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Abstract In this paper we generalize the continuous-
discrete extended Kalman filter (CD-EKF) to the case where
the state and the observations evolve on connected unimod-
ular matrix Lie groups. We propose a new assumed density
filter called continuous-discrete extended Kalman filter on
Lie groups (CD-LG-EKF). It is built upon a geometrically
meaningful modeling of the concentrated Gaussian distrib-
ution on Lie groups. Such a distribution is parametrized by
a mean and a covariance matrix defined on the Lie group
and in its associated Lie algebra respectively. Our formalism
yields tractable equations for both non-linear continuous time
propagation and discrete update of the distribution parame-
ters under the assumption that the posterior distribution of
the state is a concentrated Gaussian. As a side effect, we
contribute to the derivation of the first and second order dif-
ferential of the matrix Lie group logarithm using left connec-
tion. We also show that the CD-LG-EKF reduces to the usual
CD-EKF if the state and the observations evolve on Euclid-
ean spaces. Our approach leads to a systematic methodology
for the design of filters, which is illustrated by the application
to a camera pose filtering problem with observations on Lie
group. In this application, the CD-LG-EKF significantly out-
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1 Introduction

The differential geometry formalism has been extensively
employed in a wide range of applications in the last few
years [25]. This is due to the fact that treating a constrained
problem naively employing classical Euclidean space tools
may cause theoretical and implementation difficulties. On
the contrary, taking into account the geometry of a manifold
usually leads to well-posed problems which can boost the
performances of algorithms [2].

This paper deals with the estimation of a state evolving
on a manifold. There exist two major approaches to per-
form Bayesian filtering for a state evolving on an Euclidean
space: the Kalman filters (KF) such as (Extended KF : [28],
Unscented KF : [36], Cubature KF : [4]) and the particle
filters (PF) [16]. However among those methods only a few
works tried to extend them to manifolds (see Table 1). Particle
Filters [41] for states evolving on a Riemannian, [42] Stiefel
or [32] Grassmann manifolds have been proposed while an
Unscented KF for a state and observations evolving on Rie-
mannian manifolds [20] has recently been developed. In [11],
the Extended KF was generalized to matrix Lie groups for
a discrete time system. However, most physical models are
described by ordinary differential equations, while measure-
ments are usually discrete. Therefore, in this work, we focus
on designing a continuous-discrete filter.
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Table 1 Categorization of state of the art approaches on Kalman and Particle filtering for a state evolving on a manifold (PF = particle filter, EKF
= Extended Kalman filter, UKF = Unscented Kalman filter)

Approach State manifold Observation manifold System Filter type

Bonnabel et al. [10] Lie groups Euclidean Continuous and possessing symmetries EKF

Snoussi et al. [41] Riemannian Euclidean Discrete PF

Tompkins et al. [42] Stiefel Euclidean Discrete PF

Hauberg et al. [20] Riemannian Riemannian Discrete UKF

Rentmeesters et al. [32] Grassmann Grassmann Discrete PF

Bourmaud et al. [11] Matrix Lie groups Matrix Lie groups Discrete EKF

This paper Matrix Lie groups Matrix Lie groups Continuous-Discrete EKF

Here we consider matrix Lie groups manifolds [18]
that form an important kind of smooth manifolds. They
are particularly useful to avoid singularities when repre-
senting state spaces with either circularity or boundary
issues. Typical examples include the complex unit circle
with complex product

(
S1,×) is a one-dimensional Lie

Group, as well as rotation matrices SO (3), unitary quater-
nions SU (2), rigid-body motion SE (3), invertible matrices
GL (3).

Hence in this paper we extend the continuous-discrete
extended Kalman filter (CD-EKF) [28] defined for a state
and observations evolving on Euclidean spaces to the case
of a state and observations evolving on connected unimodu-
lar matrix Lie groups. This could be interpreted as a generic
constrained filtering problem [38] by enforcing an equality
constraint taking the zero value only for matrices belong-
ing to the group. However, in this case the state covariance
matrix would be singular and would not have a meaningful
interpretation.

A large number of works modeling the state on a Lie group
have dealt with the attitude estimation problem. Among them
the multiplicative extended Kalman filter (MEKF) [24,26]
corresponds to an ad hoc modification of the usual CD-
EKF that is designed to take into account the unit con-
straint of a unit quaternion. Many works employ this for-
malism [19,30,43,44]. Ad hoc modifications of the discrete
unscented Kalman filter have also been developed for atti-
tude estimation [14,23,40]. The motor extended Kalman fil-
ter dedicated to the Lie group SE (3) was introduced in [8]
to perform rigid body motion estimation.

In [31], irreducible unitary representation matrices are
used to estimate probability density function via the group
Fourier transform, for long time propagations. For small
propagations, they propose a particle filter like propagation
step which consists in sampling paths of the stochastic differ-
ential equation on Lie groups. The probability density func-
tion is then approximated by computing the mean and the
covariance from the paths.

A closely related approach to our formalism has been
recently developed [9,10,27] leading to the Invariant Extend-
ed Kalman Filter (IEKF). It is dedicated to continuous sys-
tems possessing symmetries and allows one to simultane-
ously guarantee that the state will remain on the Lie group
and extend the domain of convergence around the so-called
permanent trajectories. However, neither the issue of discrete
measurements nor the problem of observations evolving on
a Lie group are addressed.

In contrast, our formalism deals with a continuous-
discrete problem in a unified way for generic smooth evo-
lution equations with the guarantee that the state model
is consistent with the group manifold. Moreover, we con-
sider observations evolving on a Lie group. Assuming
the posterior distribution of the state is a concentrated
Gaussian on Lie groups, we propose a tractable formulation
of error propagation and update that we call Continuous-
Discrete Extended Kalman Filter on Lie groups (CD-LG-
EKF). Moreover, we show that the CD-LG-EKF reduces
to the traditional Euclidean CD-EKF if the state and the
observations evolve on Euclidean spaces. Therefore, this
paper introduces a generic framework, which can be tai-
lored to specific applications by designing the Lie groups
on which the state and the observations are defined. As
a side effect, we also contribute to the derivation of
the first and second order differential of the matrix Lie
group logarithm using left connection which analytical
expressions are essential in the derivation of our formal-
ism.

The rest of the paper is organized as follows: Section 2
introduces our notations as well as main Lie group and Lie
algebra notions. The CD-LG-EKF theory is presented in Sect.
3. In Sect. 4, the first and second order differential of the
matrix Lie group logarithm using left connection used in the
CD-LG-EKF theory are derived. In Sect. 5 the CD-LG-EKF
methodology is illustrated on a camera pose estimation prob-
lem. Finally the conclusion and future research directions are
provided in Sect. 5.
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2 Preliminaries

2.1 Notations

2.1.1 Lie Group and Lie Algebra Notations

G ⊂ R
n×n : Matrix Lie Group

X, Y ∈ G : Elements of G
e = Idn×n : Identity of G
XY, X−1 : Group composition and inverse

TX G ⊂ R
n×n : Tangent space of G at X

v ∈ TX G : Tangent vector at X
g = TeG : Lie algebra of G
a, b ∈ g, a = [a]∨G , b = [b]∨G ∈ R

p : Elements of g

and their vector representation
[·]∧G : R

p → g, [·]∨G : g → R
p : Lie algebra

isomorphisms

Lg X = gX : Left action of G onto itself with g ∈ G
DLg : TX G → TgX G : Tangent mapping of Lg

expG : g → G : Matrix exponential
logG : G → g : Matrix logarithm

[a, b] = ab − ba : Lie Bracket
AdG (X) b = [

XbX−1
]∨

G : Adjoint representation
of G on g

adG (a) b = [[a, b]]∨G : Adjoint endomorphism
with adG (a) ⊂ R

p×p

2.1.2 Propagation Step Notations

X (t) ∈ G : State
X (t) ∼ NG (μ (t) , P (t)) : Concentrated Gaussian
distribution on Lie Group
μ (t) ∈ G : State mean
ε (t) = [

logG

(
μ (t)−1 X (t)

)]∨
G ∈ R

p : Lie algebraic
state error
ε (t) ∼ NRp

(
m (t) = 0p×1, P (t)

)
: Gaussian

distribution on Lie algebra of mean 0p×1 and covariance
P

2.1.3 Update Step Notations

Xk|l , μk|l : State and state mean at instant k
having incorporated the first l measurements
ε−

k|l , P−
k|l : Lie algebraic state error and state

covariance at instant k having incorporated
the first l measurements,
before state reparametrization
εk|l , Pk|l : Lie algebraic state error and state

covariance at instant k having incorporated
the first l measurements,
after state reparametrization

2.1.4 Misc

0p×n : p-by-n null matrix
Idp×p : p-by-p identity matrix
O
(‖a‖k

)
(b, c) = F (a) (b, c) : Big O notation, with

F (a) (b, c) a bilinear application in b and c and
supb,c with ‖b‖=1,‖c‖=1 ‖F (a) (b, c)‖ ‖F (a)‖ ≤ C ‖a‖
where C is a constant

2.2 Lie Groups and Lie Algebras

In this section we give the definitions and basic properties
of Lie groups and Lie algebra. For a detailed description of
these notions the reader is referred to [1,13,18]. We focus
on matrix Lie groups since almost all Lie groups encoun-
tered in the physical sciences are matrix groups [17] and any
finite dimensional Lie group is homeomorphic to a matrix
Lie group [3] (Ado’s theorem).

