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ABSTRACT 

The rapid pace with which software needs to be built, together with the 
increasing need to evaluate changes for end users both quantitatively 

and qualitatively calls for novel software engineering approaches that 
focus on short release cycles, continuous deployment and delivery, 
experiment-driven feature development, feedback from users, and rapid 
tool-assisted feedback to developers. To realize these approaches there 
is a need for research and innovation with respect to automation and 
tooling, and furthermore for research into the organizational changes 
that support flexible data-driven decision-making in the development 
lifecycle. Most importantly, deep synergies are needed between 
software engineers, managers, and data scientists. This paper reports on 

the results of the joint 5th International Workshop on Rapid Continuous 
Software Engineering (RCoSE 2019) and the 1st International 
Workshop on Data-Driven Decisions, Experimentation and Evolution 
(DDrEE 2019), which focuses on the challenges and potential solutions 
in the area of continuous data-driven software engineering. 
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1. INTRODUCTION 
Systems we build are ultimately evaluated based on the value they 
deliver to their users and stakeholders. Increasing the performance of a 

software system or its robustness leads to faster responses to user 
requests and less downtime, in turn resulting in smoother user 
experience and higher adoption. Making a software system more 
intuitive and easier to use for its end-users, yet maintainable and 
evolvable for its developers, increases its chances of surviving in 
today’s turbulent market. Current systems have to continue delivering 
value despite their fast-paced evolution due to unpredictable markets, 
complex and changing customer requirements, pressures of shorter 

time-to-market, and rapidly advancing information technologies. 

To address this situation, agile practices advocate flexibility, efficiency 
and speed. Rapid continuous software engineering refers to the 
organizational and technical capability to develop, release and learn 
from software in rapid cycles, typically hours, days or very small 
numbers of weeks [7]. This includes determining new functionality to 
build, evolving and refactoring the architecture, developing the 

functionality, validating it, and releasing it to users [17]. The capability 
to perform all these activities in days or a few weeks requires significant 
changes in the entire software engineering approach, including 
parallelizing activities, empowering cross functional teams, mechanisms 
that allow for rapid decision making and lightweight coordination 
across teams. It also requires significant technical advances in the 
engineering infrastructure, including continuous integration and 
deployment, collection and analysis of post-deployment product usage 
data, support for running automatic live experiments to evaluate 

different system alternatives, e.g., A/B testing. 

Continuous experimentation is an industry-driven approach for inferring 

the effect of software changes on key metrics of user acceptance [1]. It 
is used for improving the feedback loop between development and 
assessment of new features. Its main idea is often incarnated into A/B 
testing that compares two system variants (the one that contains a 
feature under test and the one that does not contain it) on their effect on 
important business metrics such as click-through rates and revenue [13]. 
This offers a systematic way for developers to hypothesize about the 
effect of a new feature or change and evaluate their hypotheses by 
collecting data from real users. Experimentation brings a number of 

challenges ranging from organizational and cultural ones (e.g. how to 
change the structure and culture of development teams to embrace data-
driven practices) to technical ones (e.g. how to run different 
experiments in parallel and at scale) to methodological ones (e.g. which 
statistical method to use for comparison of different metric values). 
Nevertheless, it has gained great interest and enjoys large adoption by 
many web-facing companies including Microsoft, Google, Netflix, and 
Facebook. 



   

 

   

 

We believe that continuous software engineering and experimentation 
go hand-in-hand and can jointly be used for continuous data-driven 
software engineering, as has been proposed e.g. in the HYPEX model 
[18]. The goal is to rely on data (including data collected from 
experiments) on different phases of the development lifecycle, which 

should be short in order to accommodate change. Automated testing, 
continuous integration, deployment, and experimentation are all 
emerging phases that fill-in the discontinuities that the software 
development life cycle presents, pushing it further toward the idea of 
continuous data-driven software engineering. 

This new area comes with its own set of challenges, both technical and 
organizational, and requires deep synergies between software engineers, 
managers, and data scientists. This report aims to summarize the 
discussions that took place at the RCoSE/DDrEE 2019 workshop 
towards a research agenda for continuous data-driven software 
engineering.     

