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ABSTRACT

Light field analysis recently received growing interest, since

its rich structure information benefits many computer vision

tasks. This paper presents a novel method to reconstruct con-

tinuous depth maps from light field data. Conventional ap-

proaches usually treat depth map reconstruction as an opti-

mization problem with discrete labels. On the contrary, our

proposed method can obtain continuous depth maps by solv-

ing a linear system, which preserves richer details compared

with conventional discrete approaches. Structure tensor is

employed to extract raw depth information and correspond-

ing confidence levels from the light field data. We introduce

a method to reduce the adverse effect of unreliable local esti-

mations, which helps to get rid of errors in specular areas and

edges where depth values are discontinuous. Experiments on

both synthetic and real light field data demonstrate the effec-

tiveness of the proposed method.

Index Terms— Depth map reconstruction, light field, lin-

ear system

1. INTRODUCTION

Light field (LF) is a function that describes the radiance at

each point in a 3D space in every direction. As the tech-

nique of capturing light fields develops, light field analysis

is of great interest in recently years. Since light field data

contains not only accumulated color intensity at each image

point, but also some information about ray directions, many

computer vision problems can be better solved by making use

of this structure information, such as virtual refocusing [1],

tracking through occlusions [2] and reconstructing occluded

surfaces [3]. In this paper, we focus on depth map reconstruc-

tion from the light field data.

Reconstructing depth map from stereo image pairs, also

known as stereo matching, is a traditional challenging com-

puter vision task, which has been studied for more than three

decades [4]. More recently, depth from moving camera [5]

and depth from integral images [6] are also investigated.

Studies on depth reconstruction from light fields have just

started, and most of them are focused on certain plenoptic

cameras [7]. More studies are needed on how the special

structure of light fields can benefit depth estimation.

Most traditional approaches treat depth map reconstruc-

tion as an optimization problem with discrete labels. Markov

Random Field (MRF) model [8] is widely used in this area,

which supports various definitions of energy functions. How-

ever, a drawback of these multi-labelling methods is that both

time complexity and memory cost increase rapidly with the

image resolution and the number of labels. To solve the

problem in a reasonable time, the number of discrete depth

labels is usually set as a small number (32 or 64). Conse-

quently the reconstructed depth maps usually have noticeable

“stairs”. Otherwise, long running time and large memory

costs are needed. Now thanks to the rich structure informa-

tion in light fields, continuous local estimations are available,

which makes it possible to seek for a continuous final result

instead of the optimal solution of a multi-labelling problem.

Our work has two main contributions. First, we introduce

a refinement step to local depth estimation, which helps to

reduce the effect of unreliable estimations. This is presented

in Section 3. Second, we propose a continuous method to

get a smooth depth map from local estimations by solving a

sparse linear system. We introduce this method in Section 4.

Experimental results are presented in Section 5.

2. RELATED WORK

2.1. EPIs and Structure Tensor

4D light field is first proposed in [9] and later widely used

in light field analysis. We adopt the two-plane parametriza-

tion [9] of 4D LF and denote a LF as L(x, y, s, t), as shown

in Figure 1. Under this parametrization, a 4D LF can be seen

as a 2D array of perspective views, where (s, t) can be seen as

the index of different views and (x, y) are spatial coordinates

within each view (see Figure 2(a)).

By fixing y and t, we can obtain a 2D (x, s) slice of a

LF, as shown in Figure 2(b). Similarly, 2D (y, t) slices can

be obtained if x and s are fixed. These 2D slices are called

epipolar plane images (EPIs). Any point in the 3D space can

be projected to a line on EPIs. And the slope of the line are



Fig. 1. Two-plane parametrization of 4D light field.

(a) A visualization of 4D light field.

(b) Epipolar plane image.

(c) Local depth estimation on EPI.

(d) Confidence map on EPI.

Fig. 2. Local estimation on EPIs.

shown to be related to the depth of the corresponding point in

the 3D space [10].

Therefore, depth values can be obtained by estimating

the slope of lines in EPIs [11]. An structure tensor [12] is

employed, which produces an orientation estimation at each

point and the confidence level of each estimation. The depth

is derived as

d(x, s) = −f
∆s

∆x
= −f · cot θ(x, s), (1)

where θ is the estimated orientation by the structure tensor.

f is the distance between the two parallel planes in Figure 1.