2.2.1 Lie Groups and Lie Algebras

A Lie Group G is a group which also has the structure of
a smooth manifold such that group composition and inver-
sion are smooth operations. We refer the reader to [22] for
a detailed presentation on smooth manifold. If G is a matrix
Lie group, then Y ∈ G ⊂ R

n×n and its operations are matrix
multiplication and inversion with the identity matrix as iden-
tity element. In this case, it is possible to define the left action
LY : G → G of the group onto itself simply as follows:

LY X = Y X (1)

where Y, X ∈ G. Note that an Euclidean space R
p is a trivial

matrix Lie Group by taking the matrix embedding:

x ∈ R
p 
→ X =

[
Idp×p x
0 1

]
⊂ R

(p+1)×(p+1) (2)

Since G is a smooth manifold, one can attach to every point
X ∈ G a tangent space TX G. The tangent space is a vec-
tor space with the dimension equal to the dimension of the
manifold.

Using the left group action LY of G onto itself a natural
tangent mapping DLY : TX G → TY X G can be defined as
follows:

DLY v = Yv (3)
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Fig. 1 Illustration of tangent mapping

where v is a matrix element of TX G, i.e v ∈ TX G ⊂ R
n×n .

This means that a vector v defined in a tangent space TX G
can be transported in any other tangent space using DLg (see
Fig. 1).

From this property arises the notion of left invariant vec-
tor field which associates a tangent vector v (X) ∈ TX G
to each element X of the group, such that all of them can
be completely determined by the value of v (e) at the iden-
tity element by transporting it around the Lie Group using
DL X : v (X) = DL Xv (e). Thus we focus our attention on
the properties of the tangent space at the identity TeG called
the Lie algebra g.

The Lie algebrag associated to a p-dimensional matrix Lie
group is a p-dimensional vector space which may be defined
by a basis consisting of real matrices Ei for i = 1 . . . p. This
basis defines a linear isomorphism between g and R

p that we
denote as follows:

[·]∨G : g → R
p (4)

[·]∧G : R
p → g (5)

For example let a ∈ g ⊂ R
n×n , then we have [a]∨G = a ∈ R

p.
Thus [Ei ]∨G = ei where {ei } is the natural basis of R

p and

a = ∑p
i=1 ai Ei with a = (

a1, . . . , ap
)T . This will allow us

to express the differential calculus of the filter computation
in vector form with the minimal number of parameters p, as
opposed to considering the matrices with n2 coefficients.

2.2.2 Link Between a Lie Group and its Associated Lie
Algebra

Exponential Mapping The link between a Lie group and its
associated Lie algebra can be expressed by integration of
velocities in the algebra into the group structure as follows:

{
ġ (t) = g (t) a

g (0) = e
(6)

Fig. 2 Illustration of matrix exponential and matrix logarithm

M ⊂ G ⊂ n×n

logG→
←expG

⊂ ⊂ n×n

[·]∨
G→

←
[·]∧

G

S ⊂ [ ]∨G ⊂ p

Fig. 3 Summary table

where a ∈ g, g (t) ∈ G and ġ (t) = DLg(t)a ∈ Tg(t)G is
the time derivative of g (t). One can see that in the case of
matrix Lie groups, the solution to this ordinary differential
equation is:

g (t) = expG (at) (7)

where expG : g → G is simply the matrix exponential (see
Fig. 2).

Note that expG (at1) expG (at2) = expG (a (t1 + t2)) and
expG (at)−1 = expG (−at). We also have the inverse map-
ping defined by logG which corresponds to the matrix log-
arithm. Note that the exponential and logarithmic mappings
establish a local diffeomorphism between an open neighbour-
hood of 0 in g and an open neighbourhood of e in G. We also
define s ⊂ g and M ⊂ G as sets on which expG and logG are
bijective functions with s an open symmetric connected sub-
set of g. We further assume that the series of expG and logG
are converging on s and M respectively. The two previous
notions are summarized in Fig. 3 where S = [s]∨G ⊂ R

p.

Non-commutativity The Adjoint representation of G on g is
defined as the linear operator AdG :

AdG (X) b =
[

X [b]∧G X−1
]∨

G
(8)

It captures properties related to commutation:

XexpG

(
[b]∧G

) = expG

(
[AdG (X) b]∧G

)
X (9)
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Taking the directional derivative of XbX−1 and having
defined X = expG (a), we obtain the bilinear and anticom-
mutative Lie bracket for a matrix Lie group:

dexpG (sa) bexpG (−sa)

ds

∣∣
∣
s=0

= ab − ba = [a, b] (10)

Since [·, ·], [·]∨G and [·]∧G are linear functions, we can express
the Lie bracket in [g]∨G = R

p as follows:

[[
[a]∧G , [b]∧G

]]∨
G = adG (a) b (11)

where adG : R
p → R

p×p. We also have the following
property:

adG (a) b = −adG (b) a (12)

Note that ad0p×1 = 0p×p. Moreover, for a commutative
group ∀a ∈ R

p, adG (a) = 0p×p. We also introduce the
following notation where (adG (a))i j denotes the element at
the i th raw and j th column of the matrix adG (a):

(adG (a))i j = LT
i j a (13)

where Li j ∈ R
p. Finally let us introduce the first few terms

of the non-trivial Baker-Campbell-Hausdorff formula which
expresses the group product directly in the algebra:

a = logG

(
expG (b) expG (c)

) = b + c + 1

2
[b, c] + · · ·

(14)

This result can also be expressed in [g]∨G = R
p:

a = b + c + 1

2
adG (b) c + · · · (15)

The following related formula will be useful for our deriva-
tions:
[
logG

(
expG

(
[−a]∧G

)
expG

(
[a + b]∧G

))]∨
G

= a + ΦG (a) b + O
(
‖b‖2

)
(16)

where

ΦG (a) =
∞∑

m=0

(−1)m

(m + 1)!adG (a)m (17)

is called the right Jacobian of G [7]. A few more useful prop-
erties that will be used in this paper are given in Appendix
7.

