
 Open access Proceedings Article DOI:10.1109/ICSME.2016.72

Continuous Delivery Practices in a Large Financial Organization — Source link

Carmine Vassallo, Fiorella Zampetti, Daniele Romano, Moritz Beller ...+3 more authors

Institutions: University of Zurich, University of Sannio, ING Group, Delft University of Technology

Published on: 01 Oct 2016 - International Conference on Software Maintenance

Topics: DevOps, Continuous delivery, Agile software development, Best coding practices and Technical debt

Related papers:

 How open source projects use static code analysis tools in continuous integration pipelines

 Oops, my tests broke the build: an explorative analysis of Travis CI with GitHub

 Continuous Delivery: Reliable Software Releases Through Build, Test, and Deployment Automation

 TravisTorrent: synthesizing Travis CI and GitHub for full-stack research on continuous integration

 A Tale of CI Build Failures: An Open Source and a Financial Organization Perspective

Share this paper:

View more about this paper here: https://typeset.io/papers/continuous-delivery-practices-in-a-large-financial-
49rq8egfvc

https://typeset.io/
https://www.doi.org/10.1109/ICSME.2016.72
https://typeset.io/papers/continuous-delivery-practices-in-a-large-financial-49rq8egfvc
https://typeset.io/authors/carmine-vassallo-1xl2p7moph
https://typeset.io/authors/fiorella-zampetti-3hcgl4lneq
https://typeset.io/authors/daniele-romano-fltsfu0zjg
https://typeset.io/authors/moritz-beller-4yxckfs06v
https://typeset.io/institutions/university-of-zurich-144im07m
https://typeset.io/institutions/university-of-sannio-31npsio6
https://typeset.io/institutions/ing-group-gfq0yvhl
https://typeset.io/institutions/delft-university-of-technology-2b85q0ia
https://typeset.io/conferences/international-conference-on-software-maintenance-mszunhhl
https://typeset.io/topics/devops-25anv66i
https://typeset.io/topics/continuous-delivery-3npe2fey
https://typeset.io/topics/agile-software-development-1bzklcac
https://typeset.io/topics/best-coding-practices-1499sdf7
https://typeset.io/topics/technical-debt-1rilf6b1
https://typeset.io/papers/how-open-source-projects-use-static-code-analysis-tools-in-2vw3s55k0n
https://typeset.io/papers/oops-my-tests-broke-the-build-an-explorative-analysis-of-5dwvxp30tv
https://typeset.io/papers/continuous-delivery-reliable-software-releases-through-build-3idru6355x
https://typeset.io/papers/travistorrent-synthesizing-travis-ci-and-github-for-full-3cozi5p9pr
https://typeset.io/papers/a-tale-of-ci-build-failures-an-open-source-and-a-financial-2j53y2xurf
https://www.facebook.com/sharer/sharer.php?u=https://typeset.io/papers/continuous-delivery-practices-in-a-large-financial-49rq8egfvc
https://twitter.com/intent/tweet?text=Continuous%20Delivery%20Practices%20in%20a%20Large%20Financial%20Organization&url=https://typeset.io/papers/continuous-delivery-practices-in-a-large-financial-49rq8egfvc
https://www.linkedin.com/sharing/share-offsite/?url=https://typeset.io/papers/continuous-delivery-practices-in-a-large-financial-49rq8egfvc
mailto:?subject=I%20wanted%20you%20to%20see%20this%20site&body=Check%20out%20this%20site%20https://typeset.io/papers/continuous-delivery-practices-in-a-large-financial-49rq8egfvc
https://typeset.io/papers/continuous-delivery-practices-in-a-large-financial-49rq8egfvc

Zurich Open Repository and

Archive

University of Zurich
University Library
Strickhofstrasse 39
CH-8057 Zurich
www.zora.uzh.ch

Year: 2016

Continuous Delivery Practices in a Large Financial Organization

Vassallo, Carmine ; Zampetti, Fiorella ; Romano, Daniele ; Beller, Moritz ; Panichella, Annibale ; Di
Penta, Massimiliano ; Zaidman, Andy

Abstract: Continuous Delivery is an agile software development practice in which developers frequently
integrate changes into the main development line and produce releases of their software. An automated
Continuous Integration infrastructure builds and tests these changes. Claimed advantages of CD include
early discovery of (integration) errors, reduced cycle time, and better adoption of coding standards and
guidelines. This paper reports on a study in which we surveyed 152 developers of a large financial
organization (ING Nederland), and investigated how they adopt a Continuous Integration and delivery
pipeline during their development activities. In our study, we focus on topics related to managing technical
debt, as well as test automation practices. The survey results shed light on the adoption of some agile
methods in practice, and sometimes confirm, while in other cases, confute common wisdom and results
obtained in other studies. For example, we found that refactoring tends to be performed together with
other development activities, technical debt is almost always ”self-admitted”, developers timely document
source code, and assure the quality of their product through extensive automated testing, with a third
of respondents dedicating more than 50% of their time to do testing activities.

DOI: https://doi.org/10.1109/ICSME.2016.72

Posted at the Zurich Open Repository and Archive, University of Zurich
ZORA URL: https://doi.org/10.5167/uzh-146808
Conference or Workshop Item
Accepted Version

Originally published at:
Vassallo, Carmine; Zampetti, Fiorella; Romano, Daniele; Beller, Moritz; Panichella, Annibale; Di Penta,
Massimiliano; Zaidman, Andy (2016). Continuous Delivery Practices in a Large Financial Organization.
In: 2016 IEEE International Conference on Software Maintenance and Evolution (ICSME), Raleigh, NC,
USA, 2 October 2016 - 7 October 2016. IEEE, 519-528.
DOI: https://doi.org/10.1109/ICSME.2016.72

Continuous Delivery Practices

in a Large Financial Organization

Carmine Vassallo1, Fiorella Zampetti2, Daniele Romano3, Moritz Beller4,

Annibale Panichella4, Massimiliano Di Penta2, Andy Zaidman4

1University of Zurich, Switzerland, 2University of Sannio, Italy,
3ING NL, Amsterdam, The Netherlands, 4Delft University of Technology, The Netherlands

Abstract—Continuous Delivery is an agile software develop-
ment practice in which developers frequently integrate changes
into the main development line and produce releases of their
software. An automated Continuous Integration infrastructure
builds and tests these changes. Claimed advantages of CD include
early discovery of (integration) errors, reduced cycle time, and
better adoption of coding standards and guidelines. This paper
reports on a study in which we surveyed 152 developers of a large
financial organization (ING Nederland), and investigated how
they adopt a Continuous Integration and delivery pipeline during
their development activities. In our study, we focus on topics
related to managing technical debt, as well as test automation
practices. The survey results shed light on the adoption of
some agile methods in practice, and sometimes confirm, while
in other cases, confute common wisdom and results obtained
in other studies. For example, we found that refactoring tends
to be performed together with other development activities,
technical debt is almost always “self-admitted”, developers timely
document source code, and assure the quality of their product
through extensive automated testing, with a third of respondents
dedicating more than 50% of their time to do testing activities.