By analyzing every 2D slice with different possible y, we can

obtain the local depth estimations and their confidence levels

of each view, as shown in Figure 3. Based on the local esti-

mation we try to construct a continuous depth map instead of

making use of multi-labelling methods.

(a) Local depth estimation (b) Confidence map

Fig. 3. An example of local depth estimation.

However, the local estimation still has several limitations.

It tends to give wrong estimations in areas where depth is dis-

continuous, but still assigns high confidence levels for these

estimations, which has an adverse effect on the future step.

Besides, it fails to produce reliable estimations on specular ar-

eas and texture-less areas. To fix these problems, Wanner and

Goldluecke [11] employ a variational labeling method [13]

to enforce visibility constraint on each EPI. However, since

this optimization is on each EPI, they need to optimize hun-

dreds of times for each LF, which usually takes several hours.

An alternative way to do visibility reasoning is to construct

occlusion maps, and iteratively optimize the depth maps and

occlusion maps [14]. Instead of explicit visibility reasoning,

Zhang et al. [5] incorporate visibility into data term of energy

function using statistical information from both color and ge-

ometry. In this paper, we propose a method to refine the con-

fidence map of the local estimation, so that wrong estimations

are always assigned with low confidence.

2.2. Depth Map Reconstruction

Most conventional approaches follow the MRF model to con-

struct depth map. An energy function is formulated, where the

label costs are encoded in a data term and the spatial smooth-

ness is enforced by a pairwise smooth term. Various meth-

ods are employed to minimize the global energy function [8],

such as graph cut, loopy belief propagation. Varational label-

ing methods [15, 13] are used in [11] to achieve global inte-

gration. However, all those methods treat the problem as a

multi-labelling problem, where depth values are quantized to

certain levels. Depth map reconstruction in these frameworks

is to assign the depth to a closest label. To achieve a smoother

result, larger number of levels should be set. However, this

will make the time and memory costs of solving the problem

increase rapidly.

Given that local depth estimation is available for LF data,

we discard the multi-labelling framework, but treat the prob-

lem as a continuous optimization problem. Depth values in

the proposed method are never quantized except when we

want to visualize the results as digital images. We rewrite

the energy function in MRF model into a matrix form, and

formulate a sparse linear system. A similar method is em-



ployed in [16] to propagate depth information from ground

control points. However, in their work this is only an inter-

mediate step. An multi-labelling method is later used to get

quantized final results. Very few attempts to construct contin-

uous depth maps based on linear systems have been done in

this field. However, similar methods have been well practised

in many other computer vision tasks, such as matting [17, 18]

and colorization [19].

3. CONFIDENCE MAP REFINEMENT

Local depth estimations and their confidence levels are ob-

tained by applying the structure tensor [12] on EPIs of

LFs [11]. However, in some cases the structure tensor gives

wrong estimations but assign high confidence levels for them,

especially in areas where the depth is discontinuous. As

shown in Figure 4(a)(b)(c), local estimation induces “fat-

tened” boundaries along stems of the plant, and wrong confi-

dence levels are assigned to them. In this step, we check the

color consistency between different views, and give a penalty

on the confidence values of wrong local estimations. As

the example shows in Figure 4(d), wrong estimations along

boundaries are assigned to low confidence values after this

step.

In each EPI, any point (x, s) can be warped to other views,

given the estimated depth d(x, s). Ideally, the color at the

original point and at the warped point should be identical, so

are the estimated depth values. We define a matching distance

to measure the difference between the original point and the

one warped onto view s′.

Φ(x, s, s′) = ||I(x, s)−I(x′, s′)||+c(x′, s′)|d(x, s)−d(x′, s′)|,
(2)

where I(x, s) and I(x′, s′) are three-dimensional vectors for

color intensity, and d(x, s) and d(x′, s′) are estimated depth

values. c(x′, s′) is the confidence level of d(x′, s′). If both

d(x, s) and d(x′, s′) are perfectly correct, and the surface is

Lambertion, the distance Φ(x, s, s′) should be zero. Large

distance indicates that the depth estimation at this point is not

reliable.