2.3 Concentrated Gaussian Distribution on Lie Groups

In this section we introduce the concept of concentrated
Gaussian on Lie groups [45,48] as a generalization of the
normal distribution in Euclidean space which is used in the
CD-EKF formalism. In order to define such a distribution, the
considered Lie group has to be a connected [18] unimodular
[12] matrix Lie group. Henceforth, in the rest of the paper,
when referring to Lie groups, we will consider this assump-
tion to hold. Note that this is the case of most Lie groups of
interest such as SO (3), SE (3), SL (3), R

n ...
From [45] the following distribution can be defined:

ρ (x) = αe
− 1

2

([
logG (x)

]∨
G

T
P−1

[
logG (x)

]∨
G

)

(18)

where α is a normalizing factor, X ∈ M ⊂ G is a random
variable with probability density ρ (x), G is a p-dimensional
connected unimodular matrix Lie group and P is a positive
definite matrix. Probability of elements outside of M is set
to zero. Let us define ε as follows :

ε = [
logG (X)

]∨
G (19)

where ε ∈ S ⊂ R
p. When ρ (X) is tightly focused around

the group identity (i.e the maximum of the eigenvalues of P
is small), the distribution of ε can be approximated by:

ε ∼ NRp
(
0p×1, P

)
(20)

where NRp
(
0p×1, P

)
is a classical Euclidean Gaussian dis-

tribution defined on R
p. It corresponds to the following

approximation:

[
logG

(
expG

(
[ε]∧G

))]∨
G  ε (21)

which is valid only when the probability mass of ε in S is
close to one. In this case, the distribution of X is called a con-
centrated Gaussian distribution on G around the identity. It
can be transported around μ ∈ G using the left action of the
Lie group, producing a concentrated Gaussian on G centered
at μ:

X = μexpG
(
[ε]∧G

)
where ε ∼ NRp

(
0p×1, P

)
(22)

μ will be called the mean of X , ε can be seen as a Lie alge-
braic error of mean 0p×1 and covariance P . Figure 4 pro-
vides a graphical interpretation of the transfer of probabil-
ity distribution from ε to X . We also introduce the follow-
ing notation for a concentrated Gaussian random variable X
evolving on a Lie group:

X ∼ NG (μ, P) (23)
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Fig. 4 Concentrated Gaussian on Lie groups

Such a distribution allows us to describe the uncertainty of
the state in R

p while the state evolves on G and hence using
Euclidean tools while being invariant w.r.t the left action of
the group on itself.

As recently noted in [7], the distribution we consider in
(22) and [11] is slightly different from the one defined in
[45,48]. Indeed, in (18), α depends on x and is constant only
when ρ (x) is tightly focused. On the contrary, in (22) ε is
directly defined as a Gaussian distribution in R

p and thus
α is constant by definition. As it is well explained in [7],
working with (22) is more “natural” in robotics. In practice
both approaches produce the same results (see Eq. (54) in [7]
and Eq. (23) in [46]).

3 Theory of the Continuous Discrete Extended Kalman
Filter on Lie Groups

In this section we present the theory of the proposed CD-LG-
EKF.

3.1 Problem Settings

3.1.1 Propagation Model

In this paper, we consider the generic formulation of a
dynamic system:

d X (t) = X (t) [Ω (X (t))]∧G dt +
p∑

i=1

X (t) Ei ◦ d Bi (t)(24)

where X (t) ∈ G is the state we wish to estimate at
time t , G is a p-dimensional matrix Lie group and
B (t) is a p-dimensional Brownian motion with
coordinates

(
B1 (t) , . . . , Bp (t)

)
, and covariance matrix

R, i.e B (t1)− B (t2) ∼ NRp
(
0p×1, (t2 − t1) R

)
with t1 < t2

(see [35]). Ω (X) is a differentiable left-parametrized veloc-
ity function defined as follows:

Ω (X) : G 
→ R
p (25)

Using the overdot notation for differentiation to time, we
could interpret (24) as:

Ẋ (t) = X (t)
(
[Ω (X (t))]∧G + [n (t)]∧G

)
(26)

where n (t) ∼ NRp
(
0p×1, R

)
is a white Gaussian noise and

[n (t)]∧G ∈ g . Hence Ẋ (t) ∈ TX G. The driving white noise
corresponds formally to:

p∑

i=1

X (t) Ei ◦ d Bi (t) = [n (t)]∧G dt (27)

In the following, unless there is an ambiguity, the time para-
meter will be dropped for the sake of readability (i.e X (t)
will be denoted by X ).

Remark 1 The system considered in this paper does not need
to be invariant w.r.t the (left or right) action of the Lie group
as in [10].

Remark 2 In (24), Ω is a function of X (t). It allows to han-
dle complex propagation models. For example, in our exper-
imentations, both the pose of the camera and its speed belong
to the state, the speed being used as input for the propagation
of the pose (see 5.2).

Remark 3 If G is an Euclidean space (24) becomes:

d X (t) = Ω (X (t)) dt + d B (28)

which is the generic CD-EKF state propagation equation with
additive noise (see [28]).

3.1.2 Observation Model

We also consider discrete measurements on a q-dimensional
matrix Lie group G ′:

zk = h (Xk) expG ′
(
[wk]∧G ′

)
(29)

where h : G → G ′ is a differentiable function, zk ∈ G ′,
Xk ∈ G is the state we wish to estimate at time k and
wk ∼ NRq

(
0q×1, Qk

)
is a white Gaussian noise.

Remark 4 If G and G ′ are Euclidean spaces, (29) becomes:

zk = h (Xk) + wk (30)

which is the generic CD-EKF state update equation with
additive noise (see [28]).

3.2 Proposed Solution

We assume the state posterior distribution to be a
concentrated Gaussian distribution on Lie groups:
p (Xk |z1, . . . , zl) = NG

(
μk|l , Pk|l

)
, i.e:

Xk|l = μk|lexpG

([
εk|l
]∧

G

)
(31)
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where εk|l ∼ NRp
(
mk|l = 0p×1, Pk|l

)
. We focus on

l = k − 1 (propagation) and l = k (update). Therefore,
the aim of the CD-LG-EKF is to propagate and update the
distribution parameters μk−1|k−1 and Pk−1|k−1. In our for-
malism, μ is the state estimate. In order to apply the con-
centrated Gaussian distribution formalism (i.e the maximum
of the eigenvalues of P is small), the time-step between two
observations as well as the maximum of the eigenvalues of
the white Gaussian noise covariance matrix considered in
(29) are assumed to be small enough.

3.3 Propagation

We assume that the state posterior distribution at time k − 1
is represented by NG

(
μk−1|k−1, Pk−1|k−1

)
. Therefore, the

aim of this section is to show how to propagate μk−1|k−1 and
Pk−1|k−1 between two consecutive sensor measurements.
The following definition of Lie algebraic state error ε (t) will
be useful in the rest of this section:

ε = [ε∧]∨G = [
logG (η)

]∨
G (32)

where η is defined as:

η = μ−1 X (33)

Thus, we have:

η = expG
(
[ε]∧G

)
(34)

Moreover, we recall that:

εk−1|k−1 ∼ NRp
(
mk−1|k−1 = 0p×1, Pk−1|k−1

)
(35)

Remark 5 One way to estimate μk−1|k−1 and Pk−1|k−1 is
to sample paths using (24), in a particle filter like propaga-
tion step, and then to compute the mean and the covariance
from the paths as it was proposed in [31]. On the contrary, in
this work, we are interested in getting closed form (approxi-
mated) equations both for the mean and the covariance prop-
agations in order to extend the CD-EKF propagation for-
malism to Lie groups. Although the approach of [31] would
yield more accurate results than our method for a large num-
ber of simulated paths, its computational cost would be much
higher.

Remark 6 When Ω does not depend on X (t) and is either
constant or an explicit function of t , [46] proposes to generate
sample paths on small time periods. The mean and covariance
is then computed for each small period of time. The final
mean and covariance is obtained by the concatenation of
the noisy motions. Note that the second order covariance
propagation formula proposed in [46] was recently derived
in a new manner in [7].

3.3.1 Mean Propagation

We choose to propagate the mean μ (t) using the state model
(24) without noise and we will show in Sect. 3.3.2 that using
this propagation formula, the Lie algebraic state error mean
m (t) = E [ε (t)] remains null up to first order terms:

dμ = μ [Ω (μ)]∧G dt (36)

where dμ
dt ∈ TμG.

Remark 7 If G is an Euclidean space, we have

dμ = Ω (μ) dt (37)

which corresponds to the CD-EKF propagation of the mean.

