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Abstract

The distributions for continuous, discrete, and conditional discrete scan statistics are
studied. The approach of finite Markov chain imbedding, which has been applied
to random permutations as well as to runs and patterns, is extended to compute the
distribution of the conditional discrete scan statistic, defined from a sequence of Bernoulli
trials. It is shown that the distribution of the continuous scan statistic induced by a
Poisson process defined on (0, 1] is a limiting distribution of weighted distributions of
conditional discrete scan statistics. Comparisons of rates of convergence as well as
numerical comparisons of various bounds and approximations are provided to illustrate
the theoretical results.
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1. Introduction

Let N(t) be a Poisson process defined on (0, 1] with rate parameter λ. Given 0 < ω ≤ 1,
define

S(ω, t) = N(t + ω) − N(t)

as the number of events that occurred in the interval (t, t + ω]. The unconditional continuous
scan statistic of window size ω is defined as

S(ω) = sup
0<t≤1−ω

S(ω, t). (1.1)

Two recent books on scan statistics by Glaz and Balakrishnan (1999) and Glaz et al. (2001)
provide a very good overview of the history, applications, and recent developments in this field.
Under a very restricted range of parameters, the exact distribution of S(ω) has been derived;
finding the exact distribution for S(ω) in general remains a hot topic. Approximations and
upper and lower bounds have also been studied by many authors. For example, the upper and
lower bounds of a continuous scan statistic for a Poisson process have been studied in Janson
(1984). More recently, Alm (1999) and Haiman (2000) derived several approximations for scan
statistics.
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Let X1, . . . , Xn be a sequence of n Bernoulli trials with success probability p and failure
probability q = 1 − p. Given an integer 1 ≤ r ≤ n, the statistic

Sn(r) = sup
1≤i≤n−r+1

Sn(r, i), (1.2)

where

Sn(r, i) =
i+r−1∑
j=i

Xj ,

is often referred to as the discrete scan statistic of window size r . The unconditional prob-
ability P(Sn(r) > a) can be obtained by averaging the conditional probabilities P(Sn(r) >

a | ∑n
i=1 Xi = N) for 0 ≤ a ≤ min(r − 1, N − 1), N = 0, 1, . . . , n, over the binomial

distribution, i.e.

P(Sn(r) > a) =
n∑

N=0

(
n

N

)
pNqn−N P

(
Sn(r) > a

∣∣∣∣
n∑

i=1

Xi = N

)
. (1.3)

The statistic Sn(r) given
∑n

i=1 Xi = N is often referred to as the conditional discrete scan
statistic. The exact formula for computing the distribution of the discrete scan statistic, given
in Karlin and McGregor (1959) and Naus (1974), is rather restrictive on the size of the window
and can require excessive computational time and space. The numerical complexity and
the parameter restrictions make computing the probability P(Sn(r) > a) very difficult via
combinatorics. There are a considerable number of approximations and bounds that have been
developed, such as in Naus (1982), Glaz (1989), (1992), and Chen and Glaz (1997), and many
of them perform very well numerically. Fu (2001) showed that the scan statistic Sn(r) is finite
Markov chain imbeddable, and, hence, the probability P(Sn(r) > a) can be cast in terms of
transition probability matrices of an imbedded Markov chain.

In this paper, the concept of finite Markov chain imbedding is extended to study the distri-
butions of runs and patterns on random permutations, which paves a direct way to computing
the conditional probability P(Sn(r) > a | N). The main purpose of this paper is to provide
a rigorous proof that, for 0 < ω ≤ 1 and considering the Poisson process with t = 1 and
N(1) = N ,

lim
n→∞ P(Sn([nω] + k) > a | N) = P(S(ω) > a | N) (1.4)

for any fixed integer k, where Sn([nω]) stands for Sn(r) with r = [nω], the integer part of nω.
Hence, the distribution of the continuous scan statistic S(ω) can then be approximated, for
large n, via

P(S(ω) > a) ∼
∞∑

N=0

λN

N ! e−λ P(Sn([nω]) > a | N). (1.5)

The connection to the conditional scan statistic for a Poisson process on (0, 1] has been
pointed out in Naus (1974): when n and r are large compared to a and N , (1.4) holds for n and
r approaching ∞ at the rate of r/n → ω.