2. RCoSE/DDrEE WORKSHOP 
The RCoSE/DDrEE workshop1 aims to bring the research communities 
of the aforementioned areas together to exchange challenges, ideas, and 
solutions to bring software engineering a step further to being a holistic 
continuous process. The intention is to create a highly interactive 
environment where different results, but also opinions and views, can be 
exchanged on the topics of continuous and data-driven software 
engineering. The overall aims of RCoSE/DDrEE are to (i) identify the 

problems in adoption and use of continuous software engineering and 
data-driven decisions, (ii) discuss new ideas that apply successful and 
established concepts to other domains and use cases, and (iii) build a 
community between software engineers and data scientists working on a 
common research agenda. 

The first joint workshop RCoSE/DDrEE was co-located with ICSE 
2019, the International Conference on Software Engineering (see 
https://2019.icse-conferences.org), in Montréal, Canada. The workshop 
attracted 9 submissions, out of which 6 were accepted. In total, there 
were 25 participants. The workshop started with a keynote from Jeffrey 
Wong from Netflix about “Mathematical Engineering in an 

Experimentation Platform's Measurement Ecosystem”. The rest of the 
morning and the first session after lunch was dedicated to paper 
presentations.2 The afternoon was devoted to discussion in breakout 
groups, where the participants focused on topics of common interest. 
The workshop ended with a plenary report session.    

3. KEYNOTE 
The keynote was delivered by Jeffrey Wong, Senior Modeling Architect 

for Netflix's Experimentation Platform (XP). At the talk, Jeffrey gave 
an overview of how XP is used to improve products, operations, and 
marketing campaigns. As an example, different artworks of a Netflix 
movie or series are compared to each other based on the effect they 
have in streaming engagement of users. The analysis of the effect of 
experiments is based on different causal inference algorithms, which 
have to be generalizable to different types of experiments and extremely 
scalable to be usable at the scale of Netflix (150 million users and 
hundreds of experiments). Jeffrey used the term mathematical 

engineering to refer to the engineering of high-performance scientific 
libraries for causal inference in production. Challenges in mathematical 
engineering include (1) programmatic ways (e.g. application 
programming interfaces, domain-specific languages) to describe causal 
effects problems, (2) generic ways to compute causal effects, and (3) 
scalable computation. Connecting mathematical engineering with 
algorithmic decision making, Jeffrey concluded with a list of remaining 
challenges that are high in the list of Netflix’s experimentation research 

                                                             

1  http://www.continuous-se.org/2019  

2 The slides of all presentations (including the keynote) are available at 
http://www.continuous-se.org/2019/#program  

and include (1) maintaining controlled, randomized, environments, (2) 
investigating Bandit algorithms with delayed effects (e.g. how to 
measure the effect of an advertisement placed one month before making 
a movie available), and (3) making decisions when choices change.  

4. WORKSHOP THEMES 
The joint workshop focused on important and timely topics related to 
continuous feedback in software development and data-driven 
decisions. In particular, the six talks belonged to one of the following 
themes: providing feedback to developers, experiment-driven 
development and operation, and data-driven runtime decisions, 
overviewed below.  

4.1 Feedback in the development life cycle 
The first theme of the workshop focused on how to provide developers 
and managers with feedback about different aspects of the artifacts they 
build, including products they release. Providing quick, accurate, rich, 
and customer-oriented feedback is crucial in a continuous software 
engineering setting where each change should be evaluated based on the 
degree it contributes to the success of the system under development.  

This theme was targeted by the first three presentations at the workshop. 
Focusing on security, Nuthan Munaiah proposed to use vulnerability 
discovery metrics, typically used to reveal engineering failures that may 
have led to vulnerabilities, as “agents of feedback” for the developers 
[16]. The presented study reports on the collection and analysis of ten 

metrics on six open source projects and aims to answer (i) whether 
vulnerability discovery metrics are similarly distributed across projects, 
and (ii) whether thresholds of vulnerability discovery metrics are 
effective at classifying risk from vulnerabilities. The work is part of the 
authors’ vision to assist developers in engineering secure software by 
providing a technique that generates scientific, interpretable, and 
actionable feedback on security as the software evolves. Robert Chatley 
presented a roadmap of ideas for how new tools could be developed that 

harness application performance data taken from production, and 
present it back to developers in an actionable form [3]. He demonstrated 
some prototype tools that capture performance statistics from running 
Python web applications, calculate aggregate statistics, and use an IDE 
plugin to render this information in-line with the source code. With a 
tight development cycle, continuously deploying small changes, after a 
change is deployed and a number of requests have been processed in 
production, any effect on system performance can be visualized in the 
developer’s IDE, giving rapid feedback. Jan Ole Johanssen et al. 

introduced the Continuous Thinking Aloud (CTA) approach for 
automating the Thinking Aloud method [11]. CTA allows developers to 
collect feedback during the rapid development of features. As soon as a 
user interacts with a new feature increment, CTA invites them to 
verbalize their thoughts and initiates a recording. Hereafter, CTA 
automatically transcribes the recordings and classifies the content into 
sentences of insecure, neutral, positive, or negative sentiment. CTA 
links the classification results to high-level changes of the feature. The 

results are visualized as part of a widget to support developers during 
the feature improvement, in particular with respect to usability.  

