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Abstract

Background: Brain-machine interfaces (BMI) have recently been integrated within motor rehabilitation therapies by
actively involving the central nervous system (CNS) within the exercises. For instance, the online decoding of
intention of motion of a limb from pre-movement EEG correlates is being used to convert passive rehabilitation
strategies into active ones mediated by robotics. As early stages of upper limb motor rehabilitation usually focus on
analytic single-joint mobilizations, this paper investigates the feasibility of building BMI decoders for these specific
types of movements.

Methods: Two different experiments were performed within this study. For the first one, six healthy subjects
performed seven self-initiated upper-limb analytic movements, involving from proximal to distal articulations. For the
second experiment, three spinal cord injury patients performed two of the previously studied movements with their
healthy elbow and paralyzed wrist. In both cases EEG neural correlates such as the event-related desynchronization
(ERD) and movement related cortical potentials (MRCP) were analyzed, as well as the accuracies of continuous
decoders built using the pre-movement features of these correlates (i.e., the intention of motion was decoded before
movement onset).

Results: The studied movements could be decoded in both healthy subjects and patients. For healthy subjects there
were significant differences in the EEG correlates and decoding accuracies, dependent on the moving joint.
Percentages of correctly anticipated trials ranged from 75% to 40% (with chance level being around 20%), with better
performances for proximal than for distal movements. For the movements studied for the SCI patients the accuracies
were similar to the ones of the healthy subjects.

Conclusions: This paper shows how it is possible to build continuous decoders to detect movement intention from
EEG correlates for seven different upper-limb analytic movements. Furthermore we report differences in accuracies
among movements, which might have an impact on the design of the rehabilitation technologies that will integrate
this new type of information. The applicability of the decoders was shown in a clinical population, with similar
performances between healthy subjects and patients.

Keywords: Electroencephalography, Brain-machine interfaces, Event-related desynchronization, Motor-related
cortical potentials, Analytic movements, Motor rehabilitation, Spinal cord injury, Automatic feature selection

*Correspondence: edulop@unizar.es
1DIIS, Universidad de Zaragoza, María de Luna, 1, Zaragoza, Spain
2Instituto de Investigación en Ingeniería de Aragón, Zaragoza, Spain
Full list of author information is available at the end of the article

© 2014 López-Larraz et al.; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly credited. The Creative Commons Public Domain Dedication
waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise
stated.

mailto: edulop@unizar.es
http://creativecommons.org/licenses/by/4.0
http://creativecommons.org/publicdomain/zero/1.0/


López-Larraz et al. Journal of NeuroEngineering and Rehabilitation 2014, 11:153 Page 2 of 15

http://www.jneuroengrehab.com/content/11/1/153

Introduction
Motor rehabilitation with robotic or functional electrical

stimulation exercises has emerged as a promising alterna-

tive to design new therapies for stroke or spinal cord injury

(SCI) patients [1-3]. An emerging trend in these new ther-

apies is to shift from passive mobilizations to exercises

that involve the central nervous system (CNS) in an active

way [4], as it has been shown that this type of rehabilita-

tion enhances neuroplasticity [5,6]. Movement intention

is a key state that expresses the CNS active involve-

ment withwell-established EEG correlates (e.g., the event-

related desynchronization/synchronization, ERD/S [7], or

the motor-related cortical potentials, MRCP [8]). These

correlates have the advantage of anticipating any periph-

eral measurement, which make them suitable to build

more usable and natural BMIs [9,10], and allow high tem-

poral precision for the control of prosthetic or orthotic

devices [11]. In addition, they are measurable even in

paralyzed patients [12-15]. During early stages of rehabil-

itation (e.g., in acute and subacute phases after a stroke or

SCI), physiotherapy exercises include analytic movements

(i.e., mobilization of single joints), as they help to improve

joint range of motion and muscular activity, enhance

oxygen metabolism, and can be performed before the

patients are ready to execute more complex movements

[16,17]. To evaluate the applicability of technologies that

use the movement intention in the early stages of rehabil-

itation, there is a need to understand how this intention

can be decoded under a wide range of analytic move-

ments. As a first step, this paper analyzes the possibility

of building decoders for seven upper-limb analytic move-

ments using pre-movement EEG correlates with healthy

subjects. In addition, the proposed decoders are tested

in a clinical environment with a small cohort of SCI

patients.

EEG continuous decoding of motor intention has been

achieved using either ERD/S or MRCP correlates for

functional movements such as reaching tasks [12,14]; for

multiple joint movements such as simultaneous move-

ment of both feet [18] or hand movement imagination

[13,19]; and for single joint analytic movements such as

wrist extension [10,20,21] or ankle dorsiflexion [22,23].

Statistical differences in ERD/S andMRCP correlates have

been demonstrated not only between rest and motion (or

motor imagery) but also between different types of move-

ments [8,24-26], which is why they have been used to

distinguish between different motor tasks [9,27-29]. Since

they reflect different neurophysiological phenomena [30],

their combination has been proven to outperform single

trial classification of movements [31,32], and decoding of

motion intention [33].

