CONTINUOUS DEPENDENCE OF FIXED POINT SETS

J. T. MARKIN

ABSTRACT. The stability of the fixed point sets of a uniformly convergent sequence of set valued contractions is proved under the assumption that the maps are defined on a closed bounded subset B of Hilbert space and take values in the family of nonempty closed convex subsets of B.

In [1] the convergence of a sequence of fixed points of a convergent sequence of set valued contractions was investigated in a metric space setting. By restricting the underlying space to be a Hilbert space we prove the convergence of the sequence of fixed point sets of a convergent sequence of set valued contractions. This also extends a similar result for point valued maps [2, Theorem (10.1.1)] to the set valued case.

Let A be a closed bounded subset of a Hilbert space H, d the norm of H, and D the Hausdorff metric on the closed subsets of A generated by d. We assume that the family of set valued maps F_k , $k=0, 1, \cdots$, satisfy

(1) $F_k(x)$ is a nonempty closed convex subset of A for each $x \in A$.

(2) Each F_k is a set valued contraction, i.e. there is a $K \in [0, 1)$ such that $D(F_k(x), F_k(y)) \leq Kd(x, y)$ for $x, y \in A$ and $k=0, 1, \cdots$.

(3) $\lim_{k\to\infty} D(F_k(x), F_0(x)) = 0$ uniformly for all $x \in A$.

THEOREM. If the conditions 1–3 are satisfied then the fixed point sets of the sequence $\{F_k\}$, $k=1, 2, \cdots$, converge to the fixed point set of F_0 in the Hausdorff metric D.

Before proving the theorem some lemmas on the closest point projection map associated with each F_k are required. For $k=0, 1, \dots$, define the maps f_k by $f_k(x) = \{$ unique closest point in $F_k(x)$ to $x \}$ for $x \in A$. The iterates of each f_k are denoted by f_k^n , $n=2, 3, \dots$. The distance between any $x \in A$ and closed subset C of A will be $d(x, C) = \inf_{c \in C} d(x, c)$.

The following result was given in [3, Lemma 5] for a finite dimensional space, but the statement and proof are valid for any Hilbert space.

© American Mathematical Society 1973

Received by the editors August 9, 1972.

AMS (MOS) subject classifications (1970). Primary 47H10; Secondary 54C60. Key words and phrases, Fixed point, set valued map.

LEMMA 1. If E and F are closed convex subsets of H and e and f are the closest points in E and F to a point $v \in H$, then

$$d(e, f) \leq (h^2 + 4hl)^{1/2}$$
, where $h = D(E, F)$ and $l = d(v, E)$.

For $s \ge 0$ we define the continuous monotone increasing function $g(s) = (s^2 + 4sr)^{1/2}$, where r is the diameter of A.

LEMMA 2. The maps f_k , $k=0, 1, \cdots$, are equicontinuous on A.

PROOF. For any $k=0, 1, \dots, and x, y \in A$ let q denote the closest point in $F_k(x)$ to y. Consider the inequality

(1)
$$d(f_k(x), f_k(y)) \leq d(f_k(x), q) + d(q, f_k(y)).$$

The term $d(f_k(x), q)$ is bounded by d(x, y), since projection onto a closed convex set is nonexpansive. Lemma 1 implies that $d(q, f_k(y))$ is bounded by $g(D(F_k(x), F_k(y)))$. Since F_k is a set valued contraction and g is monotone we have $g(D(F_k(x), F_k(y))) \leq g(Kd(x, y))$. The inequality (1) can then be written as $d(f_k(x), f_k(y)) \leq d(x, y) + g(Kd(x, y))$. The map g is continuous and $g(s) \rightarrow 0$ as $s \rightarrow 0$. Therefore, the latter inequality proves the lemma.

LEMMA 3. The sequence of maps $\{f_k^n\}, k=1, 2, \cdots$, converges uniformly on A to f_0^n , for each n.

PROOF. For n=1 the uniform convergence follows from,

$$d(f_k(x), f_0(x)) \leq g(D(F_k(x), F_0(x)))$$

and the uniform convergence of the maps F_k to F_0 . Make the induction assumption that f_k^{n-1} , $k=1, 2, \cdots$, converges uniformly on A to f_0^{n-1} . Given $\varepsilon > 0$ there is a $\delta > 0$ such that $u, v \in A$ and $d(u, v) < \delta$ implies $d(f_k(u), f_k(v)) < \varepsilon/2$, for all k, in view of the equicontinuity of the f_k . The uniform convergence of the sequences $\{f_k\}$ and $\{f_k^{n-1}\}$ to f_0 and f_0^{n-1} permits the choice of an integer N such that $k \ge N$ implies

$$d(f_k^{n-1}(x), f_0^{n-1}(x)) < \delta$$
 and $d(f_k(x), f_0(x)) < \varepsilon/2$

for all $x \in A$. Considering the inequality

$$d(f_k^n(x), f_0^n(x)) \leq d(f_k(f_k^{n-1}(x)), f_k(f_0^{n-1}(x))) + d(f_k(f_0^{n-1}(x)), f_0(f_0^{n-1}(x)))$$

the remarks above imply that for $k \ge N$ the right side of the inequality is strictly less than ε . This proves uniform convergence for all n.

PROOF OF THE THEOREM. By a result of Nadler [1, Theorem 5] the sequence of iterates $\{f_k^n(x)\}$ converges to a fixed point of F_k for k=0, $1, \dots$, and all $x \in A$. If P_k denotes the fixed point set of f_k , then this same

result contains the estimate

(2)
$$d(f_k^n(x), P_k) \leq \sum_{i=n}^{\infty} (r+i)K^i.$$

Each P_k is a closed subset and can be written as

$$P_k = \left\{ y \in A : \lim_{n \to \infty} f_k^n(x) = y, \, x \in A \right\}.$$

Given $\varepsilon > 0$ choose any $x \in A$ and let $P_k(x) = \lim_{n \to \infty} f_k^n(x), k = 0, 1, \cdots$. Consider the inequality

(3)
$$\frac{d(P_k(x), P_0(x))}{\leq d(P_k(x), f_k^n(x)) + d(f_k^n(x), f_0^n(x)) + d(f_0^n(x), P_0(x))}$$

By the estimate (2) we can choose an integer N such that $d(f_k^N(x), P_k(x)) < \varepsilon/3$ for $k=0, 1, \cdots$, and all $x \in A$. The uniform convergence of $\{f_k^N\}$ to f_0^N permits the choice of an integer M such that $k \ge M$ implies $d(f_k^N(x), f_0^N(x)) < \varepsilon/3$ for all $x \in A$. Therefore, by (3), $d(P_k(x), P_0(x)) < \varepsilon$ for all $x \in A$. Since the points $P_k(x)$ range over P_k as x ranges over A, we have shown that $D(P_k, P_0) < \varepsilon$ for $k \ge M$. This proves convergence of P_k to P_0 in the D metric.

REFERENCES

1. S. Nadler, Jr., Multi-valued contraction mappings, Pacific J. Math. 30 (1969), 475-488. MR 40 #8035.

2. J. Dieudonné, Foundations of modern analysis, Pure and Appl. Math., vol. 10, Academic Press, New York, 1960. MR 22 #11074.

3. A. Filippov, Classical solutions of differential equations with multivalued right-hand side, SIAM J. Control 5 (1967), 609–621. MR 36 #4047.

2268 CONSTITUTION AVENUE, COLORADO SPRINGS, COLORADO 80909