Index Terms—Continuous Delivery, Continuous Integration,
DevOps, Agile Development, Technical Debt, Refactoring, Test-
ing, Test-Driven Development

I. INTRODUCTION

Continuous Integration (CI) was originally introduced by

Grady Booch in 1991 [1], and came into fashion as one of the

twelve Extreme Programming practices in 1997 [2]. Fowler

defines CI as [3]:

A software development practice where members

of a team integrate their work frequently, usually

each person integrates at least daily – leading to

multiple integrations per day. Each integration is

verified by an automated build (including test) to

detect integration errors as quickly as possible.

CI has multiple assumed benefits, for example, that in-

tegration errors among different components of a software

application can be detected earlier, easier, and with less manual

effort [4]. At the heart of CI stands a testing phase, possibly in

multiple integration environments, in which unit, integration,

system, and even acceptance tests can automatically be exe-

cuted [5], [3]. This is complemented by running Automated

Static Analysis Tools (ASATs), e.g., FindBugs, Checkstyle,

or JSHint as part of the CI can augment the dynamic testing

phase [6]. In addition to these checks of code and system

quality, CI is said to improve release frequency and pre-

dictability [7], increase developer productivity [8] and improve

communication [9], hence reducing the time-to-market and

allowing users to benefit from continuous updates of their soft-

ware. Continuous Delivery (CD) is the development practice

that enables frequent releases by help of a CI process [10].

Ståhl and Bosch observed that CI, and by extension CD, have

become increasingly popular in software development [11].

However, Ståhl and Bosch observed that there is not one

homogeneous practice of continuous integration, indeed there

are variations points with the term continuous integration

acting as an umbrella for a number of variants [11]. Moreover,

they showed that there is no clear insight into how the practice

of CD influences other aspects of the development process.

The goal of this paper is thus to shed light on the

interaction between CI and CD from the aspect of (i) the

general development process, (ii) managing technical debt,

(iii) testing activities, (iv) technical questions about the CI

infrastructure.

To bootstrap this investigation, one of the authors spent three

months as an intern in a large financial organization, namely

ING Nederland (https://www.ing.nl, in the following referred

as ING NL) and observed how their newly adopted CD

environment enables developers to run their own operations,

called DevOps [12]. Based on these inside observations by

an outsider to ING NL, we have designed a survey in which

we asked developers about various practices they adopted in

the CD pipeline. By consulting and embedding an external

technical expert without domain knowledge, ING NL wanted

to gain an independent understanding of their process and

identify potential areas of improvement with regard to testing

and managing technical debt.

Paper Structure. Section II provides an overview of the CD

pipeline in ING NL. Section III defines the study, formulates

its research questions, and details its planning. Then, Section

IV reports and discusses the study results. Threats to validity

of the conducted studies are then discussed in Section V, while

Section VI discusses related literature on CD and build-release

management. Finally, Section VII concludes the paper.

II. CONTINUOUS DELIVERY IN ING NL

The ING Group is a large financial organization with about

94,000 employees and over 67 million customers in more than

40 countries.

Fig. 1. Continuous Delivery pipeline.

Nine years ago, ING NL realized the need to fundamentally

change the organization of its Information Technology (IT)

department. The main rationale was to bridge the gap from the

IT and ING NL’s core business. Before that, the IT activities

were mainly outsourced, which created managerial effort and

costs, while taking resources away from the development.

Moreover, the previously adopted development process ex-

hibited a communication gap between the department aimed

at “changing the business”, i.e., changing its software, and

the department aimed at “running the business’, i.e., operating

and maintaining the software. Such a gap was mainly bridged

by complex processes and procedures for managing changes.

This rigor was mainly introduced to ensure stability of the

software systems being developed. To “change the business”,

the focus was on guaranteeing short release cycles. This

created conflicting objectives between developers (“Devs”)

whose goal it was to meet deadlines, and operators (“Ops”)

whose goal it was to reduce the risk of runtime incidents.

The development process changed when ING NL decided

to introduce a mobile application for online banking, since that

long development cycles would have led to an outdated appli-

cation. For this reason, development activities were changed

from the previous outsourcing model to a development process

in which the development was internal to the company.

When changing the development process, DevOps teams

have been introduced. Such teams take charge of the appli-

cation over its whole lifetime, i.e., during development and

operations. The next step was the introduction of a CD pipeline

enforcing an agile development process to reduce the testing

and deployment effort and duration, especially because such

activities were used to be mainly manual work for two separate

teams.

Fig. 1 depicts the CD pipeline that has been put in place

at ING NL. As the figure shows, the pipeline is composed

of two layers. A base layer (depicted in the bottom), which

is a typical CD pipeline, and an additional layer (top) which

deals with continuous monitoring. As soon as the developer

pushes a commit, this is detected by the CI server, Jenkins

[13], and triggers the software build. Its main task is to run

build scripts, mainly Maven scripts, but also, for a minority

of projects, Ant, Gradle and other build scripts.

Similar to most Open-Source CI builds [5], builds at ING

Fig. 2. Monitoring layer in the CD pipeline.

NL are considered broken for a number of reasons, ranging

from traditional compiling errors to failing test cases, up to

software quality problems – e.g., the presence of a code smell

like too high McCabe cyclomatic complexity – detected by

ASATs. At ING NL, such the ASAT of choice is SonarQube

[14].

In case the build succeeds, the artifacts are stored in the

Repository stage using the Artifactory [15]. This introduces

several advantages, such as the possibility of implement-

ing caching mechanisms for rapid application re-deployment.

Once the Repository stage is reached, the application is

ready to be deployed in different environments, i.e., DEV

(development), TST (testing), ACC (acceptance), and PRD

(production).

The monitoring layer in the pipeline collects (top part in

Fig. 1) a series of metrics for evaluating the CD pipeline per-

formance. This comprises the three phases of (i) instantiating

a CD pipeline, (ii) performing measurements on the pipeline,

and (iii) learning from such measurements to further improve

the pipeline.

The monitoring layer is detailed in Fig. 2. It is composed

of one event bus, implemented using Apache Kafka [16], and

aimed at collecting events (e.g., build failures or successes)

from the pipeline and storing them in a database, implemented

using MongoDB [17]. Then, the information stored in the

database is utilized by different monitoring tools, shown in

the top part of Fig. 2.

The system health monitoring tool monitors the pipeline’s

software and hardware resources and its primary purpose is

ensuring the pipeline’s availability. The automated acceptance

criteria tool aims at checking whether the release meets

the acceptance criteria defined by the organization, before

promoting it to the ACC or PRD stage. The automated team

maturity and test analytics tools inform teams about releases

(e.g., mean cycle time a team is able to handle) and statistics

about test execution, such as the percentage of failed tests.