This paper shows the applicability of BMIs in upper-

limb self-initiated analytic movements with two differ-

ent experiments. The first experiment studies the seven

degrees of freedom of the arm. This experiment was

performed on healthy subjects so that they could per-

form all the movements correctly. The second experiment

evaluates, on a target population (SCI patients), the appli-

cability of the BMI with two of the previous movements:

one that they could perform normally, and a second one

that they could not execute completely. ERD and MRCPs

of the different movements were studied in both healthy

and SCI patients. The decoders of movement intention

(pre-movement state) combined ERD and MRCP features

using a sparse feature selection method. The results shed

light on: (i) the differences of the neural correlates on an

ample set of upper-limb movements, (ii) the applicabil-

ity of BMI technology to the different arm movements

on healthy subjects as well as SCI patients, and (iii) on

practical issues such as the automation of the feature

selection process and decoding time-anticipation (which

is important for incorporating feedback strategies that

trigger neuroplasticity mechanisms [11]).

Methods
Experimental protocols

Two different experiments were designed for this study.

The first one shows the differences in BMI applicability

for the seven degrees of freedom of the arm on healthy

subjects. The second experiment validates the use of the

proposed BMI on a clinical population of SCI patients.

All participants (healthy subjects and patients) were duly

informed before the experiment and all of them provided

written informed consent. The experimental procedure

was approved by the Ethics Review Board of the Hospital

Nacional de Parapléjicos (Toledo, Spain).

Experiment 1

Six healthy right-handed male subjects (mean age 26.66±

2.94 years) participated in this experiment. Participants

were comfortably seated 1.5 m away from a computer

screen, which displayed the instructions during the exper-

iment. The chair incorporated a removable armrest that

was only used for movements that required it. Addition-

ally, a supplementary table was used to hold the arm in

an elevated rest position for movements that required that

support. Seven analytic movements of the right upper

limb were studied (Figure 1). They were selected to eval-

uate the seven degrees of freedom of the three arm joints

separately. As each movement had a different initial posi-

tion, the participants started each block with the arm in

the position required for the upcoming task:

SA: Shoulder abduction-adduction (Figure 1A).

• Initial position: arm hanging straight down.
• Task: 90° abduction (separation) and

adduction (approximation) to initial position.
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A: SA B: SF C: SR D: EF

E: ES F: WE G: WR

Figure 1 Representation of the seven upper limb analytic movements performed by the subjects. Panels A-G correspond to each of the
seven movements (SA, SF, SR, EF, ES, WE, and WR, respectively) performed by the subjects. The arrows indicate the direction of the movement.

SF: Shoulder flexion-extension (Figure 1B).

• Initial position: arm hanging straight down.

• Task: 90° flexion (forward) and extension

(backwards) to initial position.

SR: Shoulder external-internal rotation (Figure 1C).

• Initial position: elbow resting on a table

situated next to subject.
• Task: 90° external rotation (upwards) and

return to initial position.

EF: Elbow flexion-extension (Figure 1D).

• Initial position: arm resting over subject’s leg,

palm upwards.
• Task: maximal elbow flexion and extension

to initial position.

ES: Elbow supination-pronation (Figure 1E).

• Initial position: elbow resting over the chair

armrest, hand open and parallel to the wall.

• Task: 90° supination (palm upwards)
followed by 90° pronation (palm downwards)

and return to initial position.

WE: Wrist extension-flexion (Figure 1F).

• Initial position: elbow lying over the chair

armrest, hand open and parallel to the floor,
palm downwards.

• Task: maximal wrist extension (upwards)
and flexion to initial position.

WR: Wrist radial-ulnar deviation (Figure 1G).

• Initial position: elbow lying over the chair
armrest, hand open and parallel to the floor,

palm downwards.
• Task: radial deviation (inner movement)

followed ulnar deviation (outer movement)

and return to initial position.

Experimental sessions consisted of 14 blocks of trials

(2 blocks per movement) in the following order: SA-SF-

SR-EF-ES-WE-WR-SA-SF-SR-EF-ES-WE-WR.After each

block, participants could rest as much time as they

required. Each block included 25 trials of one movement

type (totaling 50 recorded trials per movement). Trials

lasted 13 seconds (block duration = 5´25´́ ); the screen

showed the word Movement during the first 10 seconds

and the word Rest during the last 3 seconds. Subjects

were instructed to perform the analytic movement when-

ever they wanted during theMovement cue (self-initiated

action), waiting at least 3 seconds after the cue appeared.

They were explicitly asked to avoid mentally counting

before starting movement. The Rest screen indicated to

the subjects that they could blink and relax.

Experiment 2

Three male incomplete quadriplegic patients were

recruited for this experiment. All of them were in a sub-

acute phase and hospitalized at the Hospital Nacional de
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Parapléjicos, in Toledo (Spain), where the experimenta-

tion sessions took place. As inclusion criteria, patients’

right arm should have the elbow flexors intact (score

5 out of 5 in a muscle strength scale [34]), and should

have weakness in the wrist extensors (muscle strength

2-3 out of 5). Relevant information of each patient can

be found on Table 1. This typology of lesion was cho-

sen as it allowed to study EEG correlates and decoding

performances of an arm movement that the patients can

perform normally and a movement that they cannot exe-

cute despite them still having some muscle strength. In

addition, these patients are more autonomous than the

ones with higher and complete lesions (who frequently

have breathing difficulties) and thus are better able to

participate in a BMI intervention setup.