4.2 Experiment-driven development and 

operation 
The second theme of the workshop was concerned with experimentation 

as part of novel software development practices and operations [1]. 
More and more companies rely on data collected by experiments with 
their users in order to take business-critical decisions, e.g. whether to 
ship a particular version of a product [4]. Experimentation comes with 
its own set of challenges ranging from organizational and cultural ones 
(e.g. how to change the structure and culture of development teams to 
embrace data-driven practices) over technical ones (e.g. how to run 
different experiments in parallel and at scale) to methodological ones 

(e.g. which statistical method to use for comparing different metric 
values).    



   

 

   

 

Jorge Melegati [15] presented a position paper proposing hypotheses 
engineering, as a path to improving how hypotheses are managed in 
experiment-driven software engineering. In general, Bosch et al. [2] 
identified three approaches to software development: requirement-
driven development; outcome/data/experiment-driven development; and 

AI-driven development. Experiment-driven software development is an 
approach to software development based on the use of experiments in 
order to build features that the user really wants, and it was influenced 
by the Build-Measure-Learn loop from the Lean Startup methodology.3  
Hypotheses engineering pushes for a more systematic approach to 
handle hypotheses in experiment-driven software development in an 
analogy of requirements engineering for requirement-driven software 
development. It consists of practices to generate, document, analyze, 

and prioritize hypotheses. To further develop these practices, the paper 
poses the following research questions: 

1. How can software development teams systematically define 

hypotheses that need to be tested? 
2. What artifact could be useful to represent hypotheses and 

support experiments creation? 
3. How could a hypothesis artifact be used to keep experiment-

useful information? 
4. How could teams understand if a hypothesis can be 

practically tested using an experiment? 
5. How could teams understand dependencies among different 

hypotheses? 
6. How could hypotheses evolve over time? 
7. Are current assumption prioritization techniques effective? 
8. Could requirements prioritization techniques be adapted to 

hypotheses in experiment-driven development? 

As an example, Kaufman et al. [12] detailed how Booking.com 

systemized their experimentation approach and the process they follow 

when conducting and documenting experiments. 

Viewing continuous experimentation as a way to support runtime 
software evolution, Miguel Jiménez and Gabriel Tamura presented a 
self-adaptive and metamodel-based framework for automating the 
planning and execution of experiments, on a given software system. The 

metamodels are used to define domain-specific languages for specifying 
experiment designs, software structure, and virtual/physical hardware 
infrastructure [10]. The modeled specifications are processed and 
executed by a layered architecture of three feedback loops based on the 
DYNAMICO reference model [20]. These feedback-loops instrument 
the target software system under experimentation and use infrastructure-
as-code to model and reconfigure the virtual hardware infrastructure in 
which the experiments are to be deployed and executed. In this way, the 

experiment design considers the application of software patterns and 
diverse system configurations based on the metamodels. Examples of 
this include the use of domain-specific design patterns (e.g., master-
slave vs. producer/consumer) as variations for a part of the software 
architecture, variations on the input or block size to split a problem, 
different numbers of threads per processor core, and several 
configurations of distributed processes into different number of 
machines. The feedback loops, implementing self-adaptation properties, 

transform the software and infrastructure specifications into executable 
models (e.g., infrastructure- and configuration-as-code), and perform 
deployment of the software and hardware combinations for each 
experimental trial. While these trials are under execution, the software 
and the infrastructure are monitored to compute quality metrics 
associated with the patterns and configurations. From partial experiment 
results, the feedback loops can determine whether to continue or to 
abort the execution of each trial, as it can be resource- and time-

consuming even if performed automatically, as proposed. Finally, the 
output from the experiment is the combination of patterns and strategies 
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amongst the tested ones that was the best, in terms of quality metrics. In 
abstract, what this experimentation allows is the exploitation, at the 
software (re)design phase, of data obtained from the software deployed 
and executed in close-to-real infrastructure operation, for instance in 
cloud environments, thus being an example of the DevOps’ shift-left 

realization. 

