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Abstract. Continuous dependence inequalities are derived for a system of equations
that models penetrative convection in a thermally conducting viscous fluid with a linear
buoyancy law. Both the forward-in-time problem and the improperly posed backward-
in-time problem are analyzed. These results indicate that solutions depend continuously
on a parameter in the boundary data.

1. Introduction. The phenomenon of penetrative convection has attracted the at-
tention of a number of investigators in diverse fields. Various models have been formu-
lated to describe this process. A recent monograph by Straughan [11] reviews some of
the mathematical aspects of these models, with an emphasis on the derivation of contin-
uous dependence results for solutions of properly and improperly posed initial-boundary
value problems. Most of these convection models consist of coupled systems of partial
differential equations that include the Navier-Stokes equations. Consequently, a study of
penetrative convection often rests on an analysis of the Navier-Stokes system. A number
of investigations on the question of continuous dependence of solutions to this system
on various types of data, both forward and backward in time, have appeared recently
in the literature. These include the study of Franchi and Straughan [4] who establish
continuous dependence on the body force for solutions of the system backward in time,
the work of Song [9] on well-posed problems, and a paper by Ames and Payne [2] that
deals with stabilizing the Navier-Stokes system backward in time against errors in the
body force, coefficient of kinematic viscosity, and boundary data. The earliest study of
the Navier-Stokes system backward in time has been attributed to Serrin [8] who estab-
lished uniqueness of the solution to the equations defined on a bounded spatial domain.
The task of stabilizing the final value problem against errors in the final data was first
addressed by Knops and Payne [5]. In this paper, we continue to investigate the Navier-
Stokes system but couple it with a convective heat equation. The resulting system models
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penetrative convection in a thermally conducting viscous fluid with a linear buoyancy
law.

Our goal then is to derive inequalities indicating that a solution to the Navier-Stokes
equations coupled with the convective heat equation depends continuously on a parameter
specified in the boundary data. We shall consider both the forward-in-time problem
and the improperly posed backward-in-time problem on bounded spatial domains. Let
fl C R" (n = 2,3) be such a domain with boundary T. If c M2, then we require F
to be Lipschitz while for domains in R3, we assume T is a C2 surface. We consider the
system

Vi,t + VjVij = -p,i +Avi + biT, (1.1)

viti = 0, (1.2)
T,t +vlT,i = AT (1.3)

defined on Q x |0, to). The auxiliary conditions we associate with these equations take
the form of the boundary conditions

and the initial conditions

Vi = 0
T,i rii + kT = 0

Vi(x,0) = v°(xY
T(x, 0) = T0(x)/

on F x [0, to] (1.4)

for x e fl. (1.5)

Here Vi(x,t) is the ith (i = 1,2,3) component of the fluid velocity, p is the modified
pressure, T(x,t) is the temperature, and bi(x,t) is the body force. Without loss of
generality, we have assumed that the coefficient of viscosity and thermal diffusivity are
unity. Standard indicial notation is used throughout this paper and differentiation is
denoted by a comma. We shall restrict our attention to classical solutions of (1.1)—(1.5),
which we assume to exist on the time interval (0, to). In addition, we assume, for the
problem in R3, that the data are sufficiently smooth and compatible so that the partial
differential equation (1.3) is satisfied on t = 0.

In the next section we derive some supplementary inequalities that we need to establish
our main results. Sections 3 and 4 are devoted to the forward-in-time problem defined for
OCR3 and OCR2, respectively. We turn to the ill-posed backward-in-time problem in
Sec. 5. Some of the bounds we need to establish continuous dependence on the boundary
parameter for solutions of the forward-in-time problem are included in the appendix.

As is to be expected, the results for the forward problem in R3 are much less satisfac-
tory than those in R2. To derive the continuous dependence result in R3 we require more
smoothness and compatibility, and some restriction on the size of the data is required
if the result is to hold on (0, to). For the ill-posed backward-in-time problem, solutions
must of course be more severely constrained.

2. Useful inequalities. In the subsequent sections we will make frequent use of an
assortment of integral inequalities. We list here a number of those which will be needed
in the later sections.
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We remark first that on the interval (0, to) where Vi is assumed to be bounded, T
satisfies the maximum principle for parabolic equations, and it follows that

|T|<max|T0|. (2.1)

The maximum value of \T\ cannot occur on dU for 0 < t < to, since if it did occur at a
dT,
dn 1point P on dfl at time t then if T(P, t) > 0 it follows that jr~(P, t) < 0, a contradiction.

Similarly if T(P,t) < 0 then t) > 0, again a contradiction. Thus, the maximum
value of |T| must occur on t = 0.

We now derive two Lp inequalities for T. The second of these inequalities will be used
with various values of p in our proofs in Sees. 3 and 4. We show, in particular, that

f T2pdx + 2PK f [ T2p do drj + 2p(2p - 1) [ [ T2p~2TnTn dxdr] = f T2p dx
Jn Jo Jr Jo Jn Jo.

(2.2)
and

where

f T2pdx< I
Jo. Un

T2v dx exp{-2p (2p- l)fi(K,p)t}, (2.3)

H(K,p)= inf   —^ , 2.4)
<pJn ip2dx

and V is the class of Dirichlet integrable functions having L2 boundary integrals. Bounds
for n(k,p) have been given by Payne and Weinberger [7], Sperb [10], etc.

