimental designs was
accompanied with examples from industry applications of other designs
such as quasi-experiments, crossover, natural and multi-armed bandit
experiments. These designs still haven’t reached the level of maturity in
software engineering as randomized controlled experiments, and still
present open research problems on:

• How to conduct trustworthy experiments with those designs?

• What are common pitfalls and how to identify them?

• What are common situations where those designs should be
explored?

5.3 Education and communication
The education and communication group focused on how to bring more
continuous-* (continuous planning, integration, deployment, innovation
experimentation, run-time monitoring) [7] aspects into the curriculum
of software engineering bachelor and master programs. Specifically, it
was pointed out, that there is a lack of “operations” in the curriculum in
contrast to the emphasis on development aspects. Operational concepts

should be introduced earlier on the curriculum to allow students at the
end of their studies to feel as comfortable with them at as they are with
development aspects. The group identified the following open
problems:

• What is the minimal end-to-end infrastructure necessary to
teach students continuous-* concepts?

• How to teach students to design and run experiments? In
particular, there is a lack of tools to facilitate students to

simulate users with stochastic behavior and conversion
funnels so they can formulate and test their hypotheses in the
duration of a course.

5.4 Synergies between disciplines
The group “synergies between disciplines” started a discussion about

connecting business goals and metrics to product goals and metrics, and

the communication needs between business-focused stakeholders (often

in the role of product owners), data scientists and software engineers.

The discussion suggests that data scientists or software engineers must

be able to take initiative for planning and executing experiments,

because they have the domain knowledge to assess costs and benefits of

specific experiments. In this context, the effective and efficient

collaboration between developers, operators, data scientists and

software engineers was discussed. The following questions were

identified to be relevant in this area:

• How can teams of developers, operators, data scientists and

data engineers work together effectively and efficiently?

• How to assess the costs of experimentation, and the costs of

not executing experiments?

The group elaborated about the costs involved in experimentation.

Namely, time costs describe the time needed to run an experiment;

adaptation costs relate to the cost of changing the system in order to run

a specific experiment (e.g. cost of developing a new system variant);

and convenience costs refer to costs related to customer dissatisfaction

or annoyance when subjected to failing experiments. During the

discussion, the group identified different ideas of what an experiment

on a running system actually is, and how it deviates from experiments

in a lab. Specifically, it was noted that experiments in production

systems cannot have a controlled environment due to the real users, that

are part of the experiment. Therefore, it is not possible to repeat the

same experiment and get exactly the same results. For instance, to

obtain trustworthy results, online experiments (A/B tests [13]) rely are

statistical results on large number of users. The group identified the

following open questions in this area:

• What exactly is an experiment in software engineering? Can

this concept be generalized beyond the randomized controlled

trial (A/B test) currently used in industry?

• How to manage the uncontrolled environment of user

behavior in the context of an experiment?

• How could we learn from past experiments? Apart from

lessons learned and common pitfalls reported by experts

running experiments (e.g. [5, 14]), could we establish an

experiment improvement process within a specific company?

5.5 Additional research topics
Beyond the topics discussed in the workshop, the evolution of rapid
continuous software engineering practices introduces new
organizational and technical challenges. For example, the adoption of
feature flags [6] allow product teams that work on cloud products to
release independently and move faster, but introduces new challenges.

For business applications this poses challenges of quality control, as
interaction effects between different variations across a large number of
features means the number of unique product variations grows
exponentially; customer support, since the support organization needs to
be aware of all the changes and variations that customers can encounter
and be able to respond to customer needs; and code complexity.

6. CONCLUSIONS
Moving towards continuous data-driven software engineering requires

tackling important technical and organizational challenges. This report
focused on four of them, namely on how to collect and use data for
continuous software engineering, how to effectively run online
experiments, how to educate students and colleagues on the concepts
and techniques of continuous integration, deployment, and
experimentation, and how to achieve the synergies between product
owners, data scientists and software engineers.

One of the main take-aways of the workshop is that the concepts, ideas,
and techniques behind continuous data-driven software engineering –
short release cycles, continuous deployment and delivery, experiment-
driven feature development, feedback to developers – are in great need

and adoption by industry currently. This report demonstrates that they
also present a wealth of important, interesting, and diverse topics for
future research.

ACKNOWLEDGMENTS
We would like to thank Jeffrey Wong for his inspiring keynote and
valuable participation in the discussions. We would like to thank all
participants for their contributions in the forms of papers, talks and
discussions in the breakout groups. Finally, we would like to thank the

organization team of the ICSE for their efforts to build a great
environment for our productive and lively workshop, the ICSE 2019
Workshops Chairs, Sven Apel and David Lo, and the RCoSE/DDrEE
Program Committee comprised of Alberto Avritzer, Robert Chatley,
Pavel Dmitriev, Christoph Elsner, Gregor Engels, Aleksander Fabijan,

Marios Fokaefs, Wolfgang Gehring, Nikolas Herbst, Rich Hilliard, Jan
Ole Johanßen, Anne Koziolek, Philipp Leitner, Wolfgang Maass,
Jürgen Münch, Chris Parnin, Evangelos Pournaras, Christian Prehofer,
Karen Smiley, Miroslaw Staron, Vasileios Theodorou, Bastian
Tenbergen, Janek Thomas, Matthias Tichy, Andreas Vogelsang,
Sebastian Voss, Xiaofeng Wang, and Danny Weyns.

