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Abstract— In this paper, we investigate the possibility of
designing an observer for a class of continuous-time dynam-
ical systems with non-uniformly sampled measurements. More
specifically, we propose an observer with a time varying gain
witch converges exponentially under some conditions on the
sampling partition diameter. The proposed observer is an
impulsive system since it is described by a set of differential
equations with instantaneous state impulses corresponding to
the measured samples and their estimates. As it is customarily
done in the literature, we show that such an impulsive system
can be split into two subsystems and be put under the form
of a hybrid system which is designed using a continuous-
time observer together with an inter-sample output predictor.
Simulations results involving a typical bioreactor are given to
show the effectiveness of the proposed observer.

Key words: Nonlinear observers, sampled-data observers,

continuous-discrete time observers, high gain observers.

I. INTRODUCTION

The observer design problem for nonlinear dynamical sys-

tems has been paid a lot of attention over the last decades.

It is however worth mentioning that most of the available

results on nonlinear observers design deal with continuous-

time measurements ([1], [2], [3], [4], [5]). Furthermore, the

digital implementation of these continuous-time observers is

generally carried out without any redesign using relatively

small sampling periods as the stability and the convergence

properties of the sampled continuous-time observer may

be lost in the case of relatively large sampling periods.

This is, the search for alternative design methodologies

might be necessary to deal with the long standing digital

implementation issue. Among these approaches, one can

cite those whereby the observer design is based on exact

or approximate discrete-time descriptions of the systems

dynamics ([6], [7], [8]). This approach does not allow to

take into consideration the inter-sampled dynamics, which

is completely lost as pointed out in [9]. Moreover, the

underlying discrete-time representation of the system may

suffer from possible errors that might occur during the

sampling scheduling process. Nevertheless, such an issue can

be handled by appropriately redesigning the continuous-time

observer and by considering the fact that the outputs mea-

surements are available only at sampling instants. An earlier
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contribution, in this context, has been made using a high gain

observer for a class of nonlinear systems that are observable

for any input [10]. The design has been firstly carried out

by assuming continuous-time output measurements before

being appropriately modified to handle the case where these

measurements are only available at sampling instants. Based

on the aforementioned contribution, many other observers

have been proposed for specific classes of continuous-time

systems with discrete-time outputs measurements ([11], [12],

[13]).

A more promising approach to cope with the non avail-

ability of the output measurements between the sampling

instants has been proposed in [9]. It consisted in employing

a continuous time-observer using a suitable output predictor.

The involved output prediction is obtained as the solution of

a scalar ordinary differential equation (ODE) between two

successive sampling instants with the value of the measured

output sample as initial condition. The underlying observer is

a hybrid system that inherits the properties of the continuous

time observer for relatively fast sampling rates.

Another observer design approach for a particular class

of nonlinear systems with sampled measurements has been

proposed in [14]. It consists in using an impulsive observer

where the output error correction term is expressed as the

product of a constant gain by the difference between the

estimated and measured values of the last output sample,

respectively. The observer convergence analysis as well as

the determination of its gain are obtained using LMI tools

similar to those described in [15].

In this paper, we propose a continuous-discrete time

observer for a class of multi-input and multi-output (MIMO)

nonlinear systems, with sampled measurements, that are

observable for any input. The proposed observer is obtained

from a redesigned version of a purely continuous-time one

that assumes continuous-time measurements. As for the

impulsive observer given in [14], the corrective term of the

proposed observer is a function of the difference between

the estimated and actual output values at the last sampling

instant. However, unlike in [14], the multiplicative observer

gain is time-varying and depends on the sampling periods. In

particular, it is shown that the proposed impulsive observer

can be written under the form of a hybrid system as the

continuous-discrete time observer proposed in [9]. Indeed,

the equations of the impulsive observer can be split into two

subsystems: the first subsystem has the same structure as

the purely continuous time observer where the non available

outputs are replaced by appropriate predictions provided by

the second subsystem.
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The paper is organized as follows. In the next section, the

class of systems that shall be considered throughout this

paper is introduced with some notations together and a brief

recall on the design of a continuous-time high gain observer

for the considered class of systems. In section 3, the design

of the impulsive continuous-discrete time observer is firstly

detailed with full convergence analysis. Then, it is shown

that the proposed impulsive observer can be written under

the form of a hybrid system, allowing thereby to emphasize

the relationship between this observer and the continuous

high gain observer. Simulations results are given in section

4 to highlight the performances of the proposed observers.

