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Abstract

States on the Coulomb branch of N = 4 super-Yang-Mills theory are studied from

the point of view of gauged supergravity in five dimensions. These supersymmetric

solutions provide examples of consistent truncation from type IIB supergravity in ten

dimensions. A mass gap for states created by local operators and perfect screening for

external quarks arise in the supergravity approximation. We offer an interpretation of

these surprising features in terms of ensembles of brane distributions.
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1 Introduction

The AdS/CFT correspondence [?, ?, ?] has been primarily studied in the conformal

vacuum of N = 4 super-Yang-Mills theory. However, it also includes other states in

the Hilbert space of the theory; these correspond to certain solutions of the super-

gravity field equations in which the bulk space-time geometry approaches AdS5 near

the boundary, but differs from AdS5 in the interior. Sometimes a simpler picture of

states in the gauge theory emerges from the ten-dimensional geometry. For instance,

two equal clusters of coincident D3-branes separated by a distance ` correspond to the

vacuum state of the gauge theory where the SU(N) gauge symmetry has been broken

to SU(N/2) × SU(N/2) by scalar vacuum expectation values (VEV’s). This configu-

ration has been studied in [?, ?]. More generally, one could consider any distribution

of the N D3-branes in the six transverse dimensions. These configurations preserve

sixteen supersymmetries, as appropriate since the Poincaré supersymmetries of the

gauge theory are maintained but superconformal invariance is broken by the Higgsing.

The space of possible distributions is precisely the moduli space SymN R6 of the gauge

theory. It is known as the Coulomb branch because the gauge bosons which remain

massless mediate long-range Coulomb interactions.

At the origin of moduli space, where all the branes are coincident, the near-horizon

geometry is AdS5 × S5. Each factor has a radius of curvature L given by

L4 =
κ10N

2π5/2
, (1)

where κ10 is the ten-dimensional gravitational constant. If the branes are not coinci-

dent, but the average distance ` between them is much less than L, then the geometry

will still have a near-horizon region which is asymptotically AdS5 × S5. From the

five-dimensional perspective, the deviations from this limiting geometry arise through

non-zero background values for scalars in the supergravity theory. At linear order these

background values are solutions of the free wave-equations for the scalars with regular

behavior near the boundary of AdS5, and so we recover the usual picture of states in

the gauge theory in AdS/CFT. Given a particular vacuum state, specified by a dis-

tribution of branes in ten dimensions or an asymptotically AdS5 geometry with scalar

profiles in five dimensions, it is natural to ask what predictions the correspondence

makes regarding Green’s functions and Wilson loops.

From the point of view of supergravity, the two-center solution is complicated because

infinitely many scalar fields are involved in the five dimensional description. The

present paper is therefore concerned with states on the Coulomb branch that are simple

from the point of view of supergravity: they will involve only the scalars in the massless

N = 8, five-dimensional supergraviton multiplet. More specifically, we will investigate
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geometries involving profiles for the supergravity modes dual to the operators

trX(iXj) =
(
δk
i δ

l
j − 1

6
δijδ

kl
)

trXkXl . (2)

These operators and their dual fields in supergravity transform in the 20′ of SO(6).

All the geometries we consider preserve sixteen supercharges, and this allows us to

reduce the field equations to a first-order system. The geometries naturally separate

into five universality classes, identified according to the asymptotic behavior far from

the boundary of AdS5. There is a privileged member in each class which preserves

SO(n) × SO(6 − n) of the SO(6) local gauge symmetry for n = 1, 2, 3, 4, 5 (as usual

SO(1) is the trivial group). We identify the distribution of D3-branes in ten dimensions

which leads to each of the privileged geometries: in each case the distribution is a

n-dimensional ball. Next, we investigate the behavior of two-point correlators and

Wilson loops. Surprisingly, we find a mass gap in the two-point correlator for n = 2, a

completely discrete spectrum for n = 3, 4, and a spectrum which is unbounded below

for n = 5. Also, Wilson loops exhibit perfect screening for n ≥ 2 for quark-anti-quark

separations larger than the inverse mass gap. We suggest a tentative interpretation of

these results in terms of an average over positions of branes within the distribution.