4.3 Data-driven runtime decisions  
The last theme of the workshop was concerned with decisions that 
systems need to take at runtime based on runtime data collected and 
analyzed. This line of research is at the heart of research in self-adaptive 
systems research showcased in dedicated venues such as the SEAMS 
symposium and the SASO and ICAC conferences. A very interesting 
research challenge for our workshop is to which extent data-driven 

decision taken by humans can be extended to data-driven decisions 
taken by the systems themselves while in operation.  

Focusing on this challenge and specifically on data-driven decisions for 
runtime deployment, Vasileios Theodorou and Nikos Diamantopoulos 
presented a novel approach for the elastic distribution of analytics tasks 
at runtime, between (1) powerful, centralized Data Centers (i.e., the 
cloud) and (2) Edge/Fog nodes closer to physical entities where data is 
actually produced (i.e., the edge) [19]. Working on the intersection of 
Infrastructure Virtualization, Edge Computing and Data Analysis, the 
authors identified and introduced the Architectural Pattern of the "Data 
Lagoon", as an analogous of the Data Lake at the edge, according to 

which data ingestion is decoupled from data processing, thus enabling 
rapid deployment of intelligence at Edge Gateways, as per runtime 
evolving requirements. This work introduced the components of a 
modular architecture supporting the automated spinning-up of analytics 
processes at the edge or their off-loading to the cloud inspired from 
challenging data-intensive use cases (Internet of Things (IoT) 
applications, Content Delivery Networks (CDN) etc.). In this direction, 
the authors introduced a system architecture of the Data Lagoon based 

on state-of-the-art technologies that can scale intelligence at run-time in 
dynamic and resource-limited edge environments, based on monitored 
QoS metrics and/or evolving application features. 

5. OPEN RESEARCH TOPICS 
The afternoon session of the workshop was dedicated to discussions in 
breakout groups. Each group consisted of 4-5 participants and focused 
on one research topic out of the four identified: “data sources, 
collection, and usage”, “online experimentation”, “education and 

communication”, “synergies between disciplines”. In the following, we 
provide an overview of the main findings of each group.   

5.1 Data sources, collection, and usage 
The group “data source, collection, and usage” focused on three main 
aspects: (1) how to combine qualitative and quantitative methods and 
analysis together for software improvement, (2) developers as an 
additional source of data, and (3) the use of continuous-* techniques not 
only for the improvement of user-related metrics but also for developer 

experience. 

The discussion on the combination of quantitative and qualitative 

methods reinforced the need for better processes, tools and analytic 
systems, capable of combining instrumented data from both the system 
and the user behavior, with qualitative feedback given in multi-vocal 
sources such as blog reviews, online stores and product feedback boxes. 
Tools and processes that combine and streamline the analysis of both 
types of data can provide valuable improvement opportunities for 
companies and developers alike. Structured frameworks [8] and case 
studies [9] can inform and improve the development of such tools and 
processes. 

The discussion on the use of developers as an additional source of data 
and the use of continuous-* techniques for improvement of developer 

experience were motivated by Robert Chatley’s presentation, where 
field and product data are combined, passed and integrated from 
production to improve the development. Research has focused on 



   

 

   

 

product improvement and instrumentation mainly for users. How to 
systematically integrate instrumentation for user improvement with 
instrumentation for developer needs is still an open research area.   

5.2 Online experimentation 
The discussion of the online experiment group focused on two main 
problems: (1) how to draw causal inference continuously and (2) how to 
conduct different experimental designs (as opposed to the traditional 
randomized controlled experiment) in software systems.  

The discussion on drawing inference continuously was anchored in the 
keynote presentation by Jeffrey Wong. Experimentation still presents 
the open challenge on how to describe and compute general causal 
inference problems for online experiments. Specifically, the discussion 
reinforced the need for: 

• Domain specific languages for online experiments, where 
engineers and scientists can formulate their problem with 
flexibility that goes beyond A/B testing.  

• The need for better data structures and algorithms that can 
deal with this additional problem flexibility. 

• The need to identify and separate short-term from long-term 
effects as well as delayed effects when a treatment is 
introduced in software systems. 