3.3.2 Lie Algebraic State Error Propagation

The aim of this section is to obtain a tractable equation of
dε (t) which is crucial both to justify (36) and to obtain the
covariance propagation expression since cov (ε (t)) = P (t).
From (36), we have:

d
(
μ−1

)
= −μ−1dμμ−1 (36)= − [Ω (μ)]∧G dtμ−1 (38)

Thus we obtain:

dη
(34)= d

(
μ−1 X

)
= d

(
μ−1

)
X + μ−1d (X)

(24),(38)= − [Ω (μ)]∧G dtμ−1 X

+μ−1

(

X [Ω (X)]∧G dt +
p∑

i=1

X Ei ◦ d Bi

)

(39)

=− [Ω (μ)]∧G dtη+η [Ω (X)]∧G dt+η

p∑

i=1

Ei ◦ d Bi

=η

(
−
[
AdG

(
η−1

)
Ω (μ)

]∧
G

dt+[Ω (X)]∧G dt

)
+ηd B

where

d B =
p∑

i=1

Ei ◦ d Bi (40)

Taking the first order Taylor expansion on Lie groups of Ω ,
we obtain:

Ω (X) = Ω
(
μexpG

(
[ε]∧G

))

= Ω (μ) + Fε + O
(
‖ε‖2

)
(41)

where

F = d

dε
Ω
(
μexpG

(
[ε]∧G

)) |ε=0 (42)
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We now introduce the intermediate stochastic process ξ (t)
whose differential is defined as follows:

dξ = η−1 ◦ dη (43)

From the two previous results, we can derive the expression
of dξ (t):

dξ = η−1 ◦ dη

(39)= −
[
AdG

(
η−1

)
Ω (μ)

]∧
G

dt + [Ω (X)]∧G dt + d B

(34)= − [AdG
(
expG

(− [ε]∧G
))

Ω (μ)
]∧

G dt

+ [Ω (X)]∧G dt + d B
(134),(41)=

[(
−Idp×p + adG (ε) + O

(
‖ε‖2

))
Ω (μ)

]∧
G

dt

+
[
Ω (μ) + Fε + O

(
‖ε‖2

)]∧
G

dt + d B

=
[(

adG (ε)Ω (μ) + Fε + O
(
‖ε‖2

))]∧
G

dt + d B

= [(F − adG (Ω (μ))) ε]∧G dt + O
(
‖ε‖2

)
dt + d B

= Lε∧dt + O
(
‖ε∧‖2

)
dt + d B (44)

where

Lε∧ = [(F − adG (Ω (μ))) ε]∧G (45)

In order to obtain the expression of dε∧ (t), we apply Ito’s
lemma in Lie groups (see [5]) which in this case requires
the expressions of the first and second order differential of
the matrix Lie group logarithm using left connection. Since
their expression is not straightforward and constitute a key
element in the CD-LG-EKF theory, we simply give the result
here and refer the reader to Sect. 4 for the complete proof.

dε∧ = dlogG (η)

= 〈∇logG (η) , ηdξ
〉+ 1

2
HesslogG

(η) (ηdξ, ηdξ)

(85),(82)= dξ + 1

2
[ε∧, dξ ] + 1

12
[ε∧, [ε∧, dξ ]]

+ 1

12
[dξ, [dξ, ε∧]]+O

(‖ε∧‖2) (dξ, dξ) + O
(‖ε∧‖3) dξ

(44)= Lε∧dt + d B + 1

2
[ε∧, d B] + 1

12
[ε∧, [ε∧, d B]]

+ 1

12
[d B, [d B, ε∧]] + O

(‖ε∧‖2) dt + O
(‖ε∧‖3) d B (46)

dε
(32),(46)= (F − adG (Ω (μ))) εdt + db + 1

2
adG (ε) db

+ 1

12
adG (ε)2 db + 1

12
adG (db)2 ε

+O
(‖ε∧‖2) dt + O

(‖ε∧‖3) db

=
(

F − adG (Ω (μ)) + 1

12
C (R)

)
εdt

+
(

Id + 1

2
adG (ε) + 1

12
adG (ε)2

)
db

+O
(‖ε‖2) dt + O

(‖ε‖3) db (47)

where

db =
p∑

i=1

ei ◦ d Bi (48)

and

(C (R) dt)i j
(139)=

(
adG (db)2

)

i j
=

p∑

k=1

LT
ikdbdbT Lkj (49)

with

dbdbT =
( p∑

l=1

eld Bl

)( p∑

m=1

eT
md Bm

)

=
p∑

l=1

p∑

m=1

ele
T
md Bld Bm =

p∑

l=1

p∑

m=1

ele
T
m Rlmdt (50)

Since m (t) = E [ε (t)], we have the following result neglect-
ing terms in O

(‖ε‖2) dt and O
(‖ε‖3) db in (47):

dm

dt
(141)= Jm (51)

where

J = F − adG (Ω (μ)) + 1

12
C (R) (52)

Thus, m (t) remains null, up to first order terms, during the
propagation since m (t0) = mk−1|k−1 = 0p×1.

3.3.3 Covariance Propagation

Once again neglecting terms in O
(‖ε‖2) dt and O

(‖ε‖3) db,
and denoting Cov (ε (t)) = P (t), the covariance propaga-
tion equation associated to equation (47) is:

d P

dt
(142)= J P + P J T + R

+1

4
E

(
adG (ε) RadG (ε)T

)

+ 1

12
E

(
adG (ε)2

)
R + 1

12
RE

(
adG (ε)2

)T
(53)

where

E

(
adG (ε)2

)

i j

(139)=
p∑

k=1

LT
ik P Lkj (54)

E

(
adG (ε) RadG (ε)T

)

i j

(138)=
p∑

k=1

p∑

l=1

Rkl LT
ik P L jl (55)
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Remark 8 If G is a Euclidean space, adG = 0p×p. Then we
retrieve the CD-EKF covariance propagation equation:

d P

dt
= F P + PFT + R (56)

3.3.4 Propagation Step Summary

With the initial conditions μ (t = tk−1) = μk−1|k−1 and
P (t = tk−1) = Pk−1|k−1 the propagation consists in inte-
grating (36) and (53) until time tk in order to obtain the pre-
dicted mean μk|k−1 and covariance Pk|k−1. Hence, at the end
of the propagation step, the estimated state is parametrized
as follows:

Xk|k−1 = Xk |z1 . . . zk−1 ∼ NG
(
μk|k−1, Pk|k−1

)
(57)

3.4 Update

The aim of this section is to update μk|k−1 and Pk|k−1 incor-
porating the new measurement zk .

3.4.1 Lie Algebraic Error Update

Let us define the following innovation term:

z̃k =
[
logG ′

(
h
(
μk|k−1

)−1
zk

)]∨
G

(29)=
[
logG ′

(
h
(
μk|k−1

)−1
h (Xk) expG ′

(
[wk]∧G ′

))]∨
G

(15)= Hkεk|k−1 + wk + O
(∥∥εk|k−1

∥∥2
, ‖wk‖2

)
(58)

where

Hk = ∂

∂ε

[
logG ′

(
h
(
μk|k−1

)−1

h
(
μk|k−1expG

(
[ε]∧G

)))]∨
G |ε=0 (59)

Equation (58) is linear in εk|k−1 which evolves on R
p. There-

fore, we can apply the classical update equations of the
Kalman filter [28] to update εk|k−1 into the posterior dis-

tribution as ε−
k|k ∼ NRp

(
m−

k|k, P−
k|k
)

where m−
k|k and P−

k|k
can be calculated as follows:

⎧
⎪⎨

⎪⎩

Kk = Pk|k−1HT
k

(Hk Pk|k−1HT
k + Qk

)−1

m−
k|k = 0p×1 + Kk

(
z̃k − Hk0p×1

)

P−
k|k = (Id − KkHk) Pk|k−1

(60)

Remark 9 If G and G ′ are Euclidean spaces, Eq. (58) sim-
plifies to the CD-EKF innovation term:

z̃k = zk − h
(
μk|k−1

)
(61)

3.4.2 State Reparametrization

At the end of the update step, we expect to have

Xk = μk|kexpG

([
εk|k

]∧
G

)
with E

[
εk|k

] = 0p×1 (condition-

ally to z1, . . . , zk), to satisfy the concentrated Gaussian distri-

bution definition (22). However we have E

[
ε−

k|k
]

= m−
k|k �=

0p×1. Hence, we perform the following reparametrization:

μk|k = μk|k−1expG

([
m−

k|k
]∧

G

)
(62)

Thus, using Eq. (16) and neglecting terms in O

(∥∥∥ε−
k|k
∥∥∥

2
)

,

we obtain:

mk|k
(148)= 0p×1 (63)

Pk|k
(149)= ΦG

(
m−

k|k
)

P−
k|kΦG

(
m−

k|k
)T

(64)

Remark 10 If G is an Euclidean space then

ΦG

(
m−

k|k
)

= 0p×p (65)

Thus we retrieve the CD-EKF equations:

μk|k = μk|k−1 + m−
k|k (66)

Pk|k = P−
k|k (67)

3.4.3 Update Step Summary

At the end of the update step, the estimated state is parame-
trized as follows:

Xk |z1, . . . , zk ∼ NG
(
μk|k, Pk|k

)
(68)

where εk|k ∼ NRp
(
mk|k = 0p×1, Pk|k

)
.