We warp point (x, s) to different available views, and

accumulate the distance. Then the accumulated distance is

mapped to a penalty coefficient p(x, s) for confidence level

c(x, s),

p(x, s) = 1−
1

1 + exp( 1
β
(α− 1

||S||

∑

s′∈S Φ(x, s, s′)))
(3)

c′(x, s) = p(x, s)× c(x, s) (4)

where S is the set of all possible views. As the accumulated

distance goes larger, the penalty coefficient goes to zero, thus

the refined confidence level is also closed to zero. Otherwise

the estimation is considered reliable, and its confidence level

is almost unchanged. Parameters α and β control the shape

(a) (b) (c) (d)

Fig. 4. An example of confidence refinement. (a) a close-up

of the center view. (b) the local depth map, which has “fat-

tened” boundaries. (c) the raw confidence map from struc-

ture tensor. (d) the refined confidence map, in which wrong

estimation along boundaries are assigned to low confidence

values. See Figure 5(a) for the full image.

of the penalty function, which are empirically set as 20 and 1
respectively in the experiments.

Because of possible occlusions, it is better to only accu-

mulate matching distance on visible views rather than go over

all the views. Thus the temporal selection scheme in [20] is

employed. Besides, to avoid long running time, we sample

five views on each side of s.

Apparently, all the above analysis is also applicable to the

(y, t) slices, if x and s are fixed. We actually can get two

pairs of local depth maps and refined confidence maps, by

analysing (x,s) slices and (y,t) slices. They are merged to-

gether by adopting the depth value from the one with higher

confidence at each pixel.

4. OPTIMIZING DEPTH MAPS

4.1. Optimization by Solving a Linear System

As shown in Figure 3 and Figure 4, local depth maps are not

reliable and globally consistent. At this stage, we aim at get-

ting an optimized depth map from the local depth map and

corresponding confidence map.

We write the energy function in a matrix form,

J(d) = d
TLd+ λ(d− d̃)TC(d− d̃), (5)

where d and d̃ are N × 1 vectors, represent optimal depth

values and local depth values respectively. N is the number

of pixels in each view (i.e. N = P × Q, if the resolution of

the image is P × Q). We want to find the optimal d, which

minimizes the energy function J(d). In the first term, L is an

affinity matrix, which enforces the points with similar colors

to have similar depth values within a small neighbourhood.

The second term is a data term, which makes the optimized

result constrained by local depth estimations. C is a diagonal

matrix, whose elements are confidence levels of correspond-

ing pixels. Consequently, pixels with more reliable local es-

timations are more tightly constrained by the data term. λ
controls the weight of the data term.

To optimize d, we can take the derivative of J(d), and

try to find the optimal d that makes the derivative zero. As



a result, the cost function (5) can be minimized by solving a

sparse linear system.

∂J(d)

∂d
= 2dTL+ 2λ(d− d̃)TC = 0. (6)

(L+ λC)d = λCd̃. (7)

By defining the affinity matrix L properly, we can make

L + λC a symmetric positive definite matrix. Then this

sparse linear system can be solved with the conjugate gradient

method. Two formulations of affinity matrix are introduced,

which are explained in detail in Section 4.2.

4.2. Affinity Matrix

A straightforward formulation of the affinity matrix L is

L = (I −W )T (I −W ). (8)

Elements in W are defined as

Wij =

{

αij/
∑

k∈N(i) αik ifj ∈ N(i)

0 otherwise
(9)

αij = max(exp(
−∆Iij

γ
), ǫ). (10)

N(i) is the neighbourhood of pixel i, and αij is a pair-wise

weight based on color difference of neighbouring pixels. γ
and ǫ control the sharpness and the lower bound of the ex-

ponential function. With this formulation, the first term in

Equation (5) is identical with the typical smooth term in en-

ergy functions used in the area of stereo matching,

Esmooth(d) =
∑

i

(di −

∑

j∈N(i) αijdj
∑

j∈N(i) αij

). (11)

Although the affinity matrix is a sparse matrix, computing

L and solving the linear system still take a long time with the

formulation (8). If a large window size is used, which makes

the matrix less sparse, even higher time and memory costs are

needed to solve the system.

To make the method more efficient, we also tried another

formulation, known as the matting Laplacian matrix [18]. A

faster algorithm [17] with large window sizes is available to

solve this system, if the matting Laplacian matrix is adopted.