1. REFERENCES
[1] Auer, F. and Felderer, M. 2018. Current State of Research on

Continuous Experimentation: A Systematic Mapping Study.
SEAA’18 (2018), 11.

[2] Bosch, J. et al. 2018. It Takes Three to Tango: Requirement,
Outcome/data, and AI Driven Development. Proceedings of
InternationalWorkshop on Software-intensive Business: Start-ups,

Ecosystems and Platforms (SiBW 2018) (2018), 16.
[3] Chatley, R. 2019. Supporting the Developer Experience with

Production Metrics. RCoSE/DDrEE 2019 (Piscataway, NJ, USA,
2019), 8–11.

[4] Fabijan, A. et al. 2017. The evolution of continuous
experimentation in software product development: from data to a
data-driven organization at scale. Proc. of ICSE 2017 (IEEE,
2017), 770–780.

[5] Fabijan, A. et al. Three Key Checklists and Remedies for
Trustworthy Analysis of Online Controlled Experiments at Scale.
10.

[6] Feature Toggles (aka Feature Flags):
https://martinfowler.com/articles/feature-toggles.html. Accessed:
2019-08-30.

[7] Fitzgerald, B. and Stol, K.-J. 2017. Continuous software
engineering: A roadmap and agenda. Journal of Systems and
Software. 123, (Jan. 2017), 176–189.

DOI:https://doi.org/10.1016/j.jss.2015.06.063.
[8] Flaounas, I. and Friedman, A. 2019. Bridging the Gap Between

Business, Design and Product Metrics. Extended Abstracts of the
2019 CHI Conference on Human Factors in Computing Systems
(New York, NY, USA, 2019), LBW0274:1–LBW0274:6.

[9] Friedman, A. and Flaounas, I. 2018. The Right Metric for the
Right Stakeholder: A Case Study of Improving Product Usability.

Proceedings of the 30th Australian Conference on Computer-
Human Interaction (New York, NY, USA, 2018), 602–606.

[10] Jiménez, M. et al. 2019. An Architectural Framework for Quality-
driven Adaptive Continuous Experimentation. RCoSE/DDrEE
2019 (Piscataway, NJ, USA, 2019), 20–23.

[11] Johanssen, J.O. et al. 2019. Continuous Thinking Aloud.
RCoSE/DDrEE 2019 (Piscataway, NJ, USA, 2019), 12–15.

[12] Kaufman, R.L. et al. 2017. Democratizing online controlled
experiments at Booking.com. arXiv:1710.08217 [cs]. (Oct. 2017).

[13] Kohavi, R. et al. 2009. Controlled experiments on the web: survey
and practical guide. Data Mining and Knowledge Discovery. 18, 1
(Feb. 2009), 140–181. DOI:https://doi.org/10.1007/s10618-008-
0114-1.

[14] Kohavi, R. et al. 2014. Seven rules of thumb for web site
experimenters. Proceedings of the 20th ACM SIGKDD
international conference on Knowledge discovery and data mining
- KDD ’14 (New York, New York, USA, 2014), 1857–1866.

[15] Melegati, J. et al. 2019. Hypotheses Engineering: First Essential
Steps of Experiment-driven Software Development.
RCoSE/DDrEE 2019 (Piscataway, NJ, USA, 2019), 16–19.

[16] Munaiah, N. and Meneely, A. 2019. Data-driven Insights from

Vulnerability Discovery Metrics. RCoSE/DDrEE 2019 (2019), 1–
7.

[17] Olsson, H.H. et al. 2012. Climbing the “Stairway to Heaven” – A
Mulitiple-Case Study Exploring Barriers in the Transition from
Agile Development towards Continuous Deployment of Software.
2012 38th Euromicro Conference on Software Engineering and
Advanced Applications (Sep. 2012), 392–399.

[18] Olsson, H.H. and Bosch, J. 2014. The HYPEX Model: From

Opinions to Data-Driven Software Development. Continuous
Software Engineering. J. Bosch, ed. Springer International
Publishing. 155–164.

[19] Theodorou, V. and Diamantopoulos, N. 2019. GLT: Edge
Gateway ELT for Data-driven Intelligence Placement.
RCoSE/DDrEE 2019 (Piscataway, NJ, USA, 2019), 24–27.

[20] Villegas, N.M. et al. 2013. DYNAMICO: A reference model for
governing control objectives and context relevance in self-adaptive
software systems. Software Engineering for Self-Adaptive Systems

II. Springer. 265–293.

View publication statsView publication stats

https://www.researchgate.net/publication/336170984