During the experiment, patients were seated in their

wheelchair 1.5 meters away from a computer screen,

which displayed the instructions. They were asked to

perform two different analytic movements: EF (complete

movement as healthy participants) and WE (to the maxi-

mum extension they were able to perform). Patients exe-

cuted 6 blocks of 20 trials each (3 blocks per movement),

totaling 60 trials of each movement. Blocks of both types

of movements were intercalated, and patients could rest

as long as they required after each block. The structure of

these trials was the same as in Experiment 1. Patients were

also instructed to perform self initiated movements and to

avoid mentally counting.

Data acquisition

EEG, EMG, and inertial measurement unit (IMU) signals

were acquired in Experiment 1, while only EEG and EMG

were recorded for Experiment 2 (as it was not expected to

have a complete movement in one of the tasks). EEG and

EMG signals were recorded together using a commercial

g.Tec system (g.Tec GmbH, Graz, Austria). EEG config-

uration consisted of 32 active electrodes placed at AFz,

F3, F1, Fz, F2, F4, FC5, FC3, FC1, FCz, FC2, FC4, FC6,

C5, C3, C1, Cz, C2, C4, C6, CP5, CP3, CP1, CPz, CP2,

CP4, CP6, P3, P1, Pz and P4 (according to the interna-

tional 10/10 system). The ground and reference electrodes

were placed on FPz and on the left earlobe, respectively.

EMG setup consisted of 8 bipolar electrodes, placed at the

right arm on top of the followingmuscles: (i) extensor dig-

itorum, (ii) extensor carpi ulnaris, (iii) palmaris longus,

(iv) external head of the biceps brachii, (v) lateral head

of the triceps brachii, (vi) frontal side of the deltoid, (vii)

lateral side of the deltoid, and (vii) posterior side of the

deltoid over the teres minor and infraspinatus muscles.

EEG and EMG signals were digitized at a sampling fre-

quency of 512 Hz and power-line notch-filtered to remove

the 50Hz line interference. An IMU acquisition system

(Technaid S.L., Madrid, Spain) recorded accelerometer,

gyroscope and magnetometer signals at a sampling fre-

quency of 50 Hz. Sensors were placed over the three arm

segments (hand, forearm, and arm), and over the trunk

(sternum). After Experiment 1, the EEG, EMG and IMU

signals were synchronized by using an artificial external

pulse that was generated by a computer and sent to both

recording systems.

Signal preprocessing

For Experiment 1, IMU signals were resampled to 512

Hz using interpolation to match the EEG and EMG sig-

nals, and the three measurements were aligned using the

artificial pulse. Information from the EMG and IMU sen-

sors was evaluated to identify the onset of movements.

However, since EMG signals were corrupted for certain

subjects, IMU channels with the highest amplitudes and

best consistency with the EMG activations were manu-

ally selected for each movement and subject in order to

obtain the movement onsets. The movement onset detec-

tion procedure was as follows: (i) the mean of the selected

IMU channels was removed, and the signals were recti-

fied; (ii) when more than one IMU channel were selected,

their values were averaged; (iii) the movement onsets

were defined as the time instants in which the signal was

at 5% of themaximum amplitude. For Experiment 2, EMG

signals of the biceps muscle and of extensor digitorum

muscle were selected to detect movement onset of EF and

WE, respectively, following the procedure used in [22].

EEG signals were trimmed down to 6-second trials (-3

to 3 seconds from themovement onset). Trials withmove-

ments that started before the 3-second waiting period

were discarded. For Experiment 1, EEG channels FC3 and

FC1 were removed from all the subjects, as they presented

artifacts for all movements. Additionally, a z-score arti-

fact rejection (similar to the one proposed in [35]) was

performed on the following computed measurements:

the power in δ (1-4 Hz), θ (4-7 Hz), α (7-12 Hz), and

Table 1 Details of patients

Age Time since Type of Muscle strength Muscle strength

ID (years) lesion (months) lesion elbow flexors wrist extensors

P1 36 7 C7, ASIA B 5 3

P2 38 10 C5, ASIA C 5 2

P3 55 4 C5, ASIA D 5 2
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β (12-30 Hz) frequency bands, the trial variance and

the maximum amplitude, discarding trials that contained

values higher than 2.5 times the mean.

Optimal spatial filtering

Spatial filters such as CAR, Laplacian, common spatial

patterns (CSP) and methods based on optimization tech-

niques are broadly used to obtain reference-free signals

and to enhance the signal to noise ratio (SNR) [22,36,37].

This paper evaluates the use of optimal spatial filters

(OSF) to improve the SNR in ERD andMRCP signals. The

OSF are computed for both signals (ERD and MRCP) as

a linear combination of all EEG channels [22]. First, EEG

trials were bandpass filtered to [0.1-1] Hz for MRCPs, and

[7-30] Hz for ERD. Next, the trials were segmented in the

time intervals [-1, 1] s to represent the signal of interest

(denoted by SEEG) and [-3, -1] s for the noise (NEEG). Note

that 0 is the time of the movement onset.

Given a set of L epochs of SEEG and L epochs of NEEG,

the SNR was computed as:

SNR =
1

L

L
∑

i=1

10 log10

(

PSi

PNi

)

where PSi and PNi represent the power of the signal of

interest (Si = w · SEEGi ) and noise (Ni = w · NEEGi )

for the ith trial, respectively. The vector of coefficients

w = (w1, . . . ,wc) contained the weights for each chan-

nel, and it included 30 values for signals of Experiment 1

(since 2 channels were removed, see Signal preprocessing

section) and 32 for Experiment 2.