Finally, some concluding remarks are given in section 5.

II. PROBLEM FORMULATION AND PRELIMINARIES

Consider MIMO systems that are diffeomorphic to the fol-

lowing form:
{

ẋ(t) = Ax(t) + ϕ(u(t), x(t))
yk = Cx(tk) = x1(tk), ∀k ∈ N

(1)

with

x =











x1

x2

...
xq











; ϕ(u, x) =















ϕ1(u, x1)
ϕ2(u, x1, x2)

...

ϕq−1(u, x1, . . . , xq−1)
ϕq(u, x)















; (2)

A =



















0p Ip 0p 0p
...

. . . Ip

0p
. . .

. . . 0p

0p
. . . Ip

0p . . . 0p 0p



















; (3)

C = [Ip, 0p, . . . , 0p] (4)

where the state x ∈ R
n with xj ∈ R

p, j = 1, . . . , q; the
input u(t) ∈ U , a compact subset of R

s and the output
y ∈ R

p is available at time instants tk satisfying

0 ≤ t0 < . . . < tk < tk+1 < . . . with limk→∞ tk = ∞
and time-varying intervals τk = tk+1 − tk

(5)

System (1) may seem as being very particular since it

assumes a non prime dimension (n = pq) and in all the

q blocs, the sub-blocks xj have the same dimension p. In

fact, it has been shown in [16] that system (1) is a normal

form that characterizes a class of nonlinear systems that are

observable for any input and that can be put through an

injective map under the form (1) (see e.g. [16], [17] for more

details).

Our objective consists in designing an exponential

continuous-discrete time observer that provides continuous-

time estimates of the whole state of system (1) from the

outputs measurements that are available at sampling instants,

only. One also aims at providing an expression of the upper

bound of the sampling partition diameter under which the

proposed observer converges exponentially. These objectives

shall be achieved in the subsequent sections.

The observer design requires some assumptions that shall be

stated in due courses. At this step, one assumes the following:

(A1) The function ϕi(u, x) are globally Lipschitz with

respect to x uniformly in u i.e.

∀ x, x̄ ∈ R
n : ‖ϕi(u, x)− ϕi(u, x̄)‖ ≤ L‖x− x̄‖ (6)

where L > 0 is the Lipschitz constant.

Before proposing the continuous-discrete time impulsive

observer, one shall recall the main steps of a continuous

time high gain observer design for system (1). The main

outlines of the underlying convergence analysis shall also

be sketched. This allows to show later that the continuous-

discrete time impulsive observer can be interpreted as a

redesigned version of the introduced continuous-time one.

More specifically, one will consider the continuous-time

observer that has been proposed for system (1) in ([18], [19]).

The latter is given by

˙̂x(t) = Ax̂(t) + ϕ(u(t), x̂(t)) − θ∆−1
θ K(Cx̂(t)− y(t)) (7)

where x̂ =











x̂1

x̂2

...

x̂q











; K is a gain matrix and is chosen such

that

Ā
∆
= A−KC (8)

is Hurwitz and ∆θ is the following diagonal matrix:

∆θ = diag

(

Ip,
1

θ
Ip, . . . ,

1

θq−1
Ip

)

(9)

where θ ≥ 1 is a real design parameter.

A detailed proof of the exponential convergence of the

observation error can be found in [19]. For clarity purposes

and since the link between the design of this observer and

that of the continuous-discrete time one shall be raised, one

proposes to briefly recall the main outlines of the proof.