The inequalities (2.2) and (2.3) follow from the observation that

— [ T2pdx = -2Pk [ T2pdo - 2p(2p - 1) [ T2p~2Tn Tn dx. (2.5)
Jq Jr Jn

We have used the differential equation for T and (1.2). An integration of (2.5) leads to
(2.2) while the rewriting of (2.5) as

^ [ T2pdx = -2Pk [ [T2}pda - 2{2p ~ V) [ (Tp)n (Tp)n dx (2.6)
Jn Jr P Jn

and use of (2.4) leads to

— [ T2pdx < -2p~\2p- l)/i(«,p) / T2pdx. (2.7)
Jn Jn

An integration of (2.7) then yields (2.3).
We next derive a differential inequality for the Li integral of the velocity. Proceeding

directly we have

d
dt / ViVidx =2 Vi{-p,i+Avi + biT-VjVi,j}dx

Jn J Jn

/ Vi jVijdx + 2 biViT dx (2.8)
Jn Jn

-2 f vijViijdx + 2[bibi]K2xl. f ViVtdx f T2dx\
Jn IJn Jn J

= -2
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By rescaling T if necessary we may assume that

bA < 1. (2.9)

Thus for any positive constant 71 it follows that

d
dt / ViVidx < —2 / vl lv1, dx + 71 / ViVidx + 7, 1 / T2 dx

Jn J Jn Jn Jn
<— (2A — 71) / (ia; + 7]~1 / Tq dx exp{—l)t}.

in Ufi

(2.10)

We have used (2.2) with p = 1 and introduced the constant A which is defined as

l = (2.H)
Jn ViVi dx

where ipi lies in the class of divergence-free piecewise continuously differentiable functions
that vanish on F. Velte [12] has shown that in R2,A is precisely the first eigenvalue in
the corresponding plate buckling problem. In higher dimensions A remains larger than
the corresponding first eigenvalue of the Laplacian. So in the next section we use this
first eigenvalue of the Laplacian, the so-called first clamped membrane eigenvalue, for
our constant A.

The inequality (2.10) is of the form

+ (2.12)

which integrates to give (suppressing the arguments of fi)

t>(t) < ^(0)e~M + 2 [e~^ - e~klt] (2.13)
k 1- n

or

[ ViVidx < f v?v?dx e-(2A-^ + [e-M« _ e-(g*-70«]. (2.14)
Jn Jn 7i [2A - 71 - /ij

Choosing

7l = 2A - m(k, 1) (2.15)

we are led to the decay bound

[ mdx< [ dx + j- 1-——] [ T*dxe-^l)t. (2.16)
Jn Jn [2A - /z(k, 1)J Jq

Returning to (2.8) we observe that

d
dt / v^idx = —2 / VijVij dx + 2 < / Tq dx e

Jn J Jn [Jn

x{[ vyidxe-^t + — t—— [ T^dxe-^'^
\Jn [2A - h(k, 1)] Jn

1/2

(2.17)
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or upon integration

2 / / VijVijdxdr]+ / ViVidx
Jo Jn Jci -i o\

t rt (2.1o)
< [ v°v° dx + K1 [ d-q + K2 [

Jn Jo Jo
)Vdrj

m Jo Jo

for computable K\ and A'2. It follows then that for a computable K (which depends on
the data but is independent of to)

2 / VijVitj dx dr) + / v^idx <K. (2-19)
Jo Jn Jn

In the next two sections we also require a bound for the quantity f0 fr e~^^t~T>^T2 da dr]
for specific values of the positive constant (3. To find such a bound we first note that

— f T2 da + I T,i T,i dx = — f TAT dx = — f TT,t dx,
2 Jr Jn Jn Jn

from which we have

[ [ e-W-^T2 da dt) < -2 [ [ efMjT,, dxdrj
Jo J r Jo Jn

rt

(2.20)

<
Un

Using (2.3) in the last term we obtain

rt r 2fl(K,l)

f Tq dx e-fit + [3 [ [ e-W'^T2 dxdr].
Jn J Jo Jn

(2.21)

[ [ e-W-^T2dadr]<
Jo Jr

Tq dx e-?\ (2.22)[2/z(k, 1) - (3\
the bound that we will be using in the next two sections.

Finally, we list two Sobolev inequalities which will prove useful. For Dirichlet inte-
grate functions, tp, defined on and vanishing on F we have

/ ip4 dx < A2 ( / ip2 dx) ( ip,i ip,i dx] in R2 (2.23)
Jn \Jn ) \Jn )

and

J tp4 dx < v2 ip2 dx^j <p,i<p,i dx^j in R3. (2.24)

For specific values of A and u, see [1]. It has been known for some time that A < 2-1/2
and v < 3_3//4, [8].

Bounds for various other norms of Vi and T will be derived in the Appendix.

3. The forward-in-time problem in R3. Let (v*,T*) be the solution of (1.1)—(1.3)
with p = p* and satisfying

v*=0

T,*m + K*T* = 0 }
on T x [0, to] (3.1)
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as well as

v* (x, 0) = Vi(x) )
, I for x € Q. (3.2)

T*(x,0) = T0(x) J

Our goal is to show that if k* is close to k then the perturbation (Ui,6) defined as

m = v* -vu
Q _ J<* _ rp (3-3)

will be small in some appropriate measure. Specifically, we derive an inequality of the
form

[ [aUiUi + 92] dx < (k* — n)2 F{t) (3.4)Jq
for some positive constant a and a function F(t).