This procedure was performed separately for MRCP

and ERD (i.e., the application of the OSFs generated two

new signals, denoted hereafter asOSF signals: one to opti-

mize ERD and the other to optimize MRCP). For MRCP

the SNR was maximized, as there is a need to have high

amplitude in the interval of interest, and low amplitude in

the noise period [22]. In contrast, for ERD the SNR was

minimized, as there is a decrease in power during move-

ment with respect to the non-movement or noise interval

[38]. A constrained optimization solver was used (Mat-

lab function fmincon), setting the sum of w to be equal to

zero. The vectorw was initialized as a CAR filter for chan-

nel Cz when computing the OSF of MRCP, and as a CAR

filter for channel C3 in the case of ERD.

Electrophysiology analysis

ERD and MRCP were analyzed for each movement on the

EEG channels and the optimized OSF signals. The event-

related desynchronization analysis was used to measure

the power modulations in α and β frequency bands. The

EEG trials were filtered using small Laplacian derivations

to reduce the effects of volume conduction [39]. Next,

the filtered channels and the OSF signal were bandpass

filtered between 1 and 50 Hz using a zero-phase fourth-

order Butterworth filter. The time-frequency representa-

tion of each subject and movement was computed using

Morlet Wavelets in the frequency range [1-50] Hz [40].

Statistical significance (α = 0.05) of the time-frequency

analysis was computed with respect to baseline [-3, -1]

using a bootstrap resampling method [38]. To compute

the motor-related cortical potentials, EEG trials were fil-

tered with a common average reference (CAR). Filtered

trials and OSF signal were subsampled to 64 Hz, and

bandpass filtered to the frequency range [0.1-1] Hz [41]. A

zero-phase second-order Butterworth filter was used, as

it worked just as well as the finite impulse response filter

suggested in [41], and in a lower order.

Movements were grouped according to their joint (i.e.,

shoulder, elbow and wrist) by averaging the values of

the movements corresponding to each of them. ERD and

MRCP differences between joints were studied using one-

way repeated measures analysis of variance (ANOVA)

with the within-subjects factor moving joint. Post-hoc

comparisons were done using paired t-tests with Bonfer-

roni correction.

Feature extraction and classification

For each time instant t the following features were com-

puted using a one-second time window [ t − 1, t]:

ERD: A Laplacian filter was applied to the EEG channels

and the power spectra was computed using a 16th order

autoregressive model with a frequency resolution of 1 Hz

[42]. Power values in all frequency bins that included α

and β bands were selected (7-30 Hz). The 19 channels

comprising fronto-central (FCx), central (Cx), and centro-

parietal (CPx) areas were chosen. In total, 456 features

were generated. Additionally, the same steps were applied

to compute the power spectra of the OSF signal, which

produced 24 features.

MRCPs: The EEG trials were CAR filtered, subsampled

to 64Hz and filtered in the range [0.1-1] Hz. Time samples

in channels FCz, FC2, C1, Cz, C2, CP1, CPz, CP2 were

selected. In total 512 features were computed. For theOSF

signal the application of the same steps generated 64 extra

features.

Therefore, the feature vectors of each time window

were composed of 1056 values. Dimension reduction of

feature vectors is usually performed automatically with

separability metrics like Bhattacharyya or Mahalanobis

distances [10,28]. However, these methods can sometimes

provide highly correlated features in EEG measurements.

Therefore, in this paper we used an automatic selection

procedure based on sparsity to select the most discrimi-

nant values from a large set of features, while removing
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redundant information [43]. Sparse discriminant analy-

sis (SDA) performs linear discriminant analysis (LDA)

with a sparseness criterion imposed such that the feature

selection and classification are performed simultaneously

[43]. This allows the estimation of covariance matrices

in datasets with the number of features being large rela-

tive to the number of observations, as it was in our case.

Feature vectors corresponding to the training set were

processed with this algorithm, which was programed to

select, from each vector, a number of features always infe-

rior to the number of trials available for training. When

computing the OSF for both ERD and MRCP features,

coefficients were estimated using only the training set, and

these coefficients were then applied to the test set.

The classifier was trained to distinguish between the

rest state and the pre-movement state from the brain

signals. The examples of the rest class were the one-

second-long time windows in the time interval [-3, -1]

s computed with a sliding step of 0.25 s, and the move-

ment intention was the window [-1, 0] s (Figure 2A). Note

that no information of the actual movement was consid-

ered for training, as the objective of the BMI was to detect

the movement before it occurred. Feature vectors were

obtained from each time window in the training dataset,

and their values were normalized to have zero mean and

unit variance before training the classifier. Trials of the

test set were evaluated with a sliding window applied to

the time interval [-3, 0], with a sliding step of 0.125 s

(Figure 2B).

-3 -2.5 -2 -1.5 -1 -0.5 0

-3 -2.5 -2 -1.5 -1 -0.5 0

REST

M. INTENTION

Training

Test

A

B

Figure 2 Schematic view of the training and test operation of

the system. (A) Training procedure extracted five time windows to
model rest process and one to model movement intention. (B) Test
operation of the system worked with a sliding window that moved
along the trial with a sliding step of 0.125 s.