The whole monitoring approach reflects the Lean cycle [18],

in which DevOps engineers continuously learn by observing

metrics and adapt the pipeline when needed.

ING NL has monitored the effect of CD adoption in terms of

costs, productivity, and customer satisfaction. In three years,

from 2011 to 2013, ING NL has increased the number of

delivered function points by 300% and reduced the cost of a

single function point to one third. Additionally, between 2012

and 2014, the release frequency has doubled, reaching one

release every four days.

III. STUDY DESIGN

The goal of this study is to better understand the imple-

mentation of CD practices in industry, by surveying how

software engineers use relevant methods and tools during the

development process. The context is the CD pipeline of a large

financial organization (ING NL).

More specifically, the study aims at addressing the following

four research questions:

• RQ1: What are general development practices within the

Continuous Delivery pipeline? This research question is

preliminary to the ones going deeper into the CD process,

and mainly aims at investigating to what extent devel-

opers share a common development methodology, and

how they plan, schedule, and monitor their development

activities.

• RQ2: What are the practices adopted to manage technical

debt? This research question aims at understanding how

developers manage technical debt by commenting source

code, by reviewing it, and by performing any sort of static

analysis or metric extraction.

• RQ3: What are the testing practices adopted within the

Continuous Delivery pipeline? This research question

aims at understanding how testing is framed within

the software development process, e.g., whether DevOps

adopt a Test-Driven Development approach [19].

• RQ4: How is Continuous Integration performed? This

research question investigates on the developers’ attitude

to coordinate changes through the CD infrastructure,

including the use of private builds and the priority given

to fix build breakages.

A. Context Selection

As a population of candidate participants to the survey, we

selected a total of 176 DevOps engineers belonging to various

development teams of ING NL. Such participants have been

identified through the projects’ mailing lists.

B. Survey Design

The four research questions have been addressed by means

of a survey. The survey has been designed by the authors

observing the development activities (by looking at the life-

cycle of user stories and participating in daily stand-up meet-

ings), and talking with developers to get insights about the CD

pipeline and the way it has been implemented at ING NL.

The survey also addresses specific knowledge needs at

ING NL, triggered by one of the authors who is affiliated

with ING NL. The survey is organized into four sections,

plus a preliminary section aimed at investigating demographic

characteristics of the respondents (age, years of experience,

years at ING NL, and technical skills). Overall, it consists

of 48 questions, plus five demographics questions. The ques-

tionnaire allowed the respondent to select among one or more

answers (in most cases multiple answers were allowed), and if

needed to provide a textual answer (i.e., by selecting “Other”

among the options). In Tables 1–4, we give an abbreviated

summarization of the questions we asked developers.1

Table I reports the questions aimed at addressing RQ1. As

it can be noticed, besides the first question, mainly aimed at

understanding whether DevOps engineers share the method-

ology being adopted, all other questions clearly refer to agile

development practices and in particular to Scrum [20]. For

example, we ask questions about sprint planning and user

story progress monitoring, but also specific questions about

how DevOps manage issues and schedule/perform refactoring

actions. We asked specific questions about refactoring as

in this study we were particularly interested to understand

activities related to technical debt management.

Specific questions about managing technical debt – reported

in Table II – compose the second part of the survey, aimed at

addressing RQ2. We ask questions about (i) how developers

document source code by means of comments, (ii) how they

perform code review, (iii) what kinds of problems do they

detect by means of code review and using automated smell

detection tools, as well as how they remove problems by means

of refactoring, and (iv) whether they perceive that smells are

usually introduced because of deadline pressure.

The third part of the survey aims at addressing RQ3 and fea-

tures questions about testing activities, as shown in Table III.

After having asked a question aimed at understanding whether

DevOps engineers use TDD, we asked questions about the

effort spent on writing test cases and to what extent test cases

are kept up-to-date. Also, we ask questions about information

and strategies being used to derive test cases for different

testing levels. Then we ask questions about test execution (i.e.,

to what extent is this done within private builds or on the CI

server), and how developers assess test effectiveness and deal

with low coverage.

Finally, the fourth part of the survey addresses RQ4 and

is composed of questions (see Table IV) about (i) promotion

policies2, (ii) how DevOps engineers handled build failures,

(iii) how they used branches and (iv) how frequently they

pushed their changes.

C. Survey Operation

The questionnaire was uploaded onto a survey management

platform internal to ING NL, and the candidate participants

were invited using an invitation letter explaining the general

goals of the survey, its length and estimated time to com-

plete, and highlighting how its results have the purpose of

understanding the CD process within ING NL, also in order

to identify directions for its improvement.

Respondents had a total of three weeks to participate to

the survey, and a reminder to those who did not participate

yet was sent every week. In total, we obtained 152 filled

questionnaires, i.e., we achieved a return rate of 85%. We

left respondents the choice not to answer a question. The

1The original survey with all questions is available at https://figshare.com/
s/fa8c4e11fc9fa4b8f8cb

2A promotion entails the selection of a release candidate and subsequent
deployment to the correct environment [21].

TABLE I
DEVELOPMENT PROCESS - QUESTIONS (S/M/R STANDS FOR SINGLE, MULTIPLE, OR RANKING ANSWER QUESTION).

Summarized Question S/M/R # of Resp.

Q1.1 What is your software development methodology? S 150
Q1.2 Is the product vision always clear to you? Why? Why not? S,M 149
Q1.3 Do you prefer to use a physical board or an electronic one? Why? S,M 125
Q1.4 During a sprint why do you add some tasks to the already planned ones? R 138
Q1.5 Which is the main topic you address during the sprint retrospective? S 138
Q1.6 Which is the average percentage of completed user stories at the end of a sprint? S 138
Q1.7 Which Scrum metrics do you usually collect? M 128
Q1.8 Which is the main reason why a “done” user story comes back to “in-progress”? S 130
Q1.9 Do you consider non-functional requirements as definition of “done” of a user story? S 130
Q1.10 Which kind of non-functional requirements do you consider as definition of “done” of a user story? M 120
Q1.11 You detect a defect that was previously resolved: how to deal with it? S 129
Q1.12 Do you usually schedule refactoring tasks? Why? S 129
Q1.13 Which priority do you usually assign to refactoring tasks? S 128
Q1.14 How frequently are refactoring tasks included in other tasks? S 128
Q1.15 Which is the average percentage of scheduled refactoring tasks that are completed at the end of a sprint? S 123

TABLE II
MANAGING TECHNICAL DEBT - QUESTIONS (S/M/R STANDS FOR SINGLE, MULTIPLE, OR RANKING ANSWER QUESTION).

Summarized Question S/M/R # of Resp.