We first note that tt, and 9 satisfy

ui}t + VjUij + UjVij = -P,i +A Ui + bi6 (3.5)

Uiti — 0 infix(0,£o) (3-6)

6,t +v*0,i +UiTn = A 9 (3.7)

with

and

Ui = 0
0,i rii + k6 — —aT*

on F x [0, to] (3.8)

9(x, 0) = Ui(x, 0) = 0, x e ft. (3.9)

Here P = p* — p and

ot — tt* — k. (3.10)

For some positive constant a, to be determined later, we now define the function $>(t)
given by

$(£) = / [92 + aUiUi] dx. (3-11)Iq
We will derive a first-order differential inequality for <!>(£) which will yield a result of the
type (3.4).

Differentiating (3.11) we have

f-77 = 2 / [9{A9 - v*9,i -UiT,i } + aui{-P,i +Au; + biO - v*uhJ - UjVij}] dxdt Jq

= —2 / 9,i0,idx — 2k / 92 da — 2a / T*9da + 2 / U{9,iT dx (3-12)
Jq J r J r Jq

2d ^ I IL^ jUi j dx + / UiUjVi,j dx — / biOui dx > .Jq Jq J
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We have used (3.5)-(3.10). Let us consider some of the terms separately. For instance,
from the Schwarz and Holder inequalities and (2.24) we have

f if i1/2 r f i1/2
/ Uid,i T dx < / 9,i 9,i dx / UiUiT2 dx

J n Lin J Lin
r ' 1/2 " r "I 1/3 r /-

/ 9,i6,idx / \uiiii\3/2 dx / T6 dx
Jn J Lin J Lin

<
1/6

<

<l/1/3

/> ~|A/Z /* /* 1 U /» X/U

/ 9,i0,i dx / UiUidx / [tiiUi]2a!:r / T6 dx
Jn J Un in J Lin

r " 1/2 - n J* " 1/4 ■ /»
/ 0,i (9dx / u^idx / Ui,jUi,j dx / T6dx

J Q . .J Q J Q . .J Q

1/6

(3.13)

Thus

J«i$,i T dx

< v

< j/

/ 9,i9,i dx / u^idx / Ui,iUi,jdx{ / T6dx>
i n J in in I in J

1/3-^- J e,i 9,i dx + J UiUidx J Ut,j Ui,j dx {^J T6 dx^j

1/3 ~^2~ f ^ + 1/1/3 [ UijUij dx
>/ Q •/ Q

/> \ 2/3 /»

/ r6dx)
Jn J Jn

2/3' 1/2

+ lil( [ Tedx)°" f UiUldx,

(3.14)

for arbitrary positive constants 71 and 72. We will use inequality (2.3) to bound T6 dx,
but first let us bound other terms in (3.12). Clearly

C \ C C 1
/ UiUjVij dx < / [w^Ui]2 dx / VkjVkj dx

Jn ' Lin in
/A ' r ' ^/^ " /*

/ Uk,jUk,j dx / dx
J n J Un

JMiMj dx
n

1/2

(3.15)

< ~ S 73 / MiWi <^X / VkjVkj dx + 373 1 / Ui jUi j dx
4 in in . Jn

for arbitrary positive 73. We have used Young's inequality in the last step. We note also
that

a [ T*9 da < ^-74 [ [T*}2da+\- [ 02 da (3.16)
Jt 27r 2 yr
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and
r t l
/ biOui dx

Jn
where we have made use of (2.9).

We now insert (3.14)-(3.17) into (3.12) to obtain

< - (2 - ^1/37r1) I dx-( 2K-771) f 02 da + a-y5 f 62
J12 JI •/£2L[t*]

dx

+ Qz74 / Pr da

f1^37i72 3i^73 !a
~ I 2a   j— ) I UijUij dx

)/,

[ VijVijdx + 7i72 1 [ [T6 dx] ""/ j 1 f Uimdx.
.Jn J * Jn J Jn.

(3.18)
If we make the specific choices

7i = ^1/3; 72 = au~2/3', 73 = 3^; 74 = kT1 (3.19)

and make use of (2.4) and (2.11) we find

-\h(k, 1) — 075] j 82dx + a2K~1 / [T*]2 dcr — o[A — 7^"x] / UiUidx
Jn J r in

— <
dt

27v4a
+ 2

We next choose

and conclude that

f 12 f 1/4/3 r f fi i3/2 f
/ Vi jVi j dx / UiUidx H T dx / UiUidx.

J n Jn 2a Jn Jn_«/J£ J 1/ Si L" 0 6 J i 6

(3.20)

75 - +V(A-M)2 + 4a (3 21)

^<-^[(A + M)-{(A-M)2+4a}1/2]<f.

+
27l/ I , I , ^

Vi jVi j dx > +"t,.7
in 2 a2

2/3 ~
{/ T6 da;| § + a2J[T*]2 da,

(3.22)

where fj, = h(k, 1). We now choose the constant a so that the quantity in square brackets
in the first term on the right is positive. Any value of a less than A/li will suffice. We
observe that as a decreases the coefficient of {fQ T6 dx}2'3 increases. We could, for
instance, choose a = 4^, but in any case we are led to an inequality of the form

I2
/ vi,jvi,j dx $
/n

2/3

d<f>
< _^$ + j42

dt

+ ^3

(3.23)/* "I 0 r

T6dx Q + a2*-1 [T*]2 da.
iJn J J r

We have already bounded some of the terms on the right, but we need a bound for
fn VijVij dx. With sufficient smoothness and compatibility, a bound for this expression
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is given by (A.22) in the Appendix, where it is shown that for sufficiently small data or
on the interval (0, min{io, ^i}) (where the definition of t\ is given by (A.20))