Classifier evaluation andmetrics

Classification of the trials from each subject and move-

ment was evaluated separately. Given the reduced number

of trials for each condition (after artifacting N ≤ 50 for

Experiment 1 and N ≤ 60 for Experiment 2), the clas-

sification performance was evaluated using a trial-based

leave-one-out cross-validation. For each fold, the classi-

fier was trained using N − 1 trials, and the test trial was

evaluated with a sliding window.

Three different metrics were used to evaluate the clas-

sifier performance, which were computed on a trial basis,

instead of using a sample-by-sample analysis that evalu-

ates each test window independently. Firstly, ROC curves

were used to evaluate the sensitivity and specificity [44],

and the area under the curve (AUC) was used as perfor-

mance metric, since it is threshold independent and also

invariant to a priori probabilities [45]. Furthermore, it has

been proposed to use an event-by-event analysis to bet-

ter model the behavior of a continuous decoder with ROC

curves [19]. Sensitivity and specificity were definied con-

sidering rest and movement intention periods as events.

Thus, true positive events (TPE) were defined as correct

onset detections made in the time interval [-1, 0]; false

positive events (FPE) as events with at least one classi-

fier onset misclassification during the rest phase [-3, -1];

true negative events (TNE) as rest periods with no false

onset detections; and false negative events (FNE) as move-

ment intention periods with no correct onset detections.

Secondly, the percentage of correct trials was measured.

This metric captures the number of executions that would

provide a correct detection (i.e., a correct trigger for the

robot or electrical stimulator during a therapy) before any

other peripheral measurement [10]. A trial was correct if

no intention of movement was detected before t = −1

s, and if an intention was detected between t = −1 s

and t = 0 s with respect to the actual onset (i.e., its

rest period was a TNE, and its movement intention was a

TPE). Thirdly, for all correct trials, their anticipation was

calculated as the period between the detection time and

the movement onset. Given the definition of correct tri-

als, only activations in the period [-1, 0] s were taken into

account.

Results
Experiment 1

Electrophysiology analysis

Significant ERD activity (p < 0.05) in α (7-12 Hz) and β

(12-30 Hz) frequency bands was found more prominently

over the contralateral motor cortex before and during

the movement for almost all movements and subjects.

Figure 3 displays the ERD averaged for all subjects over

themotor cortex for eachmovement. Additionally, Table 2

synthesizes the pre-movement (time interval [-1, 0] s)

ERD values of channel C3 for each subject and movement,
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Figure 3 Electrophysiology analysis of the sevenmovements, averaged for the six healthy subjects. Panels A-G correspond to the analysis
for each of the seven movements (SA, SF, SR, EF, ES, WE, and WR, respectively). The top and center-left areas of each panel show the significant ERD
process in six channels around the motor cortex (x axis corresponds to the time interval [-3, 3], y axis represents the frequency range [1-50] Hz).
Bottom-left area shows the average MRCPs for each subject (gray lines), and the average of the six subjects (black lines) in central channels C1, Cz and
C2. Top-right depicts the scale of ERD plots. Center-right shows the ERD in the OSF signal. Bottom-right corresponds to the MRCP of the OSF signal.
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Table 2 Pre-movement α and β ERD% - channel C3

SA SF SR EF ES WE WR Avg

S1
α -76.9 -74.5 -28.3 -76.3 -68.5 -54.4 -3.3 -54.6

β -49.1 -48.6 -17.1 -47.5 -36.8 -19.8 -6.5 -32.2

S2
α -35.1 -27.5 -2.9 -25.2 -29.0 -10.9 -0.6 -18.7

β -24.6 -12.8 -6.5 -25.9 -17.6 -4.3 -3.2 -13.6

S3
α -72.5 -63.4 -41.4 -43.5 -47.4 -36.1 -26.5 -47.3

β -41.5 -31.2 -2.6 -10.3 -11.9 -20.6 -6.7 -17.8

S4
α -17.3 -1.3 -6.4 -24.0 0.0 -1.4 -1.0 -7.3

β 0.0 0.0 -3.0 -3.7 -0.9 -6.5 0.0 -2.0

S5
α -38.7 -39.7 -20.5 -19.9 -22.0 -7.1 -2.9 -21.6

β -34.1 -34.1 -10.3 -11.1 -28.9 -7.7 -17.9 -20.6

S6
α -41.7 -23.4 -60.8 -9.6 -7.4 -36.7 -13.5 -27.6

β -1.6 -14.6 -10.4 -3.0 -0.9 -12.9 -4.3 -6.8

Avg
α -47.0 -38.3 -26.7 -33.1 -29.1 -24.4 -8.0 -29.5

β -25.2 -23.5 -8.3 -16.9 -16.2 -12.0 -6.4 -17.0

and the averages for movements and subjects. Notice that

averaged pre-movement ERD was higher for proximal

than for distal movements. ANOVA showed statistical sig-

nificance over the pre-movement α ERD (F2,10 = 5.7, p <

0.05) but not on the β ERD. Post-hoc pair-wise tests with

Bonferroni correction revealed differences between the

shoulder and the wrist (p = 0.008).

Averaged MRCPs for all subjects and for each type of

movement are displayed in Figure 3. The values of all

the MRCPs were normalized to the peak value of the

movement with highest amplitude for each subject. The

lateralized cortical potential towards contralateral motor

area was present for all movements and subjects. Table 3

summarizes the normalized amplitudes of theMRCP neg-

ative peaks of channels Cz and C1. There were no sta-

tistical differences between joints in peak amplitude for

channels Cz (p > 0.05) and C1 (p > 0.05).