3.5 CD-LG-EKF Algorithm

3.5.1 General Overview

The CD-LG-EKF algorithm is summarized below (see 3.3
and 3.4 for details):
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Inputs : μk−1|k−1, Pk−1|k−1, zk
Outputs : μk|k , Pk|k

Propagation on t ∈ [tk−1, tk
]

:
Integrate the following differential equations
dμ(t)

dt = μ (t) [Ω (μ (t))]∧G
d P(t)

dt = J (t) P (t) + P (t) J (t)T + R

+ 1
4 E
(
adG (ε (t)) RadG (ε (t))T )

+ 1
12 E

(
adG (ε (t))2) R + 1

12 RE
(
adG (ε (t))2)T

Update :

Kk = Pk|k−1HT
k

(Hk Pk|k−1HT
k + Qk

)−1

m−
k|k = Kk

([
logG′

(
h
(
μk|k−1

)−1
zk

)]∨
G

)

μk|k = μk|k−1expG

([
m−

k|k
]∧

G

)

Pk|k = ΦG

(
m−

k|k
)

(Idl×l − KkHk) Pk|k−1ΦG

(
m−

k|k
)T

Algorithm 1: CD-LG-EKF

3.5.2 Implementation Issues

In order to implement the CD-LG-EKF algorithm, Eqs. (36)
and (53) have to be integrated during 
t where 
t repre-
sents the time between two measurements. However, μ (t)
and P (t) evolve on G and Sym+ respectively where Sym+
corresponds to the Riemannian manifold of symmetric pos-
itive definite matrices. Therefore some care has to be taken
while propagating them.

Mean propagation To propagate μ (t) = μt , we employ a
Lie-Euler method using small steps δt , i.e δt � 
t :

μt+δt  μt expG
(
[Ω (μt )]

∧
G δt

)
(69)

Covariance propagation To propagate P (t), we choose the
Log-Euclidean metric [6] with the following approximation
where f : Sym+ → Sym:

dlogm (P)

d P
( f (P))  logm (P + h f (P)) − logm (P)

h
(70)

where logm and expm correspond to matrix logarithm and
matrix exponential respectively. Thus the covariance can be
propagated as follows using small steps δt :

Pt+δt  expm

(
logm (Pt ) + dlogm (Pt )

d Pt
( f (Pt )) δt

)

 expm

(
1

α
(logm (Pt + α f (Pt ) δt)

− (1 − α) logm (Pt ))) (71)

Moreover if λmin (Pt ) > λmax (α f (Pt ) δt) then
(Pt + α f (Pt ) δt) ∈ Sym+. Therefore we have the following
constraint on α to remain on Sym+:

α <
λmin (Pt )

λmax ( f (Pt )) δt
(72)

4 First and Second Order Differential of the Matrix Lie
Group Logarithm Using Left Connection

In this section, we derive the expression of the first and second
order differential of the matrix Lie group logarithm using left
connection. These results are used in the CD-LG-EKF theory
presented in Sect. 3. To the best of our knowledge, it is the
first time these expressions are obtained.

4.1 First and Second Order Derivative Along a Path of the
Matrix Logarithm

Let us recall the matrix logarithm definition:

logG (Id + A) =
∞∑

k=1

(−1)k+1

k
Ak

= A − A2

2
+ A3

3
+ O

(
‖A‖4

)
(73)

where A ∈ R
n×n and the series of logG (Id + A) is converg-

ing. The first and second order derivative along a path can be
obtained as follows:

d

ds
logG (Id + A (s)) = d A (s)

ds

−1

2

(
A (s)

d A (s)

ds
+ d A (s)

ds
A (s)

)

+1

3

(
d A (s)

ds
A (s)2 + A (s)

d A (s)

ds
A (s)

+A (s)2 d A (s)

ds

)
+ O

(
‖A (s)‖3

) d A (s)

ds
(74)

d2

ds2 logG (Id + A (s))
(74)= d2 A (s)

ds2

−1

2

(
A (s)

d2 A (s)

ds2 + d2 A (s)

ds2 A (s)

)
−
(

d A (s)

ds

)2

+2

3

((
d A (s)

ds

)2

A (s)+ d A (s)

ds
A (s)

d A (s)

ds

+A (s)

(
d A (s)

ds

)2
)

+O
(
‖A (s)‖2

)(d A (s)

ds
,

d A (s)

ds

)

+O
(
‖A (s)‖2

) d2 A (s)

ds2 (75)

where O (‖·‖) (·, ·) is defined in Sect. 2.1.4.
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4.2 First order Differential of the Matrix Lie Group
Logarithm

Let us define:

Id + A (s) = BexpG (sc∧) (76)

where B ∈ G and c∧ ∈ g. Then:

d A (s)

ds
= BexpG (sc∧) c∧ (77)

d2 A (s)

ds2 = BexpG (sc∧) c2∧ (78)

d A (s)

ds

∣∣∣∣
s=0

= Bc∧ (79)

d2 A (s)

ds2

∣∣∣∣
s=0

= Bc2∧ (80)

Thus, using (74) the first order differential of the matrix Lie
group logarithm is:

〈∇logG (B) , Bc∧
〉 def= d

ds
logG (BexpG (sc∧)) |s=0

(74),(79),(80)= Bc∧ − 1

2
((B − Id) Bc∧ + Bc∧ (B − Id))

+1

3

(
Bc∧ (B − Id)2 + (B − Id) Bc∧ (B − Id)

+ (B − Id)2 Bc∧
)

+ O
(
‖(B − Id)‖3

)
Bc∧ (81)

Setting B = expG (b∧) and using the results provided as
supplementary material1, we finally obtain:
〈∇logG (expG (b∧)) , expG (b∧) c∧

〉

=
(

Id + b∧ + 1

2
b2∧
)

c∧

−1

2

((
b∧+ 3

2
b2∧
)

c∧+c∧
(

b∧+ 1

2
b2∧
)

+ b∧c∧b∧
)

+1

3

(
c∧b2∧ + b∧c∧b∧ + b2∧c∧

)
+ O

(
‖b∧‖3

)
c∧

= c∧ + 1

2
b∧c∧ − 1

2
c∧b∧ + 1

12
c∧b2∧ + 1

12
b2∧

c∧ − 2

12
b∧c∧b∧ + O

(
‖b∧‖3

)
c∧

=c∧+ 1

2
[b∧, c∧]+ 1

12
[b∧, [b∧, c∧]]+O

(
‖b∧‖3

)
c∧

(82)

where we used the following property of the Lie bracket
(a, b ∈ g):

[a, [a, b]] = aab + baa − 2aba (83)

1 Supplementary material and Matlab code are available at https://sites.
google.com/site/guillaumebourmaud/

4.3 Second Order Differential of the Matrix Lie Group
Logarithm Using Left Connection

Using (75), the second order differential of the matrix Lie
group logarithm is:

HesslogG
(B) (Bc∧, Bc∧)

def= d2

ds2 logG (BexpG (sc∧)) |s=0

(75),(79),(80)= Bc2∧ − 1

2

(
(B − Id) Bc2∧ + Bc2∧ (B − Id)

)

− (Bc∧)2 + 2

3

(
(Bc∧)2 (B − Id) + Bc∧ (B − Id) Bc∧

+ (B − Id) (Bc∧)2
)

+ O
(
‖(B − Id)‖2

)
(c∧, c∧) (84)

Setting B = expG (b∧), and using the results provided as
supplementary material, we finally obtain:

HesslogG
(expG (b∧)) (expG (b∧) c∧, expG (b∧) c∧)

= (Id + b∧) c2∧ − 1

2

(
b∧c2∧ + c2∧b∧

)

−
(

c2∧ + c∧b∧c∧ + b∧c2∧
)

+2

3

(
c2∧b∧ + c∧b∧c∧ + b∧c2∧

)
+ O

(
‖b∧‖2

)
(c∧, c∧)

= 1

6
b∧c2∧ + 1

6
c2∧b∧ − 2

6
c∧b∧c∧ + O

(
‖b∧‖2

)
(c∧, c∧)

= 1

6
[c∧, [c∧, b∧]] + O

(
‖b∧‖2

)
(c∧, c∧) (85)

5 Applicability, Results and Discussion

In this section we illustrate the applicability of the CD-LG-
EKF to the practical problem of the estimation of a camera
pose. When we apply the CD-LG-EKF to a particular prob-
lem, we build the Lie groups performing a direct product
between the components. Instead of using a matrix repre-
sentation of the state, we use a symbolic representation for
the sake of brevity. An element of the group G is denoted
(·)G whereas an element of the Lie algebra g is denoted (·)g.
These notations are simply a rewriting of the matrices.