Q2.1 To what extent do you introduce method and class level comments? S 116
Q2.2 To what extent do you introduce statement level comments? S 116
Q2.3 To what extent do you update code documentation/comments? S 116
Q2.4 Do you perform code review? Why? S,M 116
Q2.5 How do you usually detect code smells? M 110
Q2.6 Which of those problems do you usually detect? (null pointers, interface misuse, memory leaks, unreachable code, unused

variables, uninitialized variables)
M 116

Q2.7 Which of these bad design/implementation choices do you usually detect during code reading? (function having huge size,
method with many responsibilities, high module coupling, module exposing its attributes)

M 116

Q2.8 Which source code metrics do you usually look at? M 116
Q2.9 Do you sometimes do poor implementation choices because of near deadline? S 116
Q2.10 Do you usually use a tool in order to do code refactoring? Why? S 116

TABLE III
TESTING - QUESTIONS (S/M/R STANDS FOR SINGLE, MULTIPLE, OR RANKING ANSWER QUESTION).

Summarized Question S/M/R # of Resp.

Q3.1 Do you use TDD (Test Driven Development)? Why/why not? S,M 125
Q3.2 Which percentage of your time do you spend on writing tests? S 124
Q3.3 How frequently do you review and (if necessary) update the tests for every change to production code? S 124
Q3.4 Do you usually test the code written earlier by others? Why (not) S,M 124
Q3.5 Which strategy do you usually use to categorize inputs for each test case? S 122
Q3.6 Which information do you need in order to perform Unit Testing? M 122
Q3.7 Which information do you need in order to perform Integration Testing? M 122
Q3.8 Do you usually automate the generation of the test cases? S 122
Q3.9 In which kind of testing do you usually automate the generation of the test cases? M 21
Q3.10 Which kinds of testing are executed automatically? Why (not)? M 120
Q3.11 Where do you test code? M 120
Q3.12 Which percentage of written tests are executed? S 120
Q3.13 Do you always run all test cases together? Why? S 120
Q3.14 How frequently do tests pass? S 120
Q3.15 Which types of code coverage do you measure? M 107
Q3.16 Which is the average percentage of code coverage that you usually score during unit testing? S 103
Q3.17 How do you deal with low coverage? S 103
Q3.18 Which of those test metrics do you find useful? M 116
Q3.19 How do you react to a failure? R 116

TABLE IV
CONTINUOUS INTEGRATION - QUESTIONS (S/M/R STANDS FOR SINGLE, MULTIPLE, OR RANKING ANSWER QUESTION).

Summarized Question S/M/R # of Resp.

Q4.1 Promotion policies: what do you do when you are ready to push code on the master branch? S 112
Q4.2 How do you deal with failures at building/packaging time? S 112
Q4.3 Branching issues: how do you deal with parallel development? S 112
Q4.4 When do you usually push your changes? S 112

TABLE V
RESPONDENTS’ DEMOGRAPHICS: AGE, YEARS OF DEVELOPMENT

EXPERIENCE, AND YEARS SPENT AT ING NL.
Age Years of experience Years spent at ING NL

< 30 24 < 1 2 <1 24
30-39 55 1 5 1 27
40-50 60 2-5 19 2-5 56
> 50 13 6-10 32 6-10 19

>11 94 >11 26

E
x
p

e
rt

is
e

Java

JavaScript

SQL-databases

no-SQL-databases

PHP

.NET

Objective-C

TIBCO

Other

Number of respondents

0 30 60 90 120 150

41

19

20

28

29

45

102

127

135

Fig. 3. Technological Knowledge.

number of answers for each question is reported in the last

column of the tables enumerating the questions. Overall, the

median number of responses per question was 129 for RQ1

questions, 116 for RQ2, 120 for RQ3 and 112 for RQ4.

Only for one question (Q3.9, dealing with specific aspects

of test automation) the number of answers was below 100,

i.e., 21. Both the overall return rate and the return rate for the

single answers are higher than typical return rates for software

engineering surveys conducted in industry, which often range

between 10% and 25% [22], [23]. The high return rate gives

us confidence that our survey accurately reflects the opinion

of the sampled developers.

IV. STUDY RESULTS

In this section, we highlight key results of our study that

directly address the research questions from Section III.

A. Respondents’ demographics

Table V and Fig. 3 report demographics information about

the study respondents, and namely their age, years of experi-

ence, years spent at ING NL, and their main skills (multiple

answers were allowed). Most of the respondents are relatively

senior both in term of age and development experience (the

majority of them has an age between 30 and 50, and over 11

years of experience). The main technological expertise they

possess are related to Java or JavaScript programming, and

both relational and NoSQL databases.

B. RQ1: What are general development practices within the

Continuous Delivery pipeline?

Methodology. When we asked about the kind of methodol-

ogy being adopted in the development process (Q1.1) almost

%
 o

f
re

s
p

o
n

d
e

n
ts

0%

10%

20%

30%

40%

Sprint completion percentage

< 80% 80% 90% 95% 100%

3%

14%

28%

36%

18%

Fig. 4. Q1.6 – User story completion percentage in a sprint.

all developers (97%) mentioned they use on Scrum as devel-

opment methodology. At the same time, the product vision

(Q1.2) is clear to 68% of the respondents only. One important

reason for the lack of clarity is due to frequent changes, which

are pretty common in agile development.

Interestingly, while most of the respondents (69%) prefer

to use an electronic Scrum board (Q1.3), there is a quite high

percentage (31%) still preferring a physical Scrum board3. On

the one hand, they say that an electronic Scrum board facil-

itates distributed team work (84%), and provides automated

calculation of sprint progress metrics (59%). On the other

hand, a physical board is always visible in the room (90%),

and improves the team cohesion (64%).

Sprint Management. Developers declared that, during a

sprint, they add some tasks to the already planned ones (Q1.4).

As a main reason for that, 60% of them indicate bug fixing,

followed by missing detailed requirements (33%) and only 7%

mentioned high-level, business requirements missing during

the planning.

During the sprint retrospective (Q1.5), i.e., the meeting

in which the sprint activities were discussed in order to

understand what went well, what went wrong, and how things

can be improved for the next sprint, developers mainly discuss

and try to harmonize the way they work (88%). Few responses

concern bad implementation (1%), the product not meeting

functional (1%) or non-functional (1%) requirements, and

other issues (7%).

Fig. 4 reports the average percentage of completed user

stories at the end of a sprint (Q1.6). In most cases, respondents

agree that no less than 80% of user stories are completed.