Indeed, let x̃ = x̂− x be the observation error. One has

˙̃x = (A− θ∆−1
θ KC)x̃+ ϕ(u, x̂)− ϕ(u, x) (10)

Let x̄ = ∆θx̃. Taking into account the following identities

∆θA∆
−1
θ = θA and C∆−1

θ = C (11)

one gets

˙̄x = θĀx̄+∆θ (ϕ(u, x̂)− ϕ(u, x)) (12)

Now, since Ā is Hurwitz, there exist a symmetric positive

definite matrix P and a positive real µ such that

PĀ+ ĀTP ≤ −2µIn (13)

Let us show that V (x̄) = x̄TP x̄ is a Lyapunov function for
system (12). Indeed, one has

V̇ (x̄) = 2θx̄T
PĀx̄+ 2x̄T

P∆θ (ϕ(u, x̂)− ϕ(u, x))

≤ −2µθ‖x̄‖2 + 2x̄T
P∆θ (ϕ(u, x̂)− ϕ(u, x)) (14)
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According to the Lipschitz assumption and the triangular
structure of ϕ, one can show that ([19], [16]):

2x̄T
P∆θ (ϕ(u, x̂)− ϕ(u, x)) ≤ 2L

√
nλM‖x̄‖2 (15)

where L is the Lipschitz constant of ϕ and λM (resp. λm)

is the largest (resp. smallest) eigenvalue of P .

Combining (14) and (15), one gets

V̇ (x̄) ≤ −(2µθ − 2L
√
nλM )‖x̄‖2 (16)

Now, by choosing θ such that 2µθ − 2L
√
nλM > µθ i.e.

θ > θ0
∆
=

2L
√
nλM

µ
(17)

one gets

V (x̄(t)) ≤ e
−

µθ

λM

(t− t0)
V (x̄(t0))

This ends the proof.

III. SYNTHESIS OF THE CONTINUOUS-DISCRETE TIME

OBSERVER

The candidate impulsive continuous-discrete time observer
takes the following form

˙̂x(t) = Ax̂(t) + ϕ(u(t), x̂(t))

−∆−1
θ Ke

−θK1(t−tk)(Cx̂(tk)− y(tk)), k ∈ N(18)

where x̂ =









x̂1

x̂2

...
x̂q









; the matrix K =









K1

K2

...
Kq









, where

the Kis are p × p square matrices, is such that the matrix

Ā defined as in (8) is Hurwitz, the matrix ∆θ is defined in

(9) and θ ≥ 1 is a design parameter.

Under Assumption (A1), our main result can be stated as

follows:

Theorem 1. For every bounded input, there exists θ0 > 0;

for every θ > θ0; there exists τM > 0 and χ(θ) > 0 with

τM < 1
χ(θ) such that for all k ∈ N with tk+1 − tk ≤ τm,

the observation error x̂(t) − x(t) where x and x̂ are the

respective trajectories of systems (1) and (18) exponentially

converges to zero.

Notice that the parameter τM is the upper diameter of the

sampling partition (i.e. the maximum possible value of the

sampling period) under which the exponential convergence

of the observation error is guaranteed.

A. Proof of Theorem 1.

Let x̃(t) = x̂(t) − x(t) be the observation error where t ∈
[tk tk+1[. One has

˙̃x(t) = Ax̃+ ϕ(u, x̂)− ϕ(u, x)− θ∆−1
θ Ke

−K1θ(t−tk)Cx̃(tk)

Consider the following change of variables x̄ = ∆θx̃. Using
the identities (11), on gets

˙̄x(t) = θAx̄+∆θ (ϕ(u, x̂)− ϕ(u, x))− θKe
−K1θ(t−tk)Cx̄(tk)

Let us consider the following candidate quadratic Lyapunov

function

V (x̄) = x̄TP x̄ (19)

where P is defined as in (13).
Proceeding as in the continuous case, one can show that

V̇ (x̄) ≤ −2θµ‖x̄‖2 + 2θx̄T
PKCx̄+ 2L

√
nV1(x̄)

−2θx̄T
PKe

−K1θ(t−tk)Cx̄(tk)

≤ −(2θµ− 2L
√
nλM )‖x̄‖2 + 2θx̄T

PKz (20)

where

z(t)
∆
= Cx̄− e

−K1θ(t−tk)Cx̄(tk)

= x̄
1(t)− e

−K1θ(t−tk)x̄
1(tk) (21)