5.1 Lie Groups of Interest & Product of Lie Groups

Some Lie groups of interest where our theory applies are
listed in Table 2.

Most of the time, the state to be estimated comprises sev-
eral components evolving on different Lie groups (ex: orien-
tation in SO (3) and position in R

3). The product of Lie
groups is a Lie group [33]. Thus our theory also applies
directly to any state that is a combination of Lie groups.

123

https://sites.google.com/site/guillaumebourmaud/
https://sites.google.com/site/guillaumebourmaud/


J Math Imaging Vis

Table 2 Lie groups of interest

Group Example of application

SO (3) , SU (2) Orientation

SL (3) Homography

SE (3) Rigid body transformation
(
R

+∗,×) Scaling factor, focal length...

(Rn,+) Anything evolving on an Euclidean Space

The simplest way to handle a state comprising several
components is to consider the Lie group formed by their
direct product (ex: SO (3) × R

3). However, contrary to the
case of a state evolving on an Euclidean space, others ways
to combine Lie groups exist [33] (ex: semi-direct product,
twisted product...). As a consequence, the estimator perfor-
mances depend on the choice of the group structure. To the
best of our knowledge, the question of how to choose the
best group remains open and application dependent [34]. The
study of symmetries which was used in [10] may provide
hints for such a choice. Hence the choice of the appropriate
Lie group, as well as the choice of its associated Lie algebra
basis, remain a modeling question for the practitioner.

5.2 Application of the CD-LG-EKF to a Camera Pose
Filtering Problem

The camera pose filtering problem we consider deals with
estimating a camera pose using a white-noise acceleration
model given noisy pose measurements. It presents the orig-
inality that the velocity is not measured directly, although it
is included and estimated as part of the state. It is designed
as a fundamental inference module to be used in applica-
tions where only the absolute pose can be measured, such as
for localization and tracking from a wearable camera that is
addressed in the Dem@Care project2 [47].

5.2.1 Derivation of the Filter

Motion Equations Let us consider the following kinematics
using engineering notations as in (26):

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

Ṙ = R
(

[ω]∧SO(3) + [nR]∧SO(3)

)

ω̇ = nω

Ṫ = v + nT

v̇ = nv

(86)

where

– R = Rgb ∈ SO (3), represents the orientation of the
global frame with respect to the camera (body) frame

2 Dementia Ambient Care Project: http://www.demcare.eu

– ω = ωb ∈ R
3 is the angular velocity vector in the body

frame

– T = −→
Og Ob

g
∈ R

3 is the position of the camera in the
global frame

– v = vg ∈ R
3 is the radial velocity of the camera in the

global frame
– nR , nω, nT and nv are (potentially correlated) white

Gaussian driving noises

Measurement Equations We consider the case where a cali-
brated camera evolves in a known 3D world and the camera
pose is estimated at fixed rate by a black box such as PnP
module [29] that matches the image content to a 3D model
of the world:

{
Rzk = RexpSO(3)

(
wRk

)

Tzk = T + wTk

(87)

where

– Rzk ∈ SO (3), represents a noisy observation of the ori-
entation of the global frame with respect to the camera
(body) frame

– Tzk ∈ R
3 is a noisy observation of the position of the

camera in the global frame
– wRk and wTk are correlated white Gaussian noises

State (X) and Lie Group (G) Definition We build the follow-
ing Lie group on which the state X evolves:

G = SO (3) × R
3 × R

3 × R
3 (88)

(SO (3) properties are detailed in Appendix 10) which is
symbolically represented by:

X =

⎡

⎢
⎢⎢⎢⎢⎢⎢
⎢
⎣

R
Id3×3 ω

1
Id3×3 T

1
Id3×3 v

1

⎤

⎥
⎥⎥⎥⎥⎥⎥
⎥
⎦

=

⎛

⎜⎜
⎝

R
ω

T
v

⎞

⎟⎟
⎠

G

(89)

X−1 =

⎛

⎜⎜
⎝

RT

−ω

−T
−v

⎞

⎟⎟
⎠

G

and X1 X2 =

⎛

⎜⎜
⎝

R1 R2

ω1 + ω2

T1 + T2

v1 + v2

⎞

⎟⎟
⎠

G

(90)

Its associated Lie algebra is:

g = so (3) × R
3 × R

3 × R
3 (91)
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and the following properties hold (a ∈ R
12):

a =
[
aT

R , aT
ω , aT

T , aT
v

]T
(92)

[a]∧G =

⎡

⎢⎢⎢⎢⎢
⎢⎢⎢
⎣

[aR]∧SO(3)

03×3 aω

0
03×3 aT

0
03×3 av

0

⎤

⎥⎥⎥⎥⎥
⎥⎥⎥
⎦

=

⎛

⎜⎜
⎝

[aR]∧SO(3)

aω

aT

av

⎞

⎟⎟
⎠

g

(93)

expG
(
[a]∧G

) =

⎛

⎜⎜⎜
⎝

expSO(3)

(
[aR]∧SO(3)

)

aω

aT

av

⎞

⎟⎟⎟
⎠

G

(94)

adG (a) =
[

adSO(3) (aR) 09×9

09×9 09×9

]
(95)

since SO (3) is the only non-commutative component of G.

ΦG (a) =
[

ΦSO(3) (aR) 09×9

09×9 09×9

]
(96)

Calculations for the Propagation Step Given the previously
defined Lie group G, we can rewrite the motion Eqs. (86) in
the form of the system considered in this paper (26) where

Ω (X) =
[
ωT , 01×3, v

T , 01×3

]T
(97)

and

n =
[
nT

R, nT
ω, nT

T , nT
v

]T
(98)

Also,

ε =
[
εT

R , εT
ω , εT

T , εT
v

]T ∈ R
12 (99)

The only required calculation for the propagation step is the
derivative of Ω which has a simple form in our case:

F (t) = d

dε (t)
Ω
(
μ (t) expG

(
[ε (t)]∧G

)) |ε(t)=0

=

⎡

⎢⎢
⎣

03×3 Id3×3 03×3 03×3

03×3 03×3 03×3 03×3

03×3 03×3 03×3 Id3×3

03×3 03×3 03×3 03×3

⎤

⎥⎥
⎦ (100)

Observation (z) and Lie Group (G’) Definition We build the
following Lie group on which the observations zk evolve:

G ′ = SO (3) × R
3 (101)

which is symbolically represented by:

zk =
⎡

⎣
Rzk

Id3×3 Tzk

1

⎤

⎦ =
(

Rzk

Tzk

)

G ′
(102)

z−1
k =

(
RT

zk−Tzk

)

G ′
and z1z2 =

(
Rz1 Rz2

Tz1 + Tz2

)

G ′
(103)

Its associated Lie algebra is:

g′ = so (3) × R
3 (104)

and the following properties hold (b ∈ R
6):

b =
[
bT

R , bT

]T
(105)

[b]∧G =
⎡

⎣
[bR]∧SO(3)

03×3 bT

0

⎤

⎦ =
(

[bR]∧SO(3)

bT

)

g

(106)

expG ′
(
[b]∧G ′

) =
(

expSO(3)

(
[bR]∧SO(3)

)

bT

)

G ′
(107)

Derivations for the Update Step Given the previously
defined Lie group G ′, we can rewrite the measurement Eqs.
(87) in the form of the measurement equation considered in
this paper (29) where

h (Xk) = AXk AT =
⎡

⎣
Rk

Id3×3 Tk

1

⎤

⎦ (108)