Other than dealing with functional requirements, user story

completion concerns with dealing with different kinds of non-

functional requirements, where developers consider as high

priority requirements security (89%), reliability (86%) and

maintainability (82%). The main monitoring mechanisms for

the sprint progress (Q1.7) are the sprint burn-down (60%,

tracking the sprint completion), and the velocity, i.e., the

number of story points [24, page 87] per hour (58%). A small

percentage of respondents consider the number of defects post-

3https://en.wikipedia.org/wiki/Scrumban#/media/File:Simple-kanban-
board.jpg

Almost always

Often

Sometimes

Seldom

Almost never

% of respondents

0% 10% 20% 30% 40% 50%

5%

12%

37%

30%

16%

Fig. 5. Q1.14 – Refactoring being performed together with other tasks.

poned (3%), or the technical debt occurred (7%) as important

indicators which are able to influence the completeness of a

user story.

In some cases, a completed user story may be rolled back

to “in-progress” (Q1.8), but mainly because developers realize

that functional (34%) or non-functional (25%) requirements

are not completely implemented. Only in 22% of the cases

does this occur because of changes in users’ expectations. 7

respondents (5%) explicitly specified that in case they realize

changes in requirements, e.g., because of changed users’ ex-

pectations – they rather open a new user story than reopening

a previously closed one. One respondent even clarified that a

“done” user story should be considered to be in production

already, and therefore should not be reopened again.

When a previously resolved defect occurs again (Q1.11),

52% of the respondents indicate that they open a new issue

anyway. This can either indicate a careful approach in which

developers try to keep the new occurrence of the defect

separated from the previous one.

Refactoring activities. When we asked about refactoring

tasks (Q1.12), 64% of respondents indicated that refactoring

is usually properly scheduled. The main reasons for refactor-

ing include improving program comprehension (87%), allow

making changes easier (77%), and help to find bugs (24%).

Those who not schedule refactoring tasks, they do it either

because they are too time consuming and take effort away

from feature implementation tasks (27%), or because they

do not clearly perceive refactoring advantages (9%). A large

proportion of respondents (64%) indicate other reasons. For

example, they mentioned that “refactoring is just performed as

it pops up”, that they “naturally consider refactoring as part

of other development tasks”, or that “code should be made

maintainable right away”. Also, some respondents indicated

planning reasons, i.e., part of the user story effort calculation.

Last, but not least, someone indicates that all depends on

the size of the refactoring activity to be performed is, i.e.,

small refactorings are performed together with development,

whereas larger ones are kept separate.

When being scheduled (Q1.13), refactoring tasks often

have a medium priority (70%) than other tasks, with 9%

assigning a high priority and 23% a low priority. Indeed, 42%

Finding bad smells

Sharing code knowledge

Finding defects

Finding alternative solutions

% of respondents

60% 70% 80% 90% 100%

75%

81%

85%

90%

Fig. 6. Q2.4 – Purposes of code review.

of respondents indicate that more than 80% of the planned

refactorings within a sprint are actually completed (Q1.15).

Differently from what Fowler reported [25], refactoring

tasks are often performed together with other tasks, as shown

in Fig. 5 (Q1.14). Only 5% of respondents declare that they

clearly separate refactoring from other tasks.

C. RQ2: What are the practices adopted to manage technical

debt?

Source code comments. The first block of questions we

asked about managing technical debt concerned the way

and the extent to which developers comment source code.

Respondents said they almost always (23%), often (34%),

and sometimes (24%) introduce class-level and method-level

comments (Q2.1). Instead, as expected only 3% and 15% of

the respondents introduce statement-level comments always

and often, respectively (Q2.2). Still, 38% of the respondents

introduce them sometimes.

In line with the CD process, and with the aim of preserv-

ing program understanding, 79% of the respondents’ update

comments immediately when changing the source code, while

13% postpone such changes to a specific phase aimed at

producing/updating documentation (Q2.3).

Code reviews. Code review (Q2.4) is adopted by almost

the whole set of respondents (95%) and, as shown in Fig. 6,

the obvious purposes are detecting bad smells (90%) and

finding defects (81%). However, code review is also used a

lot to share code knowledge (85%), or to find alternative ways

for implementing a feature (75%). These results are partially

in line with the observations on the code review process at

Microsoft [26] and on open-source projects [27]. At Microsoft,

finding defects was the most important motivation, followed

by code improvement and finding alternative solutions, while

sharing code ownership was only ranked seventh.

Analysis of bad code smells. Respondents indicate (Q2.5)

that code reviews are the premier way for detecting code

smells (92%), while 63% of the respondents also use static

analysis tools. The main problems detected (Q2.6) either by

means of automated or manual code review are reported in

Fig. 7 (a): the majority indicated as main problems detected

unused (78%) or uninitialized (62%) variables, null pointers

Unused variables

Use of unintialized variables

Null pointers/references

Unreachable code

Interface misuse

Memory leaks

% of respondents

0% 25% 50% 75% 100%

24%

33%

61%

62%

62%

78%

(a) Q2.6 – Software defects

Large (function) size

Low cohesion

High coupling

Lack of encapsulation

Other

% of respondents

0% 25% 50% 75% 100%

13%

34%

49%

70%

75%

(b) Q2.7 – Bad design choices

Fig. 7. Problems detected by automated and manual code review.

(62%, including null references in languages not directly using

pointers, e.g., Java), and unreachable code (61%). In terms of

bad design choices (Q2.7) (Fig. 7 (b)) as expected respondents

mainly deal with large function size (75%). Surprisingly, they

focus more on low cohesion (71%) than high coupling (49%),

although in previous studies [28], [29] the latter has been

perceived by developers as a negative factor for software

maintainability and comprehensibility.

The majority of respondents (58%) rejected the common

wisdom that poor implementation choices occur because of

deadline pressure (Q2.9), confirming previous results obtained

in the open source [30]. Interestingly, almost all respondents

(88%) annotate these poor implementation choices: hence

the principle of self-admitted technical debt – previously

investigated in open source [31], [32] – is pretty well applied

at ING NL. When time allows, developers try to refactor

such smells using some automated tool support: 71% use

tools automatically enacting refactoring actions, such as the

Eclipse refactoring infrastructure, and not tools recommending

refactorings (i.e., tools such as JDeodorant [33]), while 29%

do it manually. The latter indicate as main reason for manual

refactoring the lack of adequate tools (76%) but also the

lack of trust in automated refactoring tools (15%), confirming

results studies showing the dangers of using automated tools

for applying refactorings [34].

Amount of duplicated codes

Cyclomatic complexity

Number of function parameters

Lines of Code (LOC)

Comment words

Number of source files

Other

% of respondents

0% 25% 50% 75% 100%

15%

16%

18%

44%

51%

69%

78%

Fig. 8. Metrics collected to monitor source code quality.

Always

When I have time

Only for certain kinds of systems

No

% of respondents

0% 10% 20% 30% 40% 50%

22%

12%

33%

34%

Fig. 9. Q3.1 – Adoption of Test-Driven Development.

Metric collection. Other than identifying specific defects,

developers collect a series of metrics to monitor source code

quality (Q2.8). The main metrics used are reported in Fig. 8.