Notice that, one has z(tk) = 0. Moreover, the time derivative

of z can be expressed as follows

ż(t) = ˙̄x1(t) +K1θe−K1θ(t−tk)x̄1(tk)

= θx̄2 + ϕ1(u, x̂1)− ϕ1(u, x1) (22)

Integrating (22) from tk to t and from the fact that z(tk) = 0,

one gets:

z(t) =

∫ t

tk

(

θx̄2(s) + ϕ1(u, x̂1(s))− ϕ1(u, x1(s))
)

ds (23)

and hence

‖z(t)‖ ≤
∫ t

tk

(

θ‖x̄2(s)‖+ L‖x̄1(s)‖
)

ds

≤ (θ + L)

∫ t

tk

‖x̄(s)‖ds (24)

By choosing θ as in the continuous case, i.e. satisfying (17),
inequality (20) becomes

V̇ (x̄(t)) ≤ −µθ‖x̄‖2 + 2θx̄T (t)PKz(t)

≤ − µθ

λM

V (x̄(t)) + 2θ
√
λM

√

V (x̄(t))‖K‖‖z(t)‖

≤ − µθ

λM

V (x̄(t)) + 2θ

√

λM

λm

‖K‖(L+ θ).

√

V (x̄(t))

∫ t

tk

√

V (x̄(s))ds

or equivalently

V̇ (x̄(t))

2
√

V (x̄(t))
≤ − µθ

2λM

√

V (x̄(t)) + θ

√

λM

λm

‖K‖.

(L+ θ)

∫ t

tk

√

V (x̄(s))ds (25)

Integrating the above inequation from tk to t, one gets:

√

V (x̄(t)) ≤ e
−

µθ

2λM

(t− tk)√
V (x̄(tk))

+θ

√

λM

λm

‖K‖(L+ θ)

∫ t

tk

e
−

µθ

2λM

(t− s)
.

(∫ s

tk

√

V (x̄(ξ))dξ

)

ds (26)
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Now, one has

∫ t

tk

e
−

µθ

2λM

(t− s) ∫ s

tk

√

V (x̄(ξ))dξds (27)

≤
∫ t

tk

√

V (x̄(ξ))dξ

∫ t

tk

e
−

µθ

2λM

(t− s)
ds

≤ e
−

µθ

2λM

(t− tk)



e

µθ

2λM

τM
− 1





µθ

2λM

∫ t

tk

√

V (x̄(ξ))dξ

(28)

Using the bound given by (28) in (26), one gets

√

V (x̄(t)) ≤ e
−

µθ

2λM

(t− tk)√
V (x̄(tk))

+ce
−

µθ

2λM

(t− tk)
∫ t

tk

√

V (x̄(ξ))dξ (29)

where

c =
2λM

√

λM

λm
‖K‖(L + θ)

µ



e

µθ

2λM

τM
− 1



 (30)

Multiplying each side of inequality (29) by e

µθ

2λM

(t− tk)

leads to

e

µθ

2λM

(t− tk)√
V (x̄(t)) ≤

√

V (x̄(tk))

+c

∫ t

tk

√

V (x̄(ξ))dξ (31)

By setting

U(t) = e

µθ

2λM

(t− tk)√
V (x̄(t)) (32)

inequation (31) becomes

U(t) ≤
√

V (x̄(tk)) + c

∫ t

tk

e
− µθ

2λM

(ξ − tk)
U(ξ)dξ

≤
√

V (x̄(tk)) + c

∫ t

tk

U(ξ)dξ (33)

Using Gronwall’s lemma, one gets

U(t) ≤ ec(t−tk)
√

V (x̄(tk)) (34)

and one comes back to
√
V using (32) to obtain

√

V (x̄(t)) ≤ e
−

(

µθ
2λM

−c
)

(t−tk)
√

V (x̄(tk)) (35)

Since x̄ and V (x̄) are continuous with respect to their

arguments, one has
√

V (x̄(tk)) =
√

V (x̄(tk−)) and one

can easily deduce from (35) the following

√

V (x̄(t)) ≤ e
−

(

µθ
2λM

−c
)

(t−t0)
√

V (x̄(t0)) (36)

To end the proof, one has to exhibit the condition under

which the term

(

µθ

2λM

− c

)

, is positive. Using the expres-

sion of the constant c given by (30), such a condition shall
be satisfied if:

2λM

√

λM

λm
‖K‖(L + θ)

µ



e

µθ

2λM

τM
− 1



 <
µθ

2λM

(37)

or equivalently

τM <
2λM

µθ
Ln











1 +

(

µ

2λM

)2

θ

√

λM

λm

‖K‖(L+ θ)











(38)

This ends the proof.