A =
⎡

⎣
Id3×3 03×3 03×1 03×3 03×1 03×3 03×1

03×3 03×3 03×1 Id3×3 03×1 03×3 03×1

01×3 01×3 0 01×3 1 01×3 0

⎤

⎦ (109)

and

wk =
[
wT

Rk
, wT

Tk

]
(110)

The only required calculation for the update step is:

Hk = ∂

∂ε

[
logG ′

(
h
(
μk|k−1

)−1

h
(
μk|k−1expG

(
[ε]∧G

)))]∨
G |ε=0

= ∂

∂ε

[
εR

εT

]
|ε=0 =

[
Id3×3 03×3 03×3 03×3

03×3 03×3 Id3×3 03×3

]
(111)
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5.2.2 Trajectory Simulations

In order to evaluate our formalism on synthetic data, we need
to simulate trajectories. We employ the following formalism:

X (t + δt) = X (t) expG

(
[Ω (X (t)) δt + δn]∧G

)
(112)

where

δn ∼ NR12 (012×1, Rδt) (113)

In our simulations we take

R =

⎡

⎢
⎢
⎣

03×3 03×3 03×3 03×3

03×3 Rω 03×3 03×3

03×3 03×3 03×3 03×3

03×3 03×3 03×3 Rv

⎤

⎥
⎥
⎦ (114)

where

Rω =
⎡

⎣
10−3 0 0

0 10−3 0

0 0
(

π
4

)2

⎤

⎦ in
(

rad/s2
)2

(115)

which corresponds to a camera rotating mainly around the
z-axis, and

Rv =
⎡

⎣
1 0 0
0 1 0
0 0 10−3

⎤

⎦ in
(

m/s2
)2

(116)

which corresponds to camera translating mainly in the xy-
plane.

5.2.3 Measurement Simulations

Once a trajectory is simulated, we wish to create a sequence
of measurements. Given a covariance matrix Qk , we can draw
a sample from NR6 (06×1, Qk) and simulate an observation
using (29). In order to give a physical interpretation to Qk

and meaningful correlations between the translation and the
orientation of the camera, Qk is obtained as follows for each
observations. First of all, the simulated trajectory is placed
in a 3D sparse environment (a 3D cube with keypoints on the
faces in our case). The keypoints are independent and distrib-
uted using an isotropic normal distribution with a standard
deviation of 0.1 meter. 2D points are simulated by repro-
jecting the 3D keypoints in the focal plane of the camera,
assuming the camera is calibrated. The standard variation of
the 2D points is set to 3 pixels for a pinhole camera with
focal f = 600 pix and image size 1280 × 960. We estimate
the camera pose C using a maximum likelihood algorithm
[2] which minimizes the reprojection error of the 3D key-
points in the image. The algorithm is initialized at the true

(simulated) camera pose. Finally the covariance matrix (Qk)
of the estimated camera pose is approximated using Laplace
approximation, i.e by inverting the pseudo-Hessian matrix of
the reprojection error evaluated in C .

5.2.4 Derivation of a Continuous-Discrete Non Linear
Filter in the Embedding Space of the Lie Group with
Extrinsic Constraint

In order to provide a baseline for performance comparison,
we now derive a continuous-discrete formalism based on
state of the art algorithms, which extrinsically takes into
account the geometry of the Lie groups. The idea is to perform
filtering in the embedding Euclidean space of the Lie groups
and then to project to estimates back on the manifold as it
was proposed in [15,38] for a discrete time system. Here, we
adapt the propagation step to deal with our continuous time
model but the update step remains unchanged.

Propagation Step We define the operators (·)vG :Rn×n →R
l

which corresponds to the vectorization of an element of G
and (·)MG : R

l → R
n×n the inverse of (·)vG . We also define

π (·) : R
n×n → G the orthogonal projection of R

n×n on G.
For example, in our application

x = (X)vG =
[

RT
1 , RT

2 , RT
3 , wT , T T , vT

]T ∈ R
18×1

(117)

where Ri stands for the i th column of R. We consider the
following state equation in R

l :

dx (t) =
(

π
(
(x (t))MG

) [
Ω
(
π
(
(x (t))MG

))]∧
G

)vG

dt

+
(

π
(
(x (t))MG

) p∑

i=1

[ei ]
∧
G ◦ d Bi (t)

)vG

= f (x (t)) dt + g (x (t)) ◦ db (t) (118)

where

f (x (t)) =
(

π
(
(x (t))MG

) [
Ω
(
π
(
(x (t))MG

))]∧
G

)vG

(119)

db (t) is defined in (48) and g (x (t)) is defined s.t

g (x (t)) ◦ db =
(

π
(
(x (t))MG

) p∑

i=1

[ei ]
∧
G ◦ d Bi (t)

)vG

(120)

The propagation equations of the first two moments
(μ ∈ R

l×1 and P ∈ Sym+ ⊂ R
l×l ) of x (t) can be approxi-

mated by (see [28]):
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dμ (t)

dt
 f (μ (t)) (121)

and

d P (t)

dt
 F (t) P (t)+ P (t) F (t)T + g (μ (t)) Rg (μ (t))T

(122)

where

F (t) = d f (x)

dx
|x=μ(t) (123)

After having propagated the first two moments μ (t) and
P (t) from tk−1 to tk , the manifold constraint is enforced
through a projection step as follows:

μk|k−1 =
(

π

((
μ−

k|k−1

)MG
))vG

(124)

Pk|k−1 = Bk P−
k|k−1 BT

k (125)

where

Bk = d
(
π
(
(x)MG

))vG

dx
|x=μ−

k|k−1
(126)

This projection step is equivalent to performing an update
step with a perfect measurement where the measurement
equation corresponds to an equality constraint taking the zero
value only for matrices belonging to the group (see [38]).

Update Step We define the operator (·)vG′ :G ′ ⊂R
m×m →R

k

which corresponds to the vectorization of an element of G ′
and (·)MG′ : R

k → G ′ ⊂ R
m×m the projection of R

k on G ′.
We consider the following measurement equation:

yk = l (xk, wk) =
(

h
(
(xk)

MG
)

expG ′
(
[wk]∧G

))vG′
(127)

omitting the constraints (x (t))MG ∈ G and (yk)
MG′ ∈ G ′.

The first two moments of xk are updated using classical CD-
EKF update equations [28]:

Kk = Pk|k−1 H T
k

(
Hk Pk|k−1 H T

k + Mk Qk MT
k

)−1
(128)

mk|k = Kk
(
yk − l

(
μk|k−1, 0

))
(129)

μ−
k|k = μk|k−1 + mk|k (130)

P−
k|k = (Idl×l − Kk Hk) Pk|k (131)

where

Hk = ∂l (x, w)

∂x
|x=μk|k−1,w=0 (132)

and

Mk = ∂l (x, w)

∂w
|x=μk|k−1,w=0 (133)

Finally μ−
k|k and P−

k|k are projected back on G using Eqs.(124)
and (125). In the rest of the paper, we refer to this fil-
ter as continuous-discrete constrained non-linear filter (CD-
Constr-NLF).

Implementation Issue Some care has to be taken while
implementing the CD-Constr-NLF since the state covariance
matrix P is singular. Indeed, in our problem, the covariance
matrix is a 18×18 matrix whereas the estimated state has only
12 degrees of freedom. First of all, in order to propagate P ,
the numerical scheme described in (71) cannot be employed
anymore since the matrix logarithm is not defined for a singu-
lar matrix. Instead, we use a 4th order Runge Kutta verifying
at each step that all the eigenvalues of P are either positive
or equal to zero. Secondly, the matrix inversion in (128) is
replaced by a pseudo-inverse. Finally, in order to improve the
performances of the filter, we apply the projection step after
each substep of the numerical scheme.

5.2.5 Application of a Continuous-Discrete Unscented
Kalman Filter in the Embedding Space of the Lie
Group with Extrinsic Constraint

In this section, we derive a continuous-discrete constrained
unscented Kalman filter (CD-Constr-UKF). In the Euclid-
ean case, using the unscented transform (UT) [21] instead
of a linearization technique significantly improves the per-
formances of a filter (and also increases its computationnal
cost). It might be interesting to compare such a filter, applied
in the embedding space of the Lie group, to our approach,
which is based on a linearization technique but intrinsically
takes into account the geometry of the Lie group.