The discussion on conducting different experimental designs was 
accompanied with examples from industry applications of other designs 
such as quasi-experiments, crossover, natural and multi-armed bandit 
experiments. These designs still haven’t reached the level of maturity in 
software engineering as randomized controlled experiments, and still 
present open research problems on: 

• How to conduct trustworthy experiments with those designs? 

• What are common pitfalls and how to identify them? 

• What are common situations where those designs should be 
explored? 

5.3 Education and communication    
The education and communication group focused on how to bring more 
continuous-* (continuous planning, integration, deployment, innovation 
experimentation, run-time monitoring) [7] aspects into the curriculum 
of software engineering bachelor and master programs. Specifically, it 
was pointed out, that there is a lack of “operations” in the curriculum in 
contrast to the emphasis on development aspects. Operational concepts 

should be introduced earlier on the curriculum to allow students at the 
end of their studies to feel as comfortable with them at as they are with 
development aspects. The group identified the following open 
problems: 

• What is the minimal end-to-end infrastructure necessary to 
teach students continuous-* concepts? 

• How to teach students to design and run experiments? In 
particular, there is a lack of tools to facilitate students to 

simulate users with stochastic behavior and conversion 
funnels so they can formulate and test their hypotheses in the 
duration of a course. 

5.4 Synergies between disciplines 
The group “synergies between disciplines” started a discussion about 

connecting business goals and metrics to product goals and metrics, and 

the communication needs between business-focused stakeholders (often 

in the role of product owners), data scientists and software engineers. 

The discussion suggests that data scientists or software engineers must 

be able to take initiative for planning and executing experiments, 

because they have the domain knowledge to assess costs and benefits of 

specific experiments. In this context, the effective and efficient 

collaboration between developers, operators, data scientists and 

software engineers was discussed. The following questions were 

identified to be relevant in this area: 

• How can teams of developers, operators, data scientists and 

data engineers work together effectively and efficiently? 

• How to assess the costs of experimentation, and the costs of 

not executing experiments? 

The group elaborated about the costs involved in experimentation. 

Namely, time costs describe the time needed to run an experiment; 

adaptation costs relate to the cost of changing the system in order to run 

a specific experiment (e.g. cost of developing a new system variant); 

and convenience costs refer to costs related to customer dissatisfaction 

or annoyance when subjected to failing experiments. During the 

discussion, the group identified different ideas of what an experiment 

on a running system actually is, and how it deviates from experiments 

in a lab. Specifically, it was noted that experiments in production 

systems cannot have a controlled environment due to the real users, that 

are part of the experiment. Therefore, it is not possible to repeat the 

same experiment and get exactly the same results. For instance, to 

obtain trustworthy results, online experiments (A/B tests [13]) rely are 

statistical results on large number of users. The group identified the 

following open questions in this area: 

• What exactly is an experiment in software engineering? Can 

this concept be generalized beyond the randomized controlled 

trial (A/B test) currently used in industry? 

• How to manage the uncontrolled environment of user 

behavior in the context of an experiment?  

• How could we learn from past experiments? Apart from 

lessons learned and common pitfalls reported by experts 

running experiments (e.g. [5, 14]), could we establish an 

experiment improvement process within a specific company?  

5.5 Additional research topics 
Beyond the topics discussed in the workshop, the evolution of rapid 
continuous software engineering practices introduces new 
organizational and technical challenges. For example, the adoption of 
feature flags [6] allow product teams that work on cloud products to 
release independently and move faster, but introduces new challenges. 

For business applications this poses challenges of quality control, as 
interaction effects between different variations across a large number of 
features means the number of unique product variations grows 
exponentially; customer support, since the support organization needs to 
be aware of all the changes and variations that customers can encounter 
and be able to respond to customer needs; and code complexity. 

6. CONCLUSIONS 
Moving towards continuous data-driven software engineering requires 

tackling important technical and organizational challenges. This report 
focused on four of them, namely on how to collect and use data for 
continuous software engineering, how to effectively run online 
experiments, how to educate students and colleagues on the concepts 
and techniques of continuous integration, deployment, and 
experimentation, and how to achieve the synergies between product 
owners, data scientists and software engineers.  

One of the main take-aways of the workshop is that the concepts, ideas, 
and techniques behind continuous data-driven software engineering – 
short release cycles, continuous deployment and delivery, experiment-
driven feature development, feedback to developers – are in great need 

and adoption by industry currently. This report demonstrates that they 
also present a wealth of important, interesting, and diverse topics for 
future research.  
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