Surprisingly, the most important metric is the amount of

duplicated code (78%) which traditionally is considered as

a kind of bad smell too. Other than that, the cyclomatic

complexity (69%, again, indicator of some code smells such as

Complex Method) and number of function parameters (51%,

indicator of Long Parameter List bad smell). Only 44% of

respondents mention LOC.

D. RQ3: What are the testing practices adopted within the

Continuous Delivery pipeline?

Test-Driven Development (TDD) and Testing in general.

TDD is the practice of “driving development with tests” [35].

As reported in Fig. 9, 34% of the respondents say they

always use TDD (Q3.1). 33% answered they use TDD for

certain kinds of (sub) systems, and 12% use it when time

pressure allows. 22% do not use TDD at all. Respondents

reported to adhere to a TDD style when they can create

or have existing unit (96%), integration (53%), acceptance

(25%), or performance (15%) tests for the functionality they

are about to implement. Reasons for not using TDD are mainly

related to TDD not being directly applicable for many types of

code changes, e.g., when developing graphical user interfaces

(59%), which triggers the need for other kinds of tools, such

as capture-replay tools. Another important reason was TDD’s

time consuming nature (33%).

Regarding testing in general, 47% of the respondents allo-

cate between 25% and 49% of their time for testing (Q3.2),

and 31% more than 50% of their time. Developers in the

WatchDog study [35] estimated to spend on average around

50% of their time on automated, codified testing, very closely

resembling the estimates in our study.

One may wonder how accurate developers’ self-estimations

are and whether developers who claim to use TDD do indeed

apply it. Beller et al. [35] found in their WatchDog study that

developers spent a quarter of the work time on testing (instead

of half, which they originally estimated), and that, even when

they reported that they were using TDD, developers practi-

cally never applied it strictly [35]. A similar observational

study on developers’ testing habits could identify whether

and how these findings apply in our given context. Casual

evidence from another context (not at ING NL) suggests that,

some developers were referring to acceptance testing with the

Framework for Integrated Testing (FIT) [36] as TDD, but

meant Behavior-Driven Development (BDD) [37]. Generally,

our survey answers suggest that quality assurance through

testing is a crucial concern at ING NL. A significant amount

of manual work is required for TDD in particular and testing

in general. Automated tool support, including test case gen-

eration, might help further reduce it. When asking a specific

question on automation of test generation (Q3.8, Q3.9), 17%

of the respondents indicated they use some techniques and tool

to automate test case generation.

A factor that highlights the cost of testing and that TDD

may indeed be followed is the answering to the question of

continuous updating of test suites for every change (which is

in line with the idea of CI). Most of the respondents claim

they almost always (58%) or often (28%) update tests when

changing production code (if necessary).

Testing strategies and criteria. We found that developers

make use of specific testing strategies such as black box

testing relatively seldom (Q3.5). 52% of the respondents say

they do not use any strategy. As regard black box testing,

only 20% and 19% use equivalence class testing and category

partitioning [38] criteria respectively. Regarding white box

testing, the main criteria being used (Q3.15) are statement

coverage (94%), branch coverage (84%), multiple condition

coverage (68%), and in some cases path coverage (42%).

Most of the respondents picked multiple options indicating that

depending on the feature under test, they choose whichever

strategy is most suitable.

Overall, about statement coverage (Q3.12), 84% of the

respondents indicated they try to achieve a coverage level of at

least 80%. Other than that, as it is shown in Fig. 10, developers

rely on a number of different metrics, mostly the number of

failed/passed/blocked test cases (77%) but, for example, also

related on how well test cases cover user stories (27%).

For unit testing purposes, test cases are often written using

(Q3.6) requirements for black box testing (78% of respon-

dents) and source code for white box testing (80%). Only

24% of respondents rely on models. As for integration testing

of test cases written for each user story

of executed/un-executed test cases

of failed/passed/blocked test cases

of detected defects grouped by priority

Other

% of respondents

0% 25% 50% 75% 100%

9%

27%

32%

34%

77%

Fig. 10. Q3.18 – Test metrics.

(Q3.7), code is less used (43%) while developers mainly rely

on module interfaces (66%).

E. RQ4: How is Continuous Integration performed?

The first question we asked (Q4.1) was about the use of

testing in private builds before opening a pull request. As

one can expect, results indicate how the use of CI changes

the promotion management policies one may adopt. While in

principle [39] one can be tempted to promote code as long as it

compiles, with CI developers are encouraged to perform some

tests (e.g., unit testing) in the private builds. Indeed, 97% of

the respondents indicated they actually do it, while only 3%

let the CI perform all tests when builds are performed.

In case of build breaking changes (Q4.2), 96% of the

developers confirmed that they interrupt their implementation

activities and focus on fixing the build.

To minimize conflicts, the majority of respondents (62%)

create a feature branch and merge it later in the master branch,

even if only 22% of them perform a daily merge (Q4.3).

Regarding the frequency of pushing changes in the master

branch (Q4.4) results indicate that 60% of developers push

changes whenever a small piece of a task is completed, while

30% do it only when a whole task is completed. Only few

respondents (10%) push changes more than one time in a

week.

V. THREATS TO VALIDITY

Threats to construct validity concern the relationship be-

tween theory and observation. In a survey, such threats may

mainly occur because respondents could possibly interpret a

question in a different way than it has been conceived, possibly

producing misleading results. For example, when answering

to Q3.1, and as explained in Section IV-D, it is possible that

developers believe they are applying TDD, while this is not

the case. Whenever possible, the quantitative findings obtained

with the survey were confirmed by the observations made by

one of the authors, who observed the ING NL development

process for three months. Possibly, the most suitable way of

complementing the survey would have been a follow-up live

interview or a longitudinal study, which is plan for future work.

Threats to internal validity concern with factors that could

have influenced our results. One such factor could be the

evaluation apprehension [40]. For example, answers to Q2.9

indicated that deadline pressure is not a major cause for poor

implementation choices. Another threat is related to the survey

return rate. We have shown that the overall return rate is quite

high (85%), and generally higher than other surveys conducted

in the area of software engineering.

Threats to external validity concern the generalization of

our findings. The obtained findings are clearly and intendedly

confined to the specific case of ING NL, and may or may

not generalize to other organizations, even within the same

domain. In some cases, e.g., for the use of code reviews,

we have shown how our results confirm what seen in other

organizations [26].

VI. RELATED WORK

In recent years, researchers have conducted different studies

on the adoption of CI and CD in industry and open source.

Experience reports. Laukkanen et al. [41] interviewed 27

developers at Ericsson R&D to understand their perception

of CI. They observed that developers face many technical

and social challenges when adopting CI, such as the test

infrastructure. An industrial experience report from Kim et

al. [42] details a CI setup at the package level, rather than

at source code line level, hence increasing the responsibility

of package maintainers. Ståhl and Bosh [11] conducted a

literature review on CI practices and found that different soft-

ware development projects use different CI implementations

because of several contextual factors such as size, longevity,

budget, competences, organizational structure, or geographical

distribution. This suggests that contradicting elements in the

results of our survey when compared to other studies can

possibly be explain by variations in context.