2. Discrete and conditional scan statistics

For the sequence X1, . . . , Xn of Bernoulli trials with p = P(X1 = 1) = 1 − P(X1 = 0),
the distribution of the unconditional scan statistic Sn(r) of window size r defined by (1.2)
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has been studied directly without using (1.3) and the conditional probability of Sn(r) given∑n
i=1 Xi = N ; see Koutras and Alexandrou (1995) and Fu (2001). The main tool for finding

the probability P(Sn(r) < s), 1 ≤ s ≤ r , is the finite Markov chain imbedding technique,
which shows that the event Sn(r) < s occurs if and only if a corresponding compound pattern
�r,s , generated by the event Sn(r) < s, does not appear in the sequence X1, . . . , Xn. It then
follows that

P(Sn(r) < s) = P(W(�r,s) > n) = ξ0N
n
r,s(p)1� for all p ∈ (0, 1), (2.1)

where W(�r,s) is the waiting time random variable of seeing the compound pattern �r,s ,
Nn

r,s(p) is the essential transition probability matrix of the imbedded Markov chain associated
with the waiting time random variable W(�r,s), ξ0 is a suitable initial state vector, and 1� is
the transpose of the vector (1, . . . , 1).

Following Fu (2001), given r and s, where 1 ≤ s ≤ r , we define a collection of simple
patterns

Fr,s = {�i : �1 = 1 · · · 1︸ ︷︷ ︸
s

, �2 = 101 · · · 1, . . . , �l = 1 · · · 10 · · · 01︸ ︷︷ ︸
r

},

representing all possible simple patterns containing s successes (‘1’s) that begin and end with
a success and that have a length no longer than r . It is easy to check that there are

l =
r−s∑
v=0

(
s − 2 + v

v

)

such simple patterns. The compound pattern �r,s generated by the event Sn(r) < s is defined
as

�r,s =
⋃

�i∈Fr,s

�i.

Furthermore, let

Pn,N =
{
π = (π1, . . . , πn) : πi = 0, 1 and

n∑
i=1

πi = N

}

be the family of random permutations with n − N ‘0’s and N ‘1’s. The conditional probability
of the event Sn(r) < s given

∑n
i=1 Xi = N can be viewed as the probability of no pattern �r,s

occurring in an [n − N, N ]-specified random permutation π = (π1, . . . , πn). We adopt the
finite Markov chain imbedding technique to obtain this conditional probability.

Before proceeding, we provide the following simple example to illustrate the foregoing
formalism. Given

∑n
i=1 πi = 10, r = 4, and s = 3, then the event Sn(4) < 3 occurs in an

[n − 10, 10]-specified random permutation π = (π1, . . . , πn) if and only if none of the three
patterns �1 = 111, �2 = 1011, and �3 = 1101 occur in the random permutation π . The set
of simple patterns F4,3 = {�1, �2, and �3} and the compound pattern �4,3 = ⋃

�i∈F4,3
�i

are induced by the event Sn(4) < 3.
Continuing with the general case, let us define W(�r,s, π) as the waiting time of the

compound pattern on the random permutation π ∈ Pn,N . It follows that

P

(
Sn(r) < s

∣∣∣∣
n∑

i=1

Xi = N

)
= P(W(�r,s, π) > n | π ∈ Pn,N ). (2.2)
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The right-hand probability of the above equation can be obtained by using the following
nonhomogeneous Markov chain imbedding procedure. Let us consider taking balls out one by
one from an urn containing n−N ‘0’ balls and N ‘1’ balls, sampling without replacement until
all the balls are taken out. Each new realization generated by the procedure is in one-to-one
correspondence with a permutation π ∈ Pn,N . Define a set of ending blocks (or subpatterns)
generated by the compound pattern �r,s as

Er,s = {φ, ω1 = 1, ω2 = 10, . . . , ωk = 1 · · · 10 · · · 01, α},
where φ stands for the empty set and α for the absorbing state corresponding to the compound
pattern �r,s , and then define a state space as

� = {(l, ω) : l = 0, 1, . . . , N and ω ∈ Er,s} ∪ {φ, α},
with the understanding that φ = (0, φ) represents the initial state and α ≡ (·, α) the absorbing
state. We define a nonhomogeneous Markov chain {Yt }n0 on � having an initial probability
P(Y0 = φ) = 1 and an absorbing state α. Given Yt−1 = (lt−1, ωt−1), the first coordinate keeps
track of the number of successes that have occurred up to time t − 1,