The ERD in the OSF signal (right area of each panel in

Figure 3) was significantly higher than in C3 for α band

(Wilcoxon matched pairs signed-rank test, p < 10−7)

and β band (p < 10−7). Averaged ERD for all subjects

and movements in channel C3 was −29.5% in α band

and −17.0% in β band (bottom-right values in Table 2),

while in the OSF signal were −54.9% and −36.6%, respec-

tively. The amplitude of MRCPs was also significantly higher

in the OSF signal than in Cz (p < 0.001) and C1 (p <

Table 3 MRCPsmin peak normalized amplitude

SA SF SR EF ES WE WR Avg

S1
Cz -0.47 0.00 -0.66 -0.69 -0.46 -0.28 -0.47 -0.43

C1 -0.58 -0.71 -1.00 -0.63 -0.74 -0.02 -0.35 -0.58

S2
Cz -0.23 -0.30 -0.17 -0.27 -0.42 -0.43 -0.47 -0.33

C1 -0.31 -1.00 -0.32 -0.47 -0.63 -0.80 -0.83 -0.62

S3
Cz -0.35 -0.61 -0.24 -0.68 -0.18 -0.67 -0.41 -0.45

C1 -1.00 -0.76 -0.26 -0.40 -0.12 -0.41 -0.38 -0.48

S4
Cz -0.76 -0.64 -1.00 -0.68 -0.03 -0.76 -0.53 -0.63

C1 -0.60 -0.48 -0.64 -0.62 -0.46 -0.40 -0.73 -0.56

S5
Cz -1.00 -0.34 -0.46 -0.51 -0.61 -0.18 -0.59 -0.52

C1 -0.79 -0.46 -0.31 -0.38 -0.45 -0.42 -0.59 -0.48

S6
Cz -0.53 -1.00 -0.31 -0.40 -0.41 -0.40 -0.16 -0.46

C1 -0.41 -0.76 -0.31 -0.30 -0.35 -0.43 -0.30 -0.41

Avg
Cz -0.56 -0.48 -0.47 -0.54 -0.35 -0.45 -0.44 -0.47

C1 -0.62 -0.69 -0.47 -0.47 -0.46 -0.41 -0.53 -0.52
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0.01). While the average normalized amplitude was −0.47

in Cz and −0.52 in C1 (Table 3), the OSF signal had an

average amplitude of −2.94 in the same normalized scale.

Classification results

Average ROC curves for each movement are shown in

Figure 4. Circles on each line represent the working points

where sensitivity equals specificity, which give the optimal

thresholds [19]. Proximal movements presented higher

AUC than distal ones, in agreement with the electrophys-

iology analysis, which showed higher average values of

ERD and MRCP peaks. With the optimal threshold in the

ROC curve, the movement with highest AUC (SF) had

85.6% of true positives and 15.1% of false positives. On the

other hand, for the movement with poorest AUC (WR),

the decoder provided 64.8% of true positives and 36.2% of

false positives. Pre-movement α and β ERD showed sig-

nificant correlation with AUC (rα = −0.49, pα < 10−3;

rβ = −0.66, pβ < 10−5). Regarding MRCP peak ampli-

tude, it also showed a significant correlation for channels

C1 (rC1 = −0.57, pC1 < 10−4), and Cz (rCz = −0.36,

pCz < 0.02). ANOVA showed a significant effect of

moving joint in AUC (F2,10 = 8.0, p < 0.01). How-

ever, post-hoc comparisons after Bonferroni correction

did not show significant differences, although differences

between shoulder and wrist were close to the significance

level (p = 0.064).

Table 4 shows the percentage of correct trials for each

movement averaged for all subjects. Movements with

higher AUC provided better rates of accepted trials. In all

cases, the number of correct trials was higher than the

empirical chance level (obtained with the same leave-one-

out procedure, but randomizing the labels before training

the classifier), which provided on average 21.2 ± 3.4% of

correct trials. There was a significant effect on the moving

joint in percentage of correct trials as revealed by ANOVA

(F2,10 = 10.6, p < 0.01), with significant differences

between shoulder and wrist (p = 0.04).

Average onset detection times ranged from -421 ms

in the best case (WR) to -256 ms for the least antic-

ipated movement (EF), with respect to the movement

onset (Figure 5). The moving joint had a significant effect

in anticipation, shown by ANOVA (F2,10 = 8.6, p < 0.01),

and post-hoc comparisons revealed statistical differences

between elbow and wrist movements (p = 0.048).

Analysis of features

As features were selected automatically by the SDA, an

analysis was performed to understand the information

used by the algorithm. Figure 6 shows a projection of the

features selected for each fold of the leave-one-out pro-

cedure to the channels-frequencies space (for ERD), and

to the channels-time space (for MRCP), averaged for all

subjects and movements. For ERD, bins in the frequencies

7 Hz (lower α), [10-15] Hz (upper α) and [22-25] Hz (β)

were more often selected in the OSF channel, but also in

channels placed over ipsi and contralateral motor cortices

(e.g., C3, C1, C4). Regarding time features of MRCP, note

how the most frequently selected were the last samples of

the time-window (samples in the figure above t = 1 s),

which coincide with the maximum peak of the MRCP.