[ vi,jvij dx < . (3.24)
J n

The insertion of (3.24) into (3.23) then leads to an inequality of the form

^ < -Ai$ + A2HZ(t)e->1<-K'1)t$
at

+ + a2k~1 J [.T*]2 da.
(3.25)

The expression for H2{t) is given by (A.23). For sufficiently small data, Q\(t) may be
replaced by Qi(0) and (3.25) integrates to give

$(t) < M2a2 | J [T*]2 daj drj. (3.26)

Otherwise, for 0 < t < min{£o,£i} we obtain an inequality of type (3.26) in which M2 is
now a function of t that tends to infinity as t —> t\. The continuous dependence inequality
is finally made explicit by bounding the integral on the right of (3.26) in terms of data.
This bound follows from (2.21) with (3 = A\. Thus we obtain

$(t) < f Tndxe~Alt (3 27)[2MM)-A1]Jn1°dxe (3"27)

is valid for 0 < t < min{t0,£i}, which establishes continuous dependence on the param-
eter K.

We have established the following result:

Theorem 1. Let (ViT) and (v*,T*) be solutions of (1.1)—(1.3) subject to conditions
(1.4)—(1.5) and (3.1), (3.2) respectively. Then if T is smooth, the data are compatible on
T x {0} and a lies in the interval (0, Afi(n, 1)), it follows that for t < min{i0,ti} with t\
defined by (A.20)

/1[(T - T*)2 + a(vi - v*)(vi - <)] dx < P(t, tx, T0, v°)(k - n*)2e~A(3.28)

Here P(t,ti,To,v°) is a computable quantity that tends to infinity as t —> t\, and

Ai = |[(A + 1)) - {(A - h(k, l))2 + 4a}1/2]. (3.29)

It is clear that this result is far from optimal because of the more or less arbitrary
choices made for the constants arising in the derivation. Different choices for values of
the constants could lead to a larger interval of continuous dependence. We have not
pursued the question of the optimal choice for these constants. We should point out that
(3.27) holds for to in the indicated range as long as the base flow remains bounded on
that interval.
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4. The forward-in-time problem in M2. The derivation of the stability inequality
is much easier in R2 due to the use of the Sobolev inequality (2.23) instead of (2.24). We
proceed as in the three-dimensional case through (3.12), but instead of (3.13) we have
in R2

/Jn
UiO.i T dxn

n

<

< A1/2

A1/2

f l r r l if lJ 9,i9ndx I J [iiiUi^dxj | J T4dxj

/ 9,i 0,i dx / UiUi dx / Uj}kUj,k dx / T4 dx
Jn J [Jn Jn Jn

: dx + 6i / u^i dx / uhkUj,k dx / T4 dx
j Jn Ufi Jn Jn

<

(4.1)

<

2

^ {tfj-1 [ 9,i6ndx+^p- ( UijUitj dx + — f UiUidx ( T4 dx |
I Jn ^ * Jn Jn )

1/2'

2

Also in R2

/ UiUjVij dx < / [ujuj]2da: / VijVijdx
Jn ' [Jn Jn J

< / dx / UjikUj,k dx / D/,m^l,m dx > (4-2)
Jn Jn J

[ UiUt dx f vi%mvi,m dx + [ UijUij dx.
Jn Jn * Jn

< A •

~ 2

Inequalities (3.16) and (3.17) are both valid in R2. Assembling terms we have

d§ <
dt

(2 — A1/2611) f 9,i 9,i +(2k — 74 x) f 92 da + a-y5 ( 92 dx + a274 f [T*]2 da
Jn J r

(n f— 12a   Ao3 a J J UijUij dx

+ {"1kX a + \8?,a f Vi jVi j dx + ———-6?1 [ T4 dx\ [ UiUidx.I Jn 2 Jq J Jq
(4.3)

We now make the choices

61 = A1/2; 62 = A_1a; £3 = 2A; 74 = k"1 (4.4)

and are led to

-j- < — [(m(ki 1) — a7s] / ^2rfx + a2K_1 f [T*]2 da — a[A — 7^] f UjUidx
dt Jq J r Jn

+ 2A2a / Vi jVi j dx / UkUkdx+— / T4dx u^dx.
Jn Jn 2a
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We again choose 75 as in (3.21) and find

[(^ + M) - {(^ - M)2 + 4a}1/2$

+ 2A2 f VijVij dx + ( T4 dx $ + a2n~l f (T*)2 da.
Jq 2a Jq J Jr

Again we write the inequality as

^ < -Ai<& + A2 {^j VijVij dx^j $

+ A3 (^J TUx^Q+a2*,-1 J(T*)da,
(4.6)

which integrates to give
rt

$(£) < a2*,'1 Jo exp | —A\ (t — rj) +A2J ^

I'L T4 dx dp^j dry| J J (T*)2 da.
(4.7)

+ -^3

Integrating (2.17) from 77 to £ and using (2.14) to bound fn ViV{ dx at time rj we find

[ [ VijVij dxdrj < (B6 + B7ri)e~^K'1)ri. (4.8)
Jri Jn

Also from (2.3)

f f T4 dx dr] < [ Tp dx
J rt Jq .Jq1 r/ JQ

Inserting (4.8) and (4.9) into (4.7) we find

[3n(K,2)]-1e-3rtKMi. (4.9)

exp{—j4i(i - 77) + A2{B6 + Brr])e$(t) < a2*-1 f
Jo

+ A3Bse~3^'2)r1} J [T'fda

<a2M3 [ [ e~'4l(t-'7)[T*]2 dadr).
Jo JT

dr) (4.10)