∑t−1
i=1 πi = lt−1, and the

second coordinate, ωt−1 ∈ Er,s , is the ending block of the sequence π1, . . . , πt−1 (the first
t − 1 draws). The transition probabilities, for given u = (l, ω) and v = (l′, ω′), are given by

p(t)
u,v = P(Yt = (l′, ω′) | Yt−1 = (l, ω))

=

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

N − l

n − t + 1
if πt = 1, l′ = l + 1, and ω′ = 〈ω, 1〉Er,s ,

n − N − t + l + 1

n − t + 1
if πt = 0, l′ = l, and ω′ = 〈ω, 0〉Er,s ,

1 if ω = ω′ = α,

0 otherwise,

(2.3)

where 〈ω, πt 〉Er,s denotes the longest ending block in Er,s of the sequence π1, . . . , πt−1, πt .
Clearly, {Yt } is a nonhomogeneous Markov chain defined on the state space � with transition

probability matrices of the form

Mt (r, s) = � \ α

α

[
Nt (r, s, N) Ct (r, s)

O I

]
(2.4)

for t = 1, . . . , n, where Nt (r, s, N) = (p
(t)
u,v), t = 1, . . . , n, are the essential transition

probability matrices and its elements p
(t)
u,v are given by (2.3). Our construction, together with

(2.3) and (2.4), shows that W(�r,s, π) is finite Markov chain imbeddable. Hence, (2.2) yields
the first part of the following theorem.

Theorem 2.1. Let {Xi}ni=1 be a sequence of Bernoulli trials.

(i) The conditional probability of Sn(r) < s given
∑n

i=1 Xi = N is equal to

P

(
Sn(r) < s

∣∣∣∣
n∑

i=1

Xi = N

)
= ξ0

n∏
t=1

Nt (r, s, N)1� (2.5)

for 1 ≤ s ≤ min(r, N), and equal to 1 if N < s.
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(ii) The unconditional probability is given by

P(Sn(r) < s) =
n∑

N=0

(
n

N

)
pNqn−N

(
ξ0

n∏
t=1

Nt (r, s, N)1�
)

.

The result in part (ii) follows directly from part (i) and the fact that N has a binomial distri-
bution. Note that the conditional probability P(Sn(r) < s | ∑n

i=1 Xi = N) does not depend
on the parameter value p. The main reason for developing the distribution of the conditional
discrete scan statistic is to approximate the distribution of the continuous scan statistic S(ω),
with Poisson process arrival function N(t) as defined by (1.1). As a byproduct, (2.5) gives the
p-value for the conditional test based on the scan statistic Sn(r) given

∑n
i=1 Xi = N .

3. Continuous scan statistic

It is well known that, for a Poisson process, given N(1) = N , the N points are uniformly
distributed on (0, 1]. Let us divide the interval (0, 1] into n subintervals (t0, t1], . . . , (tn−1, tn],
with t0 = 0, tn = 1, and each of equal length ti − ti−1 = �t = 1/n for all i = 1, . . . , n. This
implies that the [n − N, N ]-specified random permutations in Pn,N have the same probability.

Let us consider the continuous scan statistics S(ω) = sup0<t≤1−ω(N(t + ω) − N(t)) of
window size ω, 0 < ω ≤ 1.

Theorem 3.1. For a < N ,

P(S(ω) > a | N) = lim
n→∞ P(Sn([nω]) > a | N),

where [nω] is the integer part of nω.

To prove the above theorem, we introduce the following two lemmas.

Lemma 3.1. It holds that

max
1≤i≤n−[nω] Sn([nω], i) ≤ sup

0<t≤1−ω

S(ω, t) ≤ max
1≤i≤n−[nω]−1

Sn([nω] + 2, i).

Proof. It is easy to see that

sup
0<t≤1−ω

S(ω, t) = max
1≤i≤n−[nω] sup

ti−1<t≤ti

S(ω, t).

For given i = 1, . . . , n − [nω], it follows from the definition of supti−1<t≤ti
S(ω, t) that

max(Sn([nω], i), Sn([nω], i + 1)) ≤ sup
ti−1<t≤ti

S(ω, t). (3.1)

Note also that

max
1≤i≤n−[nω] Sn([nω], i) = max

1≤i≤n−[nω]−1
max(Sn([nω], i), Sn([nω], i + 1)).