TheOSF signal was the most frequently selected in both

cases. Thus the mean weight given to each channel for

the OSF computed for each subject and movement was

obtained. Figure 7 shows the weights obtained for ERD

(Figure 7A) and MRCP (Figure 7B) filters, averaged for

all subjects and movements. The figures show that the

left motor cortex (contralateral to the movement) and the

central area of the motor cortex were the areas with the

highest weights to build the OSF for ERD and MRCP,

respectively. These are the areas that would probably be

selected if a manual feature selection was performed,

based on previous electrophysiology studies which show

how ERD is originated contralaterally to the movement

[7], while MRCP is generated closer to the midline

vertex [8].

Experiment 2

Electrophysiology analysis

Significant α and β ERD, and MRCPs were found for the

three patients for both movements. Figure 8 shows both

EEG correlates averaged for the three patients. ERD mag-

nitudes and MRCP amplitudes were similar between the

healthy subjects and patients. Furthermore, they were also

similar between the executed and the attempted move-

ments by the patients group, suggesting that these EEG

correlates can also be used for decoding of movement

intention of paralyzed joints in this population of patients.

Classification results

Average ROC curves for movement execution of EF and

attempt of WE are shown in Figures 9A-B. The result-

ing AUC were very similar for both tasks (0.81 for EF

and 0.84 for WE), and also similar to the ones obtained

for the group of healthy subjects for the same movements

(0.86 for EF and 0.77 for WE). For the execution of EF,

71.1% of true positives and 31.0% of false positives would

be obtained with the optimal threshold. For the attempt

of WF, the decoder provided 77.5% of true positives and

24.7% of false positives.

Table 5 shows the percentage of correct trials obtained

for the SCI patients. For the execution of EF, 50.2% of tri-

als were decoded before the movement onset, while for

the attempt ofWE the percentage of anticipated trials was

57.7%.

The anticipation for both tasks was similar, as can be

observed in Figure 9C. Average onset detection times

were -352 ms for EF and -364 ms for WE.
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Figure 4 ROC curves obtained for eachmovement. Panels A-G correspond to the results for each of the seven movements (SA, SF, SR, EF, ES, WE,
and WR, respectively). On each panel, colored lines represent the different subjects, while the black line shows the average of the six subjects. Circles
on each line represent the point of the curve with equal sensitivity and specificity, which are considered the optimal working points. Diagonal gray
dashed lines represent the performance of a random classifier. Each legend box contains the AUC for each subject and the average of them.
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Table 4 Percentageof correct trials averaged for healthy subjects

SA SF SR EF ES WE WR Avg

Avg Healthy
72.1± 17.7% 74.4± 24.6% 57.4± 19.3% 60.8± 15.4% 53.2± 16.3% 47.6± 10.3% 39.5± 17.6% 57.9± 12.6%

Subjects

Discussion
The electrophysiology analysis showed that both healthy

subjects and the studied SCI patients presented ERD and

MRCP activations for the different movements. For the

healthy subjects, there were statistical differences depen-

dent on the moving joint for pre-movement α ERD. This

result complements work by Pfurtscheller et al. [25],

which showed statistical differences in post-movement

β ERS for distal movements (wrist, finger and thumb).

In addition to this, we found no statistical differences

between movements in MRCP amplitude. These results

agree with previous analysis reported in [26], which com-

pared MRCPs for shoulder, elbow and finger movements

and only found statistical differences between shoulder

and finger. However, as we did not record finger motions,

further investigation would be required to study whether

there exist variations between MRCP amplitudes in the

movements covered in this paper and finger movements.

Decoding results reported for the first experiment show

the applicability of BMI on healthy subjects for the

three different joints of the arm, with accuracies ranging

from 40% to 75%, dependent on the type of movement.

Although studies have shown that the target population

of BMI rehabilitation (i.e., paralyzed patients) may have

altered brain patterns during motor tasks [15,46-48], sev-

eral works have successfully used classifiers based on ERD

or in MRCPs to decode motion intention in these para-

lyzed patients [5,6,12-14,22]. Indeed, results of the second

experiment showed similar BMI performances between

the healthy group (EF: 60.8%, WR: 39.5%) and the stud-

ied SCI patients (EF: 50.2%, WR: 57.7%). Despite the fact

that performances were higher for elbow than for wrist

movements for healthy subjects, this was not the case

for SCI patients (which executed elbow movements and

attempted wrist movements). On the contrary, accuracy

was slightly higher for wrist than for elbow movements

for the patients, and also than for wrist movements per-

formed by healthy subjects. As the number of patients

in this experiment was limited, further research should

be done to verify if significant differences in accura-

cies between motor execution and motor attempt are

present in these patients. This might be explained by the

1

Figure 5 Results of anticipation analysis. The y axis indicates the anticipation in seconds and the x axis the movement type. For each movement,
the colored bars indicate the mean±std anticipation of each subject, and black bars the average anticipation for all of them.
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Figure 6 Features selected by SDA. For their representation, information of all subjects and movements was combined. In both cases the last row
corresponds to the OSF signal. The scale of both figures represents the percentage of times that the features were chosen over all folds of all
leave-one-out executions. (A) Channels and frequencies for ERD features. (B) Channels and time samples of MRCP features.

recruitment of additional brain regions during movement

attempt when compared to movement execution [49].