Propagation Step The propagation step is performed as
described in [39] since their model fits (118). At the end of
the propagation, we apply the same projection step as the one
applied after the propagation step of the CD-Constr-NLF.

Update Step The update step is performed as described in
[21] since their model fits (127). At the end of the update
step, we apply the same projection step as the one applied
after the update step of the CD-Constr-NLF.

Implementation Issue As in the CD-Constr-NLF case, some
care has to be taken while implementing the CD-Constr-UKF
since the state covariance matrix P is singular. First of all,
the Cholesky decomposition which is usually used to draw
the sigma points cannot be computed for a singular matrix.
Instead, we use a Singular Value Decomposition and simply
take the square root of the 12 largest singular values since the
estimated state has only 12 degrees of freedom. Secondly, in
order to improve the performances of the filter, we apply the
projection step after each substep of the propagation step.
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Fig. 5 Example of generated
trajectory, measurements,
CD-Constr-NLF output and
CD-LG-EKF output with
[x, y, z]T = T and[
wx , wy, wz

]T =
[
logSO(3) (R)

]∨
SO(3)
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5.2.6 Simulation Results

We simulate trajectories as described in Sect. 5.2.2. For
each trajectory, we create a sequence of measurements as
explained in Sect. 5.2.3. An example of simulated tra-
jectory is presented Fig. 5. For each filter, T and R are
initialized using the first measurement with small vari-
ances (10−2) whereas ω and v are set to zero with large
variances (104). The time-step used to simulate a tra-
jectory is ten times smaller than the time-step used to
propagate the mean and the covariance of each filter
between two measurements. Figure 6 reports the Root
Mean Squared Error (RMSE) of each filter w.r.t sam-
pling period (
t). The RMSE is defined as the square
root of the average of the following errors : ‖μT − T ‖2

2

(position error) and
∥∥∥logSO3

([
μR

T R
]∨

SO(3)

)∥∥∥
2

2
(orientation

error).
For small sampling period, the CD-LG-EKF, the CD-

Constr-UKF and the CD-Constr-NLF give the same perfor-
mances.

However, for a reasonable sampling rate, i.e 25 frames per
seconds which is a standard camera frame-rate, the CD-LG-
EKF and the CD-Constr-UKF performs significantly better
than the CD-Constr-NLF.

For higher sampling period (
t), the CD-Constr-NLF
diverges while the proposed algorithm as well as the CD-
Constr-UKF keep filtering the camera pose. Note that the
CD-LG-EKF performs slightly better than the CD-Constr-
UKF both in rotation and translation. It shows that intrinsi-
cally taking into account the geometry of the Lie group sig-
nificantly increases the performances of a filter and can even
provide better results than a computationally more expensive
filter based on the unscented transform.

For very large sampling periods (
t), the motion model
becomes less informative but the CD-LG-EKF output is still
numerically stable and tends towards the observations con-
trary to the CD-Constr-UKF that diverges.

6 Conclusion

In this paper, we proposed a new generic algorithm called
continuous-discrete extended Kalman filter on connected
unimodular matrix Lie groups that generalizes the continuous-
discrete extended Kalman filter to the case where the state and
the measurements evolve on a matrix Lie groups. Assuming
the posterior distribution is a concentrated Gaussian distribu-
tion, we showed, using the tools of the Lie group theory, how
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Fig. 6 Root mean squared
error for different sampling
periods (
t)
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to propagate and update the distribution parameters. As a side
effect, we also contributed to the derivation of the first and
second order differential of the matrix Lie group logarithm
using left connection which analytical expressions were nec-
essary for the state covariance propagation. Our formaliza-
tion led to a generic solution to the filtering problem of a
state and observations evolving on matrix Lie groups. The
systematic methodology of the CD-LG-EKF was illustrated
by the application to a camera pose filtering problem where
two constrained non-linear filters, based on a linearization
technique and an unscented transform respectively, were out-
performed. Future work will consider its use in localization
and tracking from a wearable camera, but we hope its general
formulation will find applications in many other contexts.
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7 Properties and Notations

Property 1 First order Taylor expansion of AdG (·):
AdG

(
expG

(
[a]∧G

)) = expG (adG (a))

= Idp×p + adG (a) + O
(
‖a‖2

)
(134)

where a ∈ R
p.

Property 2 First order Taylor expansion of expG (·):

expG (ε∧) = Idn×n + ε∧ + 1

2
ε2∧ + O

(
‖ε∧‖3

)
(135)

where ε∧ ∈ g

Property 3 Adjoint properties:

(adG (x))i j = LT
i j x (136)

(
adG (x)T

)

i j
= (adG (x)) j i = LT

ji x (137)

where Li j ∈ R
p×1 and x ∈ R

p×1. We have:

(
adG (x) RadG (x)T

)
i j

= E

( p∑

k=1

p∑

l=1

(adG (x))ik Rkl

(
adG (x)T

)

l j

)

= E

( p∑

k=1

p∑

l=1

LT
ik x Rkl LT

jl x

)

= E

( p∑

k=1

p∑

l=1

Rkl LT
ik xxT L jl

)

=
p∑

k=1

p∑

l=1

Rkl LT
ik xxT L jl (138)
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and

(
adG (x)2

)

i j
=

p∑

k=1

(adG (x))ik (adG (x))k j

=
p∑

k=1

LT
ik x LT

k j x

=
p∑

k=1

LT
ik xxT Lk j (139)

8 Propagation

For the following dynamical equation where f and G are
bounded and Lipschitz functions:

dx = f (x) dt + G (x) dβ (140)

where β is a Brownian process with diffusion matrix Q (t),
and x ∈ R

m , the mean and covariance propagation equations
are:

ṁx = E [ f (x)] (141)

Ṗx =
(
E

[
f (x) xT

]
− E [ f (x)] mT

x

)

+
(
E

[
x f (x)T

]
− mxE

[
f (x)T

])

+E

(
G (x) QG (x)T

)
(142)

see [28] Vol.2 Chap.11 Sec.6.

9 Update

Let A ∈ G et b, c ∈ R
p, then:

Aexp (b + c) = Aexp (b) exp (−b) exp (b + c)

(16)= Aexp (b) exp
(
Φ (b) c + O

(
‖c‖2

))

(143)

After the Lie algebraic error update step (3.4.1) we have:

Xk|k = μk|k−1expG

([
ε−

k|k
]∧

G

)

= μk|k−1expG

([
m−

k|k + r−
k|k
]∧

G

)
(144)

where r−
k|k ∼ NRp

(
0p×1, P−

k|k
)

. Applying (143), we obtain:

Xk|k = μk|k−1expG

([
m−

k|k
]∧

G

)

expG

([
ΦG

(
m−

k|k
)

ε−
k|k + O

(∥∥∥ε−
k|k
∥∥∥

2
)]∧

G

)

= μk|kexpG

([
εk|k

]∧
G

)
(145)

where

μk|k = μk|k−1expG

([
m−

k|k
]∧

G

)
(146)

εk|k = ΦG

(
m−

k|k
)

ε−
k|k + O

(∥∥∥ε−
k|k
∥∥∥

2
)

(147)

From the previous expression and neglecting terms in

O

(∥∥
∥ε−

k|k
∥∥
∥

2
)

:

E
[
εk|k

] = 0p×1 (148)

Pk|k = E

[
εk|kεT

k|k
]

= E

[
ΦG

(
m−

k|k
)

ε−
k|kε

−T
k|k ΦG

(
m−

k|k
)T
]

= ΦG

(
m−

k|k
)

P−
k|kΦG

(
m−

k|k
)T

(149)

10 SO (3) Properties

– expSO(3), logSO(3) and ΦSO(3) can be computed effi-
ciently using Rodrigues’ rotation formulae [37]

– Let a =
⎡

⎣
a1

a2

a3

⎤

⎦ then [a]∧SO(3) =
⎡

⎣
0 −a3 a2

a3 0 −a1

−a2 a1 0

⎤

⎦

– Let b ∈ R
3 then [a]∧SO(3) b = [b]∗ a

where [b]∗ = − [b]∧SO(3)

– adSO(3) (a) = [a]∧SO(3)
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