By the same token, we have, for i = 1, . . . , n − [nω] − 1,

sup
ti−1<t≤ti

S(ω, t) ≤ Sn([nω] + 2, i). (3.2)

The result follows from (3.1) and (3.2) by taking the maximum of both sides.
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Lemma 3.2. Given 0 < ω ≤ 1 and a < N , we have, for all i = 1, . . . , n − [nω] − 1,

(i) |P(Sn([nω] + 2, i) > a | N) − P(Sn([nω], i) > a | N)| = O

(
1

n

)
,

(ii) |P(Sn([nω] + 2, i) > a | N) − P(Sn([nω], i + 1) > a | N)| = O

(
1

n

)
.

Proof. For given i and n, it follows that

Sn([nω] + 2, i) =
i+[nω]+1∑

j=i

πj ≥ Sn([nω], i) =
i+[nω]−1∑

j=i

πj .

For given a, N , and large n, the above equation yields

P(Sn([nω] + 2, i) > a | N) − P(Sn([nω], i) > a | N)

= P(Sn([nω] + 2, i) > a, Sn([nω], i) ≤ a | N)

= P(Sn([nω] + 2, i) = a + 1, Sn([nω], i) = a or a − 1 | N)

+ P(Sn([nω] + 2, i) = a + 2, Sn([nω], i) = a | N)

= P(Sn([nω] + 2, i) = a + 1, πi+[nω] + πi+[nω]+1 = 1 or 2 | N)

+ P(Sn([nω] + 2, i) = a + 2, πi+[nω] + πi+[ω]+1 = 2 | N)

≤ 2N

n
,

which is independent of i. This proves part (i). Part (ii) can be proved in the same fashion, and
is thus omitted.

Proof of Theorem 3.1. For N ≥ 1,

P(Sn([nω]) > 0 | N) ≡ 1 and P(Sn([nω]) > N | N) ≡ 0

for all n; hence, Theorem 3.1 holds. It follows from Lemma 3.1 that we have the inequality

P
(

max
1≤i≤n−[nω] Sn([nω], i) > a

∣∣∣ N
)

≤ P
(

sup
0<t≤1−ω

S(ω, t) > a

∣∣∣ N
)

≤ P
(

max
1≤i≤n−[nω]−1

Sn([nω] + 2, i) > a

∣∣∣ N
)
. (3.3)

Note that, for fixed ω, N , 1 < a < N , and large n, the number of is such that Sn([nω]+2, i) >

a and max1≤i≤n−[nω] Sn([nω], i) ≤ a can only be less than or equal to N . The following
inequality then follows as a consequence of the Bonferroni inequality and Lemma 3.2:

P
(

max
1≤i≤n−[nω]−1

Sn([nω] + 2, i) > a

∣∣∣ N
)

− P
(

max
1≤i≤n−[nω] Sn([nω], i) > a

∣∣∣ N
)

= P
(

max
1≤i≤n−[nω]−1

Sn([nω] + 2, i) > a, max
1≤i≤n−[nω] Sn([nω], i) ≤ a

∣∣∣ N
)

≤ N max
1≤i≤n−[nω] P(Sn([nω] + 2, i) > a, Sn([nω], i) ≤ a | N)

≤ 2N2

n
.
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Hence, for given N and a,

lim
n→∞ P(Sn([nω]) > a | N) = P(S(ω) > a | N) = lim

n→∞ P(Sn([nω] + 2) > a | N).

This completes the proof.

Remark 3.1. Inequality (3.3) is equivalent to

P(Sn([nω]) > a | N) ≤ P(S(ω) > a | N) ≤ P(Sn([nω] + 2) > a | N),

and we expect that P(Sn([nω]) > a | N) increases monotonically in terms of [nω] to
P(S(ω) > a | N), while P(Sn([nω] + 2) > a | N) decreases monotonically to the exact
result. The probability P(Sn([nω] + 1) > a | N) may be less or greater than the exact value
P(S(ω) > a | N) in a very complex way that may depend on ω, a, n, and N . Furthermore, in
view of our proof, for fixed integers l ≥ 0 and k ≥ 2, we have

lim
n→∞ P(Sn([nw] − l) > a | N) = P(S(ω) > a | N) = lim

n→∞ P(Sn([nω] + k) > a | N).

The numerical results of Table 1 and Figure 1 in Section 4 will show the rates of P(Sn([nω]−l) >

a | N) and P(Sn([nω] + k) > a | N) converging to P(S(ω) > a | N).