It is important to note that condition (38) may be very
restrictive and it only provides an upper bound for the sam-
pling partition diameter. Nevertheless, many simulation ex-
periments have shown that the proposed continuous-discrete
time observer perform well for sampling periods that are
higher than the theoretical upper bound given by (38).
Remark: If a system ẋ(t) = f(u(t), x(t)), y(tk) = h(x(tk))
is put under form (1) through a diffeomorphism z = Φ(x),
then the equation of the continous-discrete time observer (18)
can be written in the original coordinates in ’x’ as follows:

˙̂x(t) = f(u(t), x̂(t))− θe
−θK1(t−tk)

(

∂Φ

∂x
(x̂(t))

)

−1

∆−1
θ K(h(x̂(tk))− y(tk)) (39)

B. The output prediction form of the observer

Equation (18) puts forward the impulsive form of the
proposed observer. We shall show that this observer can be
split into two subsystems: the structure of the first subsystem
is similar to that of the continuous-time observer (7) where
the unavailable output is replaced by an appropriate predic-
tion provided by the second subsystem. Indeed, consider the
following continuous-time dynamical system:

˙̂x(t) = Ax̂(t) + ϕ(u(t), x̂(t))− θ∆−1
θ K(Cx̂(t)− ω(t)) (40)

where x̂, K are as in (18) and θ ≥ 1 is a design parameter.
The structure of this system is very similar to that of the
continuous time observer (7) with the difference that the term
corresponding to the observation error in (7), (Cx̂(t)− y(t)),
is replaced in (40) by the term (Cx̂(t)− ω(t)) where ω(t)
is a new variable and it corresponds to the prediction of the
outputs. Its dynamics is described by the following Ordinary
Differential Equation (ODE):







For tk ≤ t < tk+1 :
ω̇(t) = x̂2(t) + ϕ1(u(t), x̂1(t))

with ω(tk) = Cx(tk) = y(tk)
(41)

The dynamics of the outputs prediction ω is very similar

to that of the outputs estimate x̂1(t) that can be written

(according to system (40)) as follows:

˙̂x1(t) = x̂2(t) + ϕ1(u(t), x̂1(t))− θK1 (Cx̂(t)− ω(t)) (42)

Recall that contrarily to the ODE (41) that has to be re-

initialized at each sampling instant tk and then resolved for
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t ∈ [tk, tk+1[, equation (42) or more generally system (40)

is initialized only once at t0 and then resolved for all t ≥ t0.

Set

ξ(t) = Cx̂(t)− ω(t) = x̂1(t)− ω(t) (43)

and let us focus on the dynamics of ξ. Indeed, according to

(41) and (42), one has:

ξ̇(t) = −θK1ξ(t) (44)

Integrating (44) from tk to t < tk+1 yields

ξ(t) = e−θK1(t−tk)ξ(tk) (45)

Now, from the fact that ω(tk) = x1(tk), one has

ξ(tk) = x̂
1(tk)− ω(tk)

= x̂
1(tk)− x

1(tk) = x̂
1(tk)− y(tk) (46)

Combining (45) and (46) gives

ξ(t) = e−θK1(t−tk)Cx̃(tk) (47)

Finally, substituting Cx̂(t)−ω(t)
∆
= ξ(t) in equation (40) by

its expression given by (47), one gets:

˙̂x(t) = Ax̂(t) + ϕ(u(t), x̂(t))

−θ∆−1
θ e

−θK1(t−tk)K(Cx̂(tk)− y(tk)) (48)

and we meet observer (18).