The present paper summarizes some key results of a study which will be presented in

more detail elsewhere [?]. This study is an outgrowth of the work of [?], in which it was

found that there are soliton solutions of the supergravity theory which preserve N = 1

Poincaré supersymmetry. The scalar fields in these N = 1 flows lie in two-dimensional

submanifolds of the 42-dimensional scalar coset E6(6)/USp(8), of which one field is a

component of the 20′ and the other of the 10⊕10 representation. The n = 2 and n = 4

geometries considered below correspond to special solutions of the flow equations of [?]

in which the 10⊕ 10 component vanishes and supersymmetry is enhanced to N = 4.

2 Supergravity solutions

Maximal N = 8 gauged supergravity in four dimensions is a consistent truncation of

eleven-dimensional supergravity compactified on S7 (see [?] and references therein),

and the same has recently been demonstrated for the maximal gauged supergravity

theory in seven dimensions [?]. There is little doubt that maximal N = 8 gauged

supergravity in five dimensions is likewise a consistent truncation of ten-dimensional

type IIB supergravity on S5, although a formal proof has not been given. Consistent

truncation means that fields of the parent theory and its truncation are related by an

Ansatz such that any solution of the equations of motion of the truncated theory lifts

unambiguously to a solution of the parent theory.

GaugedN = 8 supergravity in five dimensions [?, ?, ?] involves 42 scalars parametriz-

ing the coset E6(6)/USp(8). An important ingredient in consistent truncation argu-
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ments is a map that takes any element of the coset to a particular deformed metric

on S5. The identity element is associated to the round S5. The construction of the

appropriate map will be described in [?]; in terms of the scalar 27-bein, V, of E6(6),

which represents an element of the coset, the correct form was essentially given in [?].

The resulting ten-dimensional metric dŝ2 has the form of a warped product:

dŝ2 = ∆−2/3ds2
M + ds2

K , (3)

where ds2
M is the metric on the five noncompact coordinates and ds2

K is the metric on

the deformed S5. The warp factor ∆ depends on the S5 coordinates, and it is roughly

the local dilation of the volume element of S5. There can be M-dependence in ds2
K

but not vice versa.

The group E6(6) contains SL(6,R)× SL(2,R) as a maximal subgroup. The 20′ of

scalars which we want to consider parametrizes the coset SL(6,R)/SO(6). Choosing

a representative S ∈ SL(6,R) for a specified element of the coset, we can form the

symmetric matrix M = SST . The theory depends only on this combination, and the

SO(6) symmetry acts on it by conjugation. So we may take M to be diagonal:

M = diag{e2β1, e2β2 , e2β3, e2β4 , e2β5 , e2β6} . (4)

The βi sum to zero, and we take the following convenient orthonormal parametrization:



β1

β2

β3

β4

β5

β6


=



1/
√

2 1/
√

2 1/
√

2 0 1/
√

6
1/
√

2 −1/
√

2 −1/
√

2 0 1/
√

6
−1/

√
2 −1/

√
2 1/

√
2 0 1/

√
6

−1/
√

2 1/
√

2 −1/
√

2 0 1/
√

6

0 0 0 1 −
√

2/3

0 0 0 −1 −
√

2/3




α1

α2

α3

α4

α5

 (5)

The relevant part of the N = 8 lagrangian [?], in +−−− signature, is

L = −1

4
R +

5∑
i=1

1

2
(∂αi)

2 − P (6)

where

P = −g
2

32

[
(trM)2 − 2 trM2

]
. (7)

In analogy with the results of [?] it is possible to show that

P =
g2

8

5∑
i=1

(
∂W

∂αi

)2

− g2

3
W 2 where W = −1

4
trM . (8)
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It is also straightforward to show that the tensor Wab which enters the gravitino trans-

formations as

δψµa = Dµεa − g

6
Wabγµε

b (9)

has the form Wab = Wδab. The Killing spinor conditions are δψµa = 0 and δχabc = 0,

where χabc = 0 are the 48 spin 1/2 fields of the theory. It can be shown that sixteen

supercharges are preserved if and only if

dαi

dρ
=
g

2

∂W

∂αi

and
dA

dρ
= −g

3
W , (10)

where ρ is the radial coordinate of a metric of the form

ds2 = e2A(ρ)dx2
µ − dρ2 . (11)

There are no extrema of W except for the global maximum when all the βa are

0.∗ All flows have some βa → ±∞ in finite or infinite ρ. Asymptotically they must

approach a fixed direction: βa → γaµ where γa is a fixed vector, with γ2 = 2 so that µ

is canonically normalized. The sign of γa matters because we take µ → +∞ far from

the boundary of AdS5. It is straightforward to verify that the possible γa are those

listed in Table 1.