Remark 3.2. Given s and r , let Dn(s) be the length of the smallest window that contains at
least s successes:

Dn(s) = inf{r : Sn(r) ≥ s}.
The result of Theorem 3.1 also holds for the scan statistic Dn(s) conditional on a given N in
the following sense:

P(Sn(ω) > s | N) = lim
n→∞ P(Dn(s) < [nω] | N).

Furthermore, from another viewpoint of the Poisson process, let {Xi}ni=1 be a sequence of
Bernoulli trials with probability pn = λ/n. For given r , it follows that

P(Sn(r) < s) =
n∑

N=0

(
n

N

)
pN

n (1 − pn)
n−N P

(
Sn(r) < s

∣∣∣∣
n∑

i=1

Xi = N

)
.

Taking r = [nω] + k, and since
∑n

i=1 Xi converges in the limit of large n to a Poisson random
variable with parameter λ, the above equation yields the following result: for sufficiently large n,

lim
n→∞ P(Sn([nω] + k) < s) =

∞∑
N=0

λN

N ! e−λ P(S(ω) < s | N). (3.4)

This is equivalent to saying that

lim
n→∞ P(Sn([nω] + k) < s) = P

(
sup

0<t≤1−ω

S(ω, t) < s
)
. (3.5)

Taking pn = λ�t , it follows from (2.1) and (3.5) that we have

P
(

sup
0<t≤1−ω

S(ω, t) < s
)

= lim
n→∞ ξ0N

n
r,s(pn)1�, (3.6)

where r = [nω] + k.
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Remark 3.3. For computing the unconditional probability P(S(ω) < s), we can use either
(3.4) or (3.6). Note that using (3.4) entails summing a large number of terms with each term
requiring a nonhomogeneous Markov chain, and, hence, this approach is rather time consuming.
On the other hand, (3.6) is a direct consequence of homogeneous Markov chain imbedding,
and we expect (3.6) to be more efficient and accurate in computing P(S(ω) < s).

Remark 3.4. The method could be extended to the case of the two-dimensional scan statistic
under a Poisson process. Using the same idea of Lemma 3.1, the two-dimensional scan can be
‘outer-and-inner’ approximated (i.e. from above and below) by two-dimensional discrete scan
statistics, and the finite Markov chain imbedding technique can then be used to compute the
distributions of the two-dimensional discrete scan statistics.

4. Numerical results and discussion

The result of Theorem 3.1 also holds for, given 1 ≤ a ≤ N ,

P(S(ω) > a | N) = lim
n→∞ P(Sn([nω] + k) > a | N).

Figure 1 and Table 1 show the rate of convergence of the conditional discrete scan statistic
to the conditional continuous scan statistic for various parameters λ, ω, and N . They also
show the connection between the conditional probability and the unconditional probability
for the continuous scan statistic under a Poisson process. Two important phenomena can
be observed from Figure 1 and Table 1. (i) The probability P(Sn([nω] − l) > a | N) is
monotonically increasing in integers of [nω] as n → ∞, and displays a sawtooth shape for n

between the integers [nω] and [nω] + 1, a special characteristic of discrete scan statistics; the
P(Sn([nω] + k) > a | N) behaves in the opposite manner. (ii) For fixed N , the error bounds
decrease on the order of 1/n, while, for fixed n, the bounds increase on the order of N .

Table 2 provides a numerical comparison study for various bounds and approximations to
the probabilities for the continuous scan statistic P(S(ω) < s) under a Poisson process given

100 150 200 250 300 350 400 450 500
n

0.9

0.8

0.7

0.6

0.5

0.4

0.3

Pr
ob

ab
ili

ty

nω +2[ ]
nω[ ]
nω 1[ ]−

nω +3[ ]
Exact

Figure 1: The probabilities P(Sn([nω]+ k) ≥ 2 | N = 5) with ω = 0.05 and k = −1, 0, 2, 3 for n from
60 to 500.
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Table 1: The probabilities P(Sn([nω]) < s | N) for approximating P(S(ω) < s | N), given various λ,
ω, and s.

n
λ ω s N

100 300 500 1000
Exact

3 0.1 2 0 1 1 1 1 1
1 1 1 1 1 1
2 0.827 0.816 0.813 0.812 0.810
3 0.548 0.524 0.519 0.516 0.512
4 0.278 0.252 0.247 0.244 0.240
5 0.101 0.085 0.082 0.080 0.078
6 0.024 0.018 0.017 0.016 0.016
7 0.003 0.002 0.002 0.002 0.002