The bound for the last integral is carried out just as in the derivation of the bound for
the right-hand side of (3.26) in K3. Thus we find

(411)

We have proved

Theorem 2. If (vi,T) and (v*,T*) are two solutions of the system (1.1)-(1.3) with
C R2 that satisfy the same auxiliary conditions except that (3.1) is satisfied by T*,

then for a constant a and function F(t) depending on the data,

[ [(T - T*)2 + a(Vi - v*)(vi - <)] dx<(K- it*)2F(t). (4.12)
Jn
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It is interesting that in M2 our stability result has involved neither bounds for
f() VijVij dx nor f[} vl%tvl t dx. Consequently, it has not been necessary to assume that
the differential equation is satisfied on t = 0. We note further that in IR2 we have not
had to impose smallness assumptions on the initial data in order to obtain a stability
inequality that is valid for all t. This means that in R2 we may permit to to go to infinity.
These results are similar to those obtained by Song [9] for the Navier-Stokes equations.

5. Backward-in-time problem. Instead of considering the original equations back-
ward in time, we will replace t by —£ and study the resulting system forward in time.
The governing perturbation equations can then be written

-uitt + VjUij + ujVij = -P,i +A Ui + b,9 (5.1)

Uij = 0 inf2x(0,to) (5-2)

-Q,t +v*0,i +u,T,i = A 9 (5.3)

with

and

ut = 0 (5.4)
on r x [0, to]

9,tni + k9= -aT* (5.5)

0(x, 0) = Ui(x, 0) = 0, x G fi. (5.6)

Here ut = v* — Vi, 0 = T* — T, P — p* — p, and a = k* — k. We assume, without loss,
that

N < I- (5.7)

Continuous dependence of solutions on the parameter a can be obtained using loga-
rithmic convexity arguments (see Payne [6]). We thus introduce the functional

3>(i) = f [ (t — ri)2(uiui + 02) dx drj + a2Q2 (5.8)
Jo Jn

where Q2 is a constant data term to be chosen. We now show that there exist constants
ai and &2 such that

$$"_($')2 > _ai$$'_a2$2. (5.9)

To this end, we differentiate (5.8) with respect to t to obtain

&'{t) = 2 f f (t — T]){uiUi + 62) dx dr] (5.10)
Jo J n

— ri)2(uiui,v + 0d,n) dx dr/. (5-H)
!

2 ^
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Substitution of the differential equations (5.1), (5.2), and (5.3) and integration by parts
results in

<3?'(t) — 2 f ( (t — ri)2UiUjVij dx dr) — 2 f ( (i — rj)2biUi9 dx dr)
Jo Jn ' Jo Jn

n(t — r])2UijUij dx dr) + 2 f f (t — r/)26uiT,i dx dr/ (5-12)
! Jo Jn

+ 2

2 f ( (t — r/)20:i0dx drj + 2 f f (t — r))2(n02 + aOT*) da dr/.
Jo Jn Jo Jr

Differentiating (5.12), we are led to

= 4 / / (t — r))uiV,jVij dx dr) — 4 / / (t — r))biU{9 dx dr)
Jo J n Jo Jn

— 4 f ( (t — r))2Ui,vAui dxdr) + 4 f f (t — rj)0uiT,i dx drj (5.13)
Jo Jn Jo Jn

— 4 f f (t — r))29,v AO dx dr) + 4 f f (t — r))(n62 + adT*) da dr).
Jo Jn Jo Jr

A second use of the differential equations allows us to write (5.13) as

$"(t) = 4 f f (t - r))2(tpiipi + x2) dx dr) + 4 [ f (t - r))uiiLjVij dx dr)
Jo Jn Jo Jn

— 4 / (t — r))biUi6 dx dr) - / / (t - r))2v*Uijv*Ui^i dx dr/
Jo Jn Jo Jn
pt

4n[t - r))2Ui^UjVi^ dxdr) + 4 / (t — r])2Ui^bi9 dx dr)
i ' Jo Jn

n(t - r))2v*d,i v*9,i dxdr) - 4 / / (t - r))2UiT,i 0,v dx dr)
> Jo Jn

+ 4 f f (t — rj)9uiT,i dxdr) + 4 [ [ (t — ifjaOT* da dr)
Jo Jn Jo Jr

— 4 f f (t — r))2aT*9,v da dr)
Jo J r

(5.14)

where

i>i = «i,t - IvjUij, X = 9t~ \v*9,i. (5.15)

Observing that $' can be written as

= 2 f f (t - n)2(uiipi + 9\) dxdr), (5.16)
Jo Jn
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we next form <£$" — ($')2 to obtain

- ($')2 > 452 + 4$

rt

n(t — r])uiUjVij dxdr] — 4$ / / (t — r])biUiO dx dr/
i Jo Ju

n(t - ri^VjUijvfiiijdxdr] - 4$ / / (t - r])2Ui^UjVij dx dr]
! ' Jo Jn

n(t — T])2UitTlbiO dxdr) — $ f f (t — r])2v*9,ivfd,i dxdr)
i Jo Jn

n(t — T])2UiT,i d,v dxdr] + 4$ f f (t — rj)6uiT,i dx dr]
i Jo Jn

[ [ {t — T])a6T* da dr] — f f (t — rj)2aT*9tr) da dr)
.Jo Jr Jo Jr

= 452 + V In + 4$ f f (t- r])a9T* da dr] - [ f(t- r])2aT*9,v da dr]
Jo Jr io 7r

(5.17)

- $

+ 4$

_4$

+ 4$

where

S2 [ [ (t-rj)2(iljiipi+x2)dxdr] f f {t - rj)2(uiuz + 92) dx drj\
.Jo Jn J Uo Jn J

~(J J (t-r])2(uiipi+9x)dxdri)^ .