Build failures. A challenge in CI is dealing with build fail-

ures, which might negatively impact developers’ productivity.

Thus, researchers have investigated the most common causes

of these failures. For example, Miller [8] at Microsoft reported

that, for the Service Factory system, build failures are mainly

due to compilation failures, failing tests, static analysis tool

issues, and server failures. Seo et al. [43] at Google found that

most failures are due to dependency-related issues between

software components. In contrast, Beller et al. [5] analyzed

build failures due to test executions. In particular, they found

that testing is an important part in CI and it is also the most

frequent reason for build failures.

Benefits of CI practices. Other researchers have inves-

tigated the effect of CI on code quality and developers’

productivity. For example, Miller [8] reported that for the

Service Factory system the CI cost was about 40% of the cost

of an alternative (non-CI) process achieving the same level of

quality. Deshpande and Riehle [44] analyzed commit data from

open source projects and found that, differently from industrial

development, in open source the adoption of CI has not yet

influenced development and integration practices. However,

Vasilescu et al. [45] mined GitHub projects and found that CI

makes teams more productive and improves the likelihood of

pull request mergers, without sacrificing the projects’ quality.

Tools and techniques. Brandtner et al. [46] focus on

improving common CI practices, in particular, they developed

a platform that dynamically integrated data from various CI-

tools and tailors the information for developers. In other

work, Brandtner et al. [47] propose a rule-based approach to

automatically profile stakeholders based on their activities in

version control systems and issue tracking platforms. platform,

namely SQA-Mashup, which dynamically integrates data from

various CI-tools and tailors the information for developers. El-

baum et al. [48] presented regression test selection techniques

to make continuous integration processes more cost-effective.

While the studies described above focused on CD expe-

rience itself or introducing new tools and techniques, our

survey conducted at ING NL focuses more on the development

practices within the CD pipeline, with a particular emphasis

on how DevOps engineers manage technical debt and perform

testing.

VII. CONCLUSIONS

This paper reported results of a survey – conducted with

152 developers of a large financial organization (ING Neder-

land) – about their use of Continuous Delivery. The survey

featured questions about (i) the development process and task

management, (ii) managing technical debt, (iii) testing, and

(iv) Continuous Integration activities. The main findings of

the survey suggest that:

• While refactoring is properly scheduled, contrarily to both

common wisdom and to Fowler stated [25], it is often

performed together with other development activities, as

it is considered as part of a user story effort, and this

prevents to release poorly maintainable source code.

• Respondents tend to “self-admit” technical debt when

writing source code, in order to be able to fix it when pos-

sible. Instead, they reject the hypothesis that such smells

are introduced because of deadline pressure. Then, they

use both code reviews and automated tools to identify

and refactor code smells.

• The majority of developers mention they use TDD, al-

though we do not know whether they are strictly applying

TDD. At the same time, quality assurance in the form

of (manual) testing requires a significant portion of the

allocated time for a sprint.

• The use of a Continuous Integration infrastructure encour-

ages developers to test their changes using private builds,

and to give very high priority to fix build breakages.

In conclusion, our survey-based study shows how practices

such as TDD or the identification and refactoring of bad

smells (with the help of automated tools) are put in practice

in a large organization as ING NL, sometimes confirming

common beliefs, sometimes contradicting them. This study

requires replications in other organizations, and needs to be

complemented with other studies, e.g., case studies, controlled

experiments and longitudinal field studies, in which devel-

opers’ activities can be closely observed to have a better

understanding of their behavior when working within a CD

pipeline.

ACKNOWLEDGMENTS

The authors would like to gratefully thank all the study

participants as well as all developers from ING NL that

provided precious inputs for the planning of this study.

REFERENCES

[1] G. Booch, Object Oriented Design: With Applications. Benjamin
Cummings, 1991.

[2] K. Beck, Extreme programming explained: embrace change. Addison-
Wesley Professional, 2000.

[3] M. Fowler and M. Foemmel, “Continuous integration,”
2006. http://www.dccia.ua.es/dccia/inf/asignaturas/MADS/2013-
14/lecturas/10 Fowler Continuous Integration.pdf.

[4] P. Duvall, S. M. Matyas, and A. Glover, Continuous Integration:

Improving Software Quality and Reducing Risk (The Addison-Wesley

Signature Series). Addison-Wesley Professional, 2007.
[5] M. Beller, G. Gousios, and A. Zaidman, “Oops, my tests broke the build:

An analysis of travis CI builds with GitHub,” PeerJ PrePrints, vol. 4,
2016.

[6] M. Beller, R. Bholanath, S. McIntosh, and A. Zaidman, “Analyzing the
state of static analysis: A large-scale evaluation in open source software,”
in Proc. Int’l Conf on Software Analysis, Evolution, and Reengineering

(SANER), pp. 470–481, IEEE, 2016.
[7] D. Goodman and M. Elbaz, “It’s not the pants, it’s the people in the

pants — learnings from the gap agile transformation,” in Agile 2008

Conference, pp. 112–115, 2008.
[8] A. Miller, “A hundred days of continuous integration,” in Agile 2008

Conference, pp. 289–293, 2008.
[9] J. Downs, B. Plimmer, and J. Hosking, “Ambient awareness of build

status in collocated software teams,” in Proceedings of the International

Conference on Software Engineering (ICSE), pp. 507–517, IEEE, 2012.
[10] P. Debois, “Just enough documented information. Agile 2008, Toronto,

Canada http://www.jedi.be/blog/2008/10/09/agile-2008-toronto-agile-
infrastructure-and-operations-presentation/,” 2008.

[11] D. Stahl and J. Bosch, “Modeling continuous integration practice
differences in industry software development,” Journal of Systems and

Software, vol. 87, pp. 48–59, 2014.
[12] F. Erich, C. Amrit, and M. Daneva, “A mapping study on cooperation

between information system development and operations,” in Product-

Focused Software Process Improvement - 15th International Conference,

PROFES 2014, Helsinki, Finland, December 10-12, 2014. Proceedings,
pp. 277–280, 2014.

[13] CloudBees, “Jenkins – https://jenkins.io,” June 2016 (last accessed).
[14] SonarSource, “SonarQube – http://www.sonarqube.org,” June 2016 (last

accessed).
[15] JFrog, “JFrog Artifactory – https://www.jfrog.com/artifactory/,” June

2016 (last accessed).
[16] A. S. Foundation, “Apache Kafka – http://kafka.apache.org,” June 2016

(last accessed).
[17] MongoDB, Inc., “MongoDB – https://www.mongodb.com,” June 2016

(last accessed).
[18] M. Poppendieck and T. Poppendieck, Lean Software Development: An

Agile Toolkit. Addison-Wesley Professional, 2003.
[19] K. Beck, Test Driven Development: By Example. Addison-Wesley

Professional, 2002.
[20] K. Schwaber, Agile Project Management with Scrum. Microsoft Press,

2004.
[21] J. Humble and D. Farley, Continuous Delivery: Reliable Software

Releases through Build, Test, and Deployment Automation. Pearson,
2010.