Decoding accuracies were dependent on the movement

as revealed by the statistical tests. Percentages of cor-

rectly anticipated trials ranged from almost 40% in the

worst movements (wrist) to near 75% in the best ones

(shoulder). These performances were correlated with both

MRCP amplitude and ERD, despite the fact that MRCP

amplitudes did not show any statistical difference between

movements. A detailed comparison of these results with

previous works on continuous decoding of motor inten-

tion [10,12-14,18-23,33] is difficult to provide due to

differences in the protocols and reported metrics. For

instance, in [10] the anticipation window utilized for wrist

extension decoding in healthy subjects was larger than

the one used in this paper, and the percentage of cor-

rect trials they achieved was around 30%. In [22] they also

considered detections after the movement onset for ankle

dorsiflexion, and reported accuracies of about 80% with

healthy subjects and 55% with stroke patients. A recent

study with a similar methodology to that presented in this

paper decoded around 65% of reaching movement tri-

als with healthy and stroke subjects, when considering as

valid the onsets detected between -0.75 and 0.75 seconds

[33]. The accuracies reported in this paper correspond

to trials decoded between -1 second and the movement

onset. When also considering the trials decoded up to

one second after the movement onset as valid, the aver-

age accuracy was increased more than 10% (details not

reported in this paper).

Figure 7Weights assigned by the optimal filters to each channel for ERD and MRCP. The topoplots show the average weights for all subjects
and movements given to each channel for ERD (A) and MRCP (B). Red color represents higher, while blue represent lower weights.
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Figure 8 Electrophysiology analysis of the twomovements performed by the patients, averaged for the three of them. Panels A-B
correspond to the analysis for each of the two movements that patients performed (EF and WE, respectively). The top and center-left areas of each
panel show the significant ERD process in six channels around the motor cortex (x axis corresponds to the time interval [-3, 3], y axis represents the
frequency range [1-50] Hz). Bottom-left area shows the average MRCPs for each patient (gray lines), and the average of the three patients (black
lines) in central channels C1, Cz and C2. Top-right depicts the scale of ERD plots. Center-right shows the ERD in the OSF signal. Bottom-right
corresponds to the MRCP of the OSF signal.

All the decoding process has been automated, as it has

been pointed as an important property for the deployment

of BMIs in rehabilitation [50]. For each subject and move-

ment, the proposed decoder was able to select among a

large number of features extracted fromMRCPs and ERD

in a completely automated manner. The combination of

both types of features improved significantly the use of

each feature alone in terms of correct trials and anticipa-

tion, as has also been shown in a parallel workwith healthy

and stroke subjects [33]. However, as the results presented

in this paper were obtained offline with cross-validation,

and zero-phase filters were used, a drop in performance

might be expected when operating online. Previous works

have reported a drop of about 10% in true positive rate

when changing from offline to online operation in move-

ment decoding using MRCPs [22,23]. Therefore, further

research would be necessary to evaluate the impact of

this drop when combining both types of features (ERD

and MRCPs) with our optimized feature selection pro-

cedure. Interestingly, the automatically selected features

were consistent with the electrophysiology analysis and,

therefore, could be used as a plausible methodology to

induce brain plasticity in neurorehabilitation, or to use

natural brain commands for motor substitution.

The EEG decoding results presented in this paper (with

anticipated trials ranging from 40% to 75%) show that

the movement chosen for the rehabilitation exercises

has a significant impact on the BMI accuracy. These

Figure 9 ROC curves and anticipation analysis for SCI patients. Panels (A) and (B) correspond to ROC curves of EF and WE, respectively. Each
colored line represents one of the patients, while black lines show the average of the three of them. Circles on each line represent the point of the
curve with equal sensitivity and specificity, which are considered the optimal working points. Diagonal gray dashed lines represent the performance
of a random classifier. Each legend box contains the AUC for each patient and the average of them. Panel (C) shows anticipation analysis for each
movement. The y axis indicates the anticipation in seconds and the x axis the movement type. For each movement, the colored bars indicate the
mean±std anticipation of each patient, and black bars the average anticipation for all of them.
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Table 5 Percentage of correct trials averaged for patients

EF WE Avg

Avg Patients 50.2± 3.8% 57.7± 5.4% 53.9± 5.3%

accuracy differences are important in a rehabilitation con-

text as they may have an impact on the applicability of

BMI decoders for therapies involving analytic movements.

However, it is still unclear how different decoding accura-

cies can affect the rehabilitation outcome, both in terms

of functional recovery or neural reorganization. An inter-

esting pursuit for future research would be to evaluate

the relationship between decoding accuracy and reha-

bilitation outcome, since recent studies that successfully

applied online BMI to provide feedback to the subjects

did not report performances achieved, but pointed on the

importance of the temporal decoding precision [5,11].

Conclusions
This work showed the applicability of a BMI on seven

upper limb analytic movements (i.e., the seven degrees of

freedom of the arm). An experiment with healthy subjects

revealed that the sevenmovements can be decoded before

the actual movement onsets, and that there are differences

in EEG correlates and decoding performances dependent

on themoving joint. A second experiment performedwith

SCI patients showed how this BMI can be applied in a

clinical population. Similar performances were achieved

for movements they could and could not perform. Per-

formances were also similar between the patients and the

healthy subjects.
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