Clearly, S2 is nonnegative by Schwarz's inequality. It also follows from (5.18) that

[ f {t ~ V)2{Tpiipi + X2)dxdr] [ [ (t - r))2(v,iUi + 92) dxdr]
Jo Js2 J Uo Jn

(5.18)

1/2 1
< S+

(5.19)

We now proceed to bound each of the integrals on the right-hand side of (5.17) in terms
of <£2 and $$'. In order to accomplish this, we assume that, uniformly in x [0, to),

|u*|, |Vu|, |VT| < M (5.20)

for a positive constant M. Such an assumption restricts the class of solutions we shall
consider in the sequel.

Rewriting (5.12) and applying Schwarz's inequality as well as (5.20), and the arith-
metic-geometric mean inequality, we find that

- / (t - r])2(uijuij + 6,i9,i) dxdr/
Jo Jn ( (5.21)

>_!$'_ I(3m + 1)$+ [ [ (t-r])2[^2 + a9T*}dadr].
2 2 J0 Jr
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The following bounds also follow from (5.20) and the arithmetic-geometric mean inequal-
ity:

rt
h > —4

ft
h > -2$

h > -4$M2

n(t — rf)UiUi dx dr] > —2(5.22)!
n(t — r])(uiui + 92) dx dr] > —, (5.23)!

n(t — r])2UijUij dx drj, (5-24)!
I6 > -4$M2 I (t — rj)29,i0,i dx dr/, (5.25)

Is > —4<E>M

//«Jo Jn

n(t — T])(uiUi + 92) dxdr] > —2M$$'. (5.26)
!

To bound 74, we observe that
rt

-4$ / / (t ~ r})2ui}riUjVij dxdr] = -4$ [ [ (t - r])2 ( uiiV - fc) UjVtj dxdri
Jo Jo. Jo Jo. \ * J

-2$ [ [ {t-rifvlui^ujvij
Jo Jci

(5.27)
so that

f ft c \1!2 / rt r \ 1/2
/4 > -4

(5.28)
- M2$

a(t-r})2ipiipidxdr}\ (/ j (t - rj)2 mui dx dr]\
s / \7o ./Q /

n(t — r])2UijUij dxdr] + / (£ — ry)2UjUj da:drj
i ' Jo Jn

after using (5.20) and applying the arithmetic-geometric mean and Schwarz's inequalities.
Similarly, we can bound Is and I-j to obtain

.1/2 / rt r \ !/2
75 > -4$

-

and

h

[ [ (t ~ v)2AAdxdr]) ( [ [ (t - v)2d2 dx dr])
Jo Jq J \Jo Ju J

n(t — r])292 dxdr] + / (t — r])2UitjUij dx dr]
! Jo Jn '

(5.29)

> -4$M (i7„ {t-r])2x2 dxdr] ) Of/, (t — r/)2UiUi dx dr^j

n(t - rj)29,i 0,i dx dr] + / / (t - r])2uzuidxdr]
! Jo Jn

- M2$

Rewriting (5.12), we note it follows from (5.20) that

(5.30)

/ [ (t - v)2{ui,jUij + 8,i 6,i) dxdr] > - - ^(3M+ 1)$
Jo Ju 11

+ [ f (t — t])2(k92 + a9T*) da dr/.
Jo J r

(5.31)
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Combining the bounds for In and using (5.19) and (5.31), we derive
_ ($')2 > 452 _ 4(2M + _ Ci$2 _ C2$$/

+ 4$

+

[ ((t — rj)a9T* do dr] — f f (t — r])2aT*9,v da dr]
.Jo Jr J0 ir

(5M2 + M)$ [ [ (t-r])2{^2 + a9T*) da dr)
Jo J r

(5.32)
where

Ci = i(6M2 + M)(3M + 1) + M(2M + 1), (5.33)
C2 = ^(6 M2 + 17M + 6). (5.34)

We now complete the square on the first two terms on the right side of (5.32) and discard
the nonnegative part to obtain

rt
<j>$" _ ($')2 > _ c3$2 _ c,2$$/ + 4$ Iff.Jo Jr

+

(t — iffaOT* da dr)

n(t — r))2aT*9,v da dr]
1

(5M2 + M)$ [ [ (t - ti)2(k92 + a9T*) da dr)
Jo Jr

t
(5.35)

with C-s = C\ + (2M + l)2.
It remains for us to estimate the boundary terms in (5.35). Integration and use of the

Schwarz inequality lead to the bounds
rl

Ji = 4$ 'n(t — r/)aOT* da dr] — f f (t — rf)2aT*6,v da dr]
Jo Jr

a (/ J {t — r])292 do dr] ) u I T2 da dr^j (5.36)

4$a ( J (t — r])292 da dr^j ^ J J (t — r])2T,2 do dr]
and

pt
J2 = (5M2 + M)$ [ f(t- t])2(k92 + a9T*) da dr]

Jo Jr

> (5A/2 + M)$(k + a) f ((t - r])292 do dr]
Jo Jr

(5 M2 + M)$q GC/r (t — rf)2 92 da dr]^j J (t — r])2T2 da dr]
1/2 / ,t ? \ 1/2

(5.37)
Let us now assume that

rt
f f T2 do dr] + ( f (t - r])2T,2 do dr] < M2. (5.38)