IV. EXAMPLE

The performance of the proposed observer shall be il-

lustrated through an observer design involving a typical

bioreactor. We consider a simple microbial culture which

involves a single biomass x1 growing on a single substrate

x2. The bioprocess is supposed to be continuous with a

dilution rate u(t) and an input substrate concentration sin(t).
The specific growth rate is assumed to follow the Contois

model ([20]). The mathematical dynamical model of the

process is constituted by the following two mass balance

equations associated to x1 and x2, respectively:






















ẋ1(t) =
µ⋆x1(t)x2(t)

Kcx1(t) + x2(t)
− u(t)x1(t)

ẋ2(t) =
−kµ⋆x1(t)x2(t)

Kcx1(t) + x2(t)
+ u(t)(sin(t)− x2(t))

y(tk) = x1(tk)
(49)

where x1 and x2 respectively denote the concentration of the

biomass and the substrate, µ⋆ and Kc are the Contois law

parameters while k is a yield coefficient. The measurements

of the biomass concentration are supposed to be available

with at time interval τ and the objective is to estimate

the actual biomass concentration together with that of the

substrate from the available discrete measurements.

System (49) has been considered in [21] where the authors

exhibited a compact set X ∈ R
2 which is positively

invariant under the dynamics of (49). Moreover, it was

shown that the following function Φ : X −→ Φ(X),

x =

(

x1

x2

)

7→ z = Φ(x) =





z1 = x1

z2 =
µ⋆x1x2

KCx1 + x2





is a diffeomorphism from X onto its image. System (49)

can be written in the new coordinates z under form (1). As

a result, an observer proposed in this paper can be used to

achieve the continuous state estimation of the state from

the available discrete measurements. The equations of the

observer in the original equations can be written under form

(39)

Simulations have been carried out by assuming a uniform

sampling partition i.e. tk = kτ . The following values are

used in simulation:

µ⋆ = 1(min−1), KC = 1, k = 1, u = 0.08(min−1)

sin = 0.1(kg m−3)

Notice that the equilibrium point is (x1,0, x2,0) =
(0.092, 0.008). The simulation of the observer has been

carried out using pseudo data measurements issued from the

simulation of system (49) with the point equilibrium as an

initial condition. The initial condition of the observer is such

that the one corresponding to the substrate concentration

is perturbed by 50% from the steady state value. Many

simulations have been carried out and they show that satisfac-

tory estimates are obtained as long as τ ≤ 5.5. Simulation

results are obtained by setting τ = 2. The values of the

design parameters are θ = 2 and ρ = 20, respectively.

Notice that the choice of τ and θ should meet condition of

Theorem 1 which is may be restrictive. However in practice

values τ bigger than that allowed by Theorem 1 may be

used and satisfactory estimates will be obtained. The gain

vector is chosen equal to K =

(

2
1

)

so that both poles

of the matrix Ā are located in −1. The available samples

corresponding to the output x1 are given in figure 1 and

they are compared to the continuous estimate of this output

provided by the observer. Similarly, the unknown trajectory

of x2 is compared to its estimate in figure 2. Notice that

the state estimates quickly converge to the unknown states

confirming thereby the theoretical results.

V. CONCLUSION

A continuous-discrete time observer has been proposed for

a class of systems that are observable for any input. The

structure of this observer is simple since it consists in a

copy of the model with a corrective term that is updated at

every sampling instant. The exponential convergence to zero

of the observation error has been established under certain

conditions on the upper bound of the sampling partition

diameter. This observer has been firstly presented under an

impulsive form before being put under the form of a hybrid

system synthesized using a continuous-time design with an

inter sample output predictor.

The proposed design can be extended to a more general

class of observable systems including system (1). It can
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also be exploited to derive continuous-discrete time adaptive

observers to jointly estimate the state and some unknown

parameters from the adaptive observer proposed in [17].

Another problem that has not be considered in this paper

deals with the case where sampling is accompanied with

long output delays. Such a problem has been addressed in the

context of stabilization (see e.g. [22] and references therein)

but to the authors’ best knowledge, there is no significant

available results for this problem in terms of observation

and the (few) available ones rather deal with continuous-

time measurements [23], [24], [25], [26]. All these issues

are challenging and shall be investigated in further works.
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