P(S(ω) < s) 0.565 0.551 0.548 0.547 0.544

n
λ ω s N

100 300 500 1000
Exact

5 0.05 3 0 1 1 1 1 1
1 1 1 1 1 1
2 1 1 1 1 1
3 0.996 0.994 0.994 0.993 0.993
4 0.986 0.978 0.976 0.974 0.973
5 0.967 0.947 0.943 0.940 0.937
6 0.936 0.901 0.894 0.888 0.882
7 0.893 0.838 0.827 0.818 0.810
8 0.838 0.760 0.745 0.733 0.722
9 0.770 0.669 0.650 0.636 0.622
10 0.692 0.571 0.548 0.532 0.516
11 0.607 0.470 0.445 0.428 0.411
12 0.517 0.371 0.347 0.330 0.313
13 0.428 0.281 0.258 0.242 0.227
14 0.342 0.203 0.183 0.169 0.155
15 0.263 0.139 0.122 0.111 0.101

P(S(ω) < s) 0.940 0.911 0.905 0.901 0.897

a range of parameter values. The upper bound (UB) and lower bound (LB) are obtained using
Equations (1.2) and (1.7) of Janson (1984). The values in columns ‘Alm’ and ‘Haiman’ are
approximations based on the manuscripts of Alm (1999) and Haiman (2000), respectively. The
values of the column ‘FWL’ are calculated using (3.6) with probability of success pn = λ/n.
The exact values are taken from the table in Neff and Naus (1980); since their table provides
only values for s ≥ 3, the exact values for s = 2 (marked with an asterisk) are calculated using
equation (3.6) with large n (n ≥ 50 000). The numerical results in Table 2 show that all three
approximations perform well for large s (s ≥ 5), while P(S(ω) < s) is near 1. For small s,
it is a completely different story, with bounds and approximations all performing poorly. It is
further evident that, even at moderate n (125 ≤ n ≤ 1000), our method performs very well
over the entire range of s, including for small s. For larger n, we expect that our method will
do extremely well. The reason for the accuracy of our method comes from the fact that, for
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Table 2: The unconditional probabilities P(S(ω) < s), given various ω, λ, and s. (NA denotes that a
value is not available.)

w λ n s LB Alm Haiman FWL Exact UB

0.2 6 125 2 NA 0.3310 NA 0.0614 0.0686∗ 0.2525
3 0.1866 0.4710 0.4220 0.3245 0.3417 0.3788
4 0.5933 0.7219 0.7014 0.6809 0.6902 0.6732
5 0.8609 0.9024 0.8987 0.8985 0.8982 0.8855
6 0.9642 0.9748 0.9744 0.9764 0.9744 0.9703

0.1 9 250 2 NA 0.1513 NA 0.0239 0.0273∗ 0.0829
3 0.2199 0.3684 0.3354 0.2770 0.2932 0.3086
4 0.6646 0.7235 0.7137 0.7017 0.7095 0.6995
5 0.9123 0.9267 0.9257 0.9266 0.925 0.9206
6 0.9833 0.9860 0.9859 0.9873 0.98 0.9848

0.06 8 400 2 0.0749 0.1677 NA 0.0958 0.104∗ 0.1270
3 0.5827 0.6292 0.7089 0.6018 0.6148 0.6103
4 0.9176 0.9259 0.9517 0.9239 0.9252 0.9225
5 0.9896 0.9906 0.9948 0.9910 0.9900 0.9901
6 0.9990 0.9991 0.9996 0.9992 0.9980 0.9990

0.04 10 600 2 0.0622 0.1197 NA 0.0725 0.079∗ 0.0934
3 0.6050 0.6350 0.6288 0.6133 0.626 0.6226
4 0.9349 0.9394 0.9391 0.9381 0.94 0.9375
5 0.9932 0.9936 0.9936 0.9940 0.99 0.9934
6 0.9994 0.9995 0.9995 0.9996 0.99 0.9995

0.02 10 1000 2 0.2016 0.2318 NA 0.2002 0.2139∗ 0.2187
3 0.8548 0.8599 0.8594 0.8526 0.86 0.8579
4 0.9895 0.9898 0.9898 0.9897 0.99 0.9897
5 0.9995 0.9995 0.9995 0.9995 1 0.9995

every n, (2.1) provides exact probabilities P(Sn(r) < s) of discrete scan statistics and carries a
rate of O(1/n) in converging to P(S(ω) < s).
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