Jo Jr Jo Jr



CONTINUOUS DEPENDENCE RESULTS FOR PROBLEM IN PENETRATIVE CONVECTION 785

Hence,

Ji > — 8a$M J (t — r])262 da dr]^j > -4$° — + m J J (t - r])2Q2 da dr)
(5.39)

for a positive constant Also, we have

i j (t — r/)202 cfcr dr/

(5.40)
J2 > (5M2 + Af)$(« + a) J J (t- rj)2e2 da dr]

"a2M4(5M+l)2 /i2

2/^2
77) 0 da dr]

upon applying the arithmetic-geometric mean inequality. To complete our bounds on J\
and J2, we now need to find a bound for J* fr(t — rj)202 da dr]. We do this by considering
the identity

0= f f (t-r])2d{-d,ri+v*e,i+ulTn-Ae}dxdri. (5.41)
Jo Jn

Integrating by parts using the boundary conditions (5.4)-(5.5) and rearranging the ex-
pression leads to the inequality

(k + a) f f (t - r])2d2 da dr] < -a f ( (t - r])26T da dr/ + f f (t — r])2d2 dx dr]
Jo Jr Jo Jo. Jo Jn

n(t — T])28uiT,i dx drj.!
(5.42)

If we apply Schwarz's inequality to (5.42) and use the assumption (5.20) as well as the
arithmetic-geometric mean inequality, we obtain

(k + a) f f (t - T])202 da drj
Jo J r

/ / (t ~ rt)202 da dr] + ~ [ [ (t - t])2T2 da drj
Jo Jr 27 J0 Jr

n(t - r])62 dx dr] + ~ f [ (t - r])2 [02 + UiUi) dx dr].
! * Jo Jq

-2

Recalling the definition of <3>, the expression (5.10), and the assumption (5.38) about the
boundary data, we then conclude that

7\ f f ,x „\2fl2 > > ^ 1 „2*,r2 , , 1K + Q--I / I (t — rf) 6 dcr dr] <—a M + $'+-M$. (5.43)
v 2/ Jo Jr 27 2

Letting k + a — ̂  = ]i, we choose 7 so that n > 0 and (5.43) is the desired estimate.
Consequently, if we choose /zi = 1 and /i2 = 2M(5M + l)(/c + a) and define

Q2 = ^ M2 + M3(5M+ 1), (5.44)
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then
Ji > —2(M + 4)$2 - 4$$', (5.45)

j2 > _ — $2. (5.46)
K*

It then follows from (5.35) that there are positive constants ai and 0,2 so that inequality
(5.9) is satisfied. The change of variable £ = e~ait transforms (5.9) into

-^[ln$e_a2/°?] >0

and hence it follows from Jensen's inequality that

$(t) < e(-a2/ai)t[<l>(0)]swl^(to)e(a2to/ai)]1-s(t) (5.47)

where

Since

and

0 < S(t) = t— < 1. (5.48)v ' 1 — g-a^o v '

$(0) = a2Q2

®{to) = [ [ (to - v)2(uiui + 02) dxdr) + a2Q2
Jo J n

t0 — 'I) \ui al "I" u ) UUj ull T C 2^2
/ 0 JU

inequality (5.47) will be the desired continuous dependence result provided we assume

$(£0)ea2Wai < K2. (5.49)

We thus conclude from (5.47) that
$(f) < CK2[1~m]a2m (5.50)

for t £ [0,fo) and a computable constant C. Hence solutions belonging to the appropriate
class of functions depend Holder continuously on the parameter a in the measure "3?.

In summary, we have established the following result.

Theorem 3. Let (vt,T) and (v*,T*) be two solutions of the system (1.1)—(1.3) backward
in time that satisfy the same initial conditions (1.5) and boundary conditions on Vi but
have different parameters k and k* in condition (1.4). If v*,v, and T belong to the classes
of functions satisfying

|w*|,|Vu|,|VT| < M

and

[ f T2 da dr] + f [ (t — r])T,2 dcr dr] < M2
Jo Jr Jo Jr

as well as the bound (5.49), then there exists a computable constant B such that

[ [ Ct-v)2[(vi-v*)(vi-v*) + (T-T*)2}dxdri<B(K-K*)sW
Jo Jn

for 0 < 6(t) < 1, t G [0, t0).
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Appendix. Our task here is to establish the inequality (3.24), but before starting
the proof of this result let us first derive the following bound for the L2 integral of T,t,
which will be needed in the derivation of (3.24):

f T2 dx < f T,2t dxe-^'^ + lTot f [ dxdr,, (A.l)
Jn(t) Jn{0) Jo Jn^)

where the symbol fl(t) is used to indicate that integration is taken over at time t, and
|To|m is the maximum value of |To| in Q.