The (i, j) element of this matrix is defined as

∑

k|(i,j)∈ωk

(δij−
1

|ωk|
(1+(Ii−µk)

T (Σk+
ǫ

|ωk|
U)−1(Ij−µk))),

(12)

where δij is the Kronecker delta, µk and Σk are the mean and

covariance matrix of the colors in a small local window ωk,

|ωk| is the number of pixels in it, and U is a 3 × 3 identity

matrix, ǫ is a regularizing parameter. More information can

be found in [18]. This matrix is originally proposed to mat-

ting problem, and later widely used in haze removal, intrinsic

images and colourization.

Fig. 5. The left image is the center view of a LF, and the right

one is the segmentation result. The area in the black square is

shown in Figure 4.

4.3. Segmentation

The matting Laplacian matrix (12) is based on an assumption

that in a small local window depth is a linear transformation of

color density. Apparently, the linear assumption in not always

valid, especially when there is significant depth or color dis-

continuity. Therefore, we segment images into several pieces.

For small pieces, we adopt the affinity matrix (8), which bet-

ter models the relationship between the depth and color in-

tensity. A very small window size (3 × 3) is used, so that

the matrix can be very sparse. The costs for solving the lin-

ear system are not too high when the segments are small and

the matrix is sparse. In large texture-less pieces, the matting

Laplacian matrix is adopted for the sake of efficiency. Actu-

ally in large texture-less areas depth and color intensity are

usually smooth, such as the light in Figure 5, which makes

the linear assumption suffice. The mean shift [21] is used

to segment images, which is robust and widely used in vari-

ous computer vision tasks. An example segmentation result

is shown in Figure 5.

5. EXPERIMENTAL RESULTS

The proposed method is tested with the HCI light field

archive [11] and Stanford light field archive [22]. Our method

manages to preserve rich details in the reconstructed depth

maps, as shown in Figure 6. It also works very well for real

light field data, as shown in Figure 7. The proposed method

is compared with latest work [11], which employs the func-

tional lifting method [15] to optimize local estimations. Their

results are from the published code of [15], and depth values

are quantized to 64 levels.

Quantitative results in Table 1, which is tested on the HCI

light field archive demonstrate that our method effectively re-

moves wrong estimations. Pixels whose relative estimation

error is more than 3.2% are considered as wrong estimations.

For the discrete functional lifting method, this threshold is

equivalent to that the depth value differs from the ground truth

by more than two levels. Results in the third line are produced



(a) (b)

(c) (d)

Fig. 6. A depth reconstruction result. The synthetic data is

from the HCI light field archive. There are 9×9 views, and the

image resolution is 768×768 each view. (a) is the center view

image. (b)-(d) are close-ups of results from local depth esti-

mation, the functional lifting [11] and the proposed method

respectively. We recommend to see the electronic version of

these images.

by applying our continuous method directly on local estima-

tions from the structure tensor. If the refinement step in Sec-

tion 3 is applied before the optimization step, slightly better

results can be achieved, which are presented in the fourth line

of Table 1.

The efficiency of the proposed method is comparative

with the functional lifting method, when the latter quantizes

the depth range to 64 levels. However, undesirable depth

jumps between different levels are noticeable in their results

as shown in the third column of Figure 6(c). If larger discrete

level is set, their method will be much slower than the pro-

posed one. Since our method is not multi-labelling based, its

complexity does not change with the depth range.

6. CONCLUSION

In this paper, we propose a novel method to reconstruct con-

tinuous depth maps from 4D light fields. A refinement of

local depth estimation is introduced by checking color con-

sistency between different views. Based on the local depth

estimations, we construct a sparse linear system, in which two

different affinity matrices are employed. Compared with tra-

ditional multi-labelling methods, our results preserve much

more details. In addition, to achieve similar level of smooth-

ness with our results, multi-labelling methods usually take

much longer time.

We made a novel attempt to reconstruct continuous depth

(a)
(d)

(b)
(e)

(c)
(f)

Fig. 7. Real data from Stanford light field archive. Each light

field data has 17×17 views. Image resolutions of the “bull-

dozer” data and “bunny” data are 615×490 and 1024×1024

respectively. Images in the first row is the center views of LFs.

The second and last rows are the reconstructed images by the

proposed method and functional lifting [11] respectively.

maps with rich details, which obviously benefits many other

computer vision tasks, such as 3D model reconstruction and

scene understanding. More accurate and efficient models to

obtain continuous depth maps are worth further investigating.
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