[22] A. Begel and T. Zimmermann, “Analyze this! 145 questions for data
scientists in software engineering,” in Proceedings of the International

Conference on Software Engineering (ICSE), pp. 12–23, ACM, 2014.
[23] E. K. Smith, R. T. Loftin, E. R. Murphy-Hill, C. Bird, and T. Zim-

mermann, “Improving developer participation rates in surveys,” in 6th

International Workshop on Cooperative and Human Aspects of Software

Engineering (CHASE), pp. 89–92, IEEE, 2013.
[24] M. Cohn, User Stories Applied: For Agile Software Development.

Addison Wesley, 2004.
[25] M. Fowler, Refactoring: Improving the design of existing programs.

Addison Wesley, 1999.
[26] A. Bacchelli and C. Bird, “Expectations, outcomes, and challenges of

modern code review,” in Proceedings of the International Conference

on Software Engineering (ICSE), pp. 712–721, IEEE, 2013.

[27] M. Beller, A. Bacchelli, A. Zaidman, and E. Juergens, “Modern code
reviews in open-source projects: which problems do they fix?,” in
Proceedings of the working conference on mining software repositories

(MSR), pp. 202–211, ACM, 2014.
[28] G. Bavota, B. Dit, R. Oliveto, M. Di Penta, D. Poshyvanyk, and A. De

Lucia, “An empirical study on the developers’ perception of software
coupling,” in Proceedings of the International Conference on Software

Engineering (ICSE), pp. 692–701, IEEE, 2013.
[29] F. Beck and S. Diehl, “On the congruence of modularity and code

coupling,” in Proceedings of the joint meeting of the European Software

Engineering Conference and the International Symposium on Founda-

tions of Software Engineering (ESEC/FSE), pp. 354–364, ACM, 2011.
[30] M. Tufano, F. Palomba, G. Bavota, R. Oliveto, M. Di Penta, A. De

Lucia, and D. Poshyvanyk, “When and why your code starts to smell
bad,” in Proc. Int’l Conf. Softw. Engineering (ICSE), pp. 403–414, 2015.

[31] A. Potdar and E. Shihab, “An exploratory study on self-admitted tech-
nical debt,” in Proceedings of the International Conference on Software

Maintenance and Evolution (ICSME), pp. 91–100, IEEE, 2014.
[32] G. Bavota and B. Russo, “A large-scale empirical study on self-admitted

technical debt,” in Proceedings of the International Conference on

Mining Software Repositories (MSR), pp. 315–326, ACM, 2016.
[33] M. Fokaefs, N. Tsantalis, E. Stroulia, and A. Chatzigeorgiou, “Jdeodor-

ant: identification and application of extract class refactorings,” in Proc.

Int’l Conf. on Software Engineering (ICSE), pp. 1037–1039, 2011.
[34] B. Daniel, D. Dig, K. Garcia, and D. Marinov, “Automated testing of

refactoring engines,” in Proc. joint meeting of the European Software

Engineering Conference and the International Symposium on Founda-

tions of Software Engineering (ESEC/FSE), pp. 185–194, ACM, 2007.
[35] M. Beller, G. Gousios, A. Panichella, and A. Zaidman, “When, how, and

why developers (do not) test in their IDEs,” in Proc. joint meeting Euro-

pean Software Engineering Conf. and Int’l Symposium on Foundations

of Softw. Engineering (ESEC/FSE), pp. 179–190, ACM, 2015.
[36] R. Mugridge and W. Cunningham, Fit for Developing Software: Frame-

work for Integrated Tests. Prentice Hall, 2005.
[37] C. Solis and X. Wang, “A study of the characteristics of behaviour driven

development,” in Proceedings Conference on Software Engineering and

Advanced Applications (SEAA), pp. 383–387, IEEE, 2011.
[38] T. J. Ostrand and M. J. Balcer, “The category-partition method for

specifying and generating functional tests,” Commun. ACM, vol. 31,
no. 6, pp. 676–686, 1988.

[39] B. Bruegge and A. H. Dutoit, Object-Oriented Software Engineering

Using UML, Patterns, and Java (3rd Edition). Pearson, 2009.
[40] N. B. Cottrell, D. L. Wack, G. J. Sekerak, and R. H. Rittle, “Social

facilitation of dominant responses by presence of others,” Journal of

Personality and Social Psychology, vol. 9, no. 3, pp. 245–250, 1968.
[41] E. I. Laukkanen, M. Paasivaara, and T. Arvonen, “Stakeholder percep-

tions of the adoption of continuous integration - A case study,” in Agile

Conference (AGILE), pp. 11–20, 2015.
[42] S. Kim, S. Park, J. Yun, and Y. Lee, “Automated continuous integration

of component-based software: An industrial experience,” in Proc. Int’l

Conf. Automated Software Engineering (ASE), pp. 423–426, IEEE, 2008.
[43] H. Seo, C. Sadowski, S. Elbaum, E. Aftandilian, and R. Bowdidge,

“Programmers’ build errors: A case study (at Google),” in Proc. Int’l

Conference on Software Engineering (ICSE), pp. 724–734, ACM, 2014.
[44] A. Deshpande and D. Riehle, Continuous Integration in Open Source

Software Development, pp. 273–280. Boston, MA: Springer US, 2008.
[45] B. Vasilescu, Y. Yu, H. Wang, P. T. Devanbu, and V. Filkov, “Quality and

productivity outcomes relating to continuous integration in GitHub,” in
Proc. joint meeting of the European Software Engineering Conference

and the International Symposium on Foundations of Software Engineer-

ing (ESEC/FSE), pp. 805–816, ACM, 2015.
[46] M. Brandtner, E. Giger, and H. C. Gall, “Supporting continuous inte-

gration by mashing-up software quality information,” in 2014 Software

Evolution Week — Conference on Software Maintenance, Reengineering,

and Reverse Engineering (CSMR-WCRE), pp. 184–193, IEEE, 2014.
[47] M. Brandtner, S. C. Müller, P. Leitner, and H. C. Gall, “Sqa-profiles:

Rule-based activity profiles for continuous integration environments,” in
International Conference on Software Analysis, Evolution, and Reengi-

neering (SANER), pp. 301–310, IEEE, 2015.
[48] S. G. Elbaum, G. Rothermel, and J. Penix, “Techniques for improving

regression testing in continuous integration development environments,”
in Proc. Int’l Symp. on Foundations of Software Engineering (FSE),
pp. 235–245, 2014.