To establish (A.l) we observe that

4 [ T,t dx = 2 [ T,t {AT - T,i vt},t dx
dt J n J n

= -2k [ T,\' da - 2 [ T,it T,it dx (A.2)
J r Jn

+ 2|T0|r

Thus

/ T,it T,it dx / vKtvi%t dx
iJn Jn

1/2

~ J T2 dx < -2k J T2t da - (2 - 79) J Tnt Tnt dx + 79 1\T0\2m J vi)tv^t dx.
(A.3)

Choosing 7g = 1 we have

d
dt / T'' dX ~ ~2>i I T'* da ~ [ T»tT»t dx+ lTolm [ VijVijdx (A.4)

j </ r j q j

< -/x(2k,1) [ T,2t dx+ \T0\2m [ viitvittdx.
J n Jn

An integration of (A.4) leads directly to (A.l).
In general, the first integral term on the right of (A.l) is not data. However, if T is

sufficiently smooth and the data are compatible on the boundary F at t = 0 so that the
T equation is satisfied on t = 0, we have

[ T2 dx= f [AT0 - v°M2 dx, (A.5)
Jq( 0) Jn

which is a computable data term.
We are now ready to prove (3.24). We first note that

/ VijVij dx = - / vi{vitt + VjVij + pn -biT} dx
Jn Jn

= — ViVij dx+ btViT dx (A.6)
Jn Jn
f "11/2 f r r "11/2 r r

< / ViVidx I / v^tVijdx +
.Jn J L-/n J [yn

T2 dx
1/2 ^

A bound for fQ ViVi dx is given by (2.16) and a bound for T2 dx by (2.3). It remains
to bound the term fQ VijVij dx.
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Now

dx
d
dt / Vi,tVi,tdx- 2 / viit{AVi - p,i+biT - VjVij},

Jn J n

— -2 / VijtVijt dx + 2 biVijTdx -2 vittvj^vij dx
Jn Jn Jn

r r r ' 1/2
< -2 / VijtVijt dx + 2 T2dx vi:tvi:t <Ar

Ai L/n Vn

+ 2 jy VijVijdx J [vk,tvk,t]2 dxj

(A.7)

< -2 / VijtVi.it dx + 2 T2dx VitVit dx
Jn [Jn Jn

2 \ 1/4

iv^dx tdx\ | J VijtVijt <ir j-h 2z/

Using the arithmetic-geometric mean and Young inequalities we have

^ J VijVijdx < - ^2- ^76J J VijtVijt dx

+ 77 / da: + 77 1 [ T,2t dx (A.8)
J n

+ 276 / Vi^Vij dx / da:
Vn . .Jn

We introduce the notation

i?(t) = / dx (A.9)
Jn

and make use of (A.6) to obtain for §^76 < 2

dR <
dt 77 - (2 - ft™) A | i? + 77 1 T, 2 dx

n i/2 "12
> i? (A.10)17 -i

+ 276

<

f ViVi dx < R1/2 + T2 dx
Jn J [Jn

|2A - ^76^A - 771 R + 7f1 J^T,2dx
V _i

+ 276 f ViVidx ((1 +7s)i?2 +78 X(1 +7s) [ T2 dx
Jn J I Jn

R
Un

We have used (2.11) and the fact that vtj. vanishes on F. Choosing

76 = 2[3^]_1, 77 = A - i/x(/c, 1), (A.11)
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we have, using (A.l),

^ 1 )R+ A - !/*(«, 1) |+ \T0\2m £ R(V) rfr?|

(A. 12)
+ (B2 + B3t)e~^l)tR2 + {B4 + B^e'^'^R,

where the constants Bi are computable data terms obtained from (2.3), (2.16), and (A.5).
We consider first the special case

PblLx ^ 1)m(2k, 1)[A - 1)]. (A.13)
In this case we have, setting

S(t) = R(t) + i/i(«, 1) J* e-^W-rtRiri) dV + Q0, (A.14)

where Qo is some sufficiently large data term,

^ < (B2 + Bzt)e~^K'1)tS2. (A.15)
at

This integrates to give

msW)+l{B2 + B"l)e""'MndTI
1

+, [//(«, l)]"2 {m(k, 1)S2(1 - e-M(K,1)t) + £3(1 _

-/*(«, l)*^"'1^)} (A.16)
1 :QiW-

S(t)
Thus, provided Q\(t) < [5(0)]_1, we have

Sit) <

Clearly, if

1 Qi(t) (A.17)5(0)

/x(k, 1 )B2 + Bj < Iu{k, 1)]2[5(0)]_1, (A.18)

i.e., if

[/z(k, l)i?2 + ^3][-^(0) + Qo] < m(kj I)2 (A.19)

then (A.17) will hold for all time. This means that for sufficiently small data (A.17) will
hold for all t > 0 (i.e., to can be taken arbitrarily large). If (A.19) does not hold then
(A.17) is valid only for some finite time interval, i.e., for t <t\, where

Qi(ti)5(0) = 1. (A.20)
If (A. 13) is satisfied then for any fixed time interval (0,to) for finite to we may choose

Qo so large that (A. 15) is satisfied. However, when (A. 13) does not hold, Qo will behave
like (B2 + i?3to)-1e'i^c'1^to and hence will go to infinity as to —> 00. For fixed to then
(A.17) holds provided Qi(t) < [5(0)]_1. Recalling that ti is the value of t at which
Qi(t) = [5(0)]—1 then (A.17) holds for 0 < t < min{io,£i}.
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Returning now to (A.6) we have

[ vi:jViJ dx < {(B6 + B7t)iZ(t)}1/2e"i'i(,e'1)t + (Ba + B9«)1/2e_^(,t,1)t. (A.21)
Jq

Thus for sufficiently small data or on the interval (0, min{t0, £i})
-1/2r [" 1

/ VijVij dx < (Be + B7t)1'2 —--Qi(t) e-^^t + (B8 + B9t)1/2e--^^t
Jn

(A.22)
< H2(t)e-^{K'1S)t

where
I T -1/2

+ (B8 + B901/2e"Ai(K'1)t. (A.23)ff2(t) = [£6 + 57«]1/2 g^~Ql(t)

This establishes (3.24).
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