For each γa, there is a privileged flow determined by the condition that βa = γaµ

exactly all along the flow, rather than just asymptotically. This condition leaves just

one parameter of freedom to determine the flow: a quantity `2 which controls the size of

µ near the boundary of AdS5 and is proportional to 〈O20′〉, where O20′ is the operator

dual to µ. The symmetry groups preserved by the privileged flows are also listed in

Table 1. Each of them can be lifted unambiguously to a ten-dimensional geometry,

which in each case can be written in the form

ds2 =
1√
H

(
dt2 − dx2

1 − dx2
2 − dx2

3

)
−
√
H

6∑
i=1

dy2
i

H =
∫
|~w|≤`

dnw σ(~w)
L4

|~y − ~w|4 .
(12)

The n-dimensional integral is over a ball of radius ` in n of the six dimensions trans-

verse to the D3-branes. The distribution of branes, σ(~w), depends only on |~w| and is

normalized to 1. The various σn as functions of w = |~w| are listed in Table 1. It is

amusing to note that if one starts with the uniform disk of branes specified by σ2 and

compresses it to a line segment by projecting the position of each brane perpendicu-

larly onto one axis, the result is the distribution σ1. The analogous projection relations

∗There is however an extremum of V at βa = − log 3
12 (−5, 1, 1, 1, 1, 1). This is the known unstable

SO(5) invariant critical point of the theory [?, ?].
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n γa symmetry σ 2pt fnct

1
1√
15

(1, 1, 1, 1, 1,−5) SO(5)
2

π`2

√
`2 − w2 continuum

2
1√
6
(1, 1, 1, 1,−2,−2) SO(4)× SO(2)

1

π`2
θ(`2 − w2) gapped

3
1√
3
(1, 1, 1,−1,−1,−1) SO(3)× SO(3)

1

π2`2
1√

`2 − w2
discrete

4
1√
6
(2, 2,−1,−1,−1,−1) SO(4)× SO(2)

1

π2`2
δ(`2 − w2) discrete

5
1√
15

(5,−1,−1,−1,−1,−1) SO(5) Eqn. (13) discrete

Table 1: A summary of the privileged N = 4 geometries and their properties. It is
helpful to note that the distributions σ vanish by definition for w > `.

obtain between σn and σn−1 for n = 3, 4, 5. The distribution σ5 has the form

σ5(w) =
1

π3`2

(
−1

2

1

(`2 − w2)3/2
θ(`2 − w2) +

1√
`2 − w2

δ(`2 − w2)

)
. (13)

Unlike all the other σn, σ5 is not uniformly positive. This is a deep pathology which

leads us to conclude that this geometry is unphysical. It cannot even be interpreted

in terms of anti-D3-branes: negative “charge” in σ5 indicates an object of negative

tension as well as opposite Ramond-Ramond charge to the D3-brane. The only such

objects in string theory are orientifold planes, but to make up the σ5 in (13) one would

require infinitely many O3-planes, which again seems senseless. It is curious that the

n = 5 case has such pathological ten-dimensional origins: in five dimensions its naked

singularity is of much the same type as for n < 5. However, we will see in section 3

that a five-dimensional linear stability analysis rules out n = 5 but not n < 5.

The distribution σ2 was considered previously in [?] in connection with a zero tem-

perature, zero angular momentum limit of a spinning D3-brane metric with angular

momentum in a single plane perpendicular to the branes. As shown in [?, ?, ?], the

Kaluza-Klein reduction of the spinning brane geometry to five dimensions involves

only the fields of the gauged supergravity multiplet, and in fact it is a non-extremal

R-charged black hole of the type discussed in [?]. Indeed the five-dimensional geom-

etry corresponding to n = 2 can be shown to be precisely the extremal limit of this

black hole geometry where the mass approaches the charge from above: M → Q+ in

appropriate five-dimensional units. Amusingly, the n = 4 geometry is precisely the

M → Q− limit of R-charged black holes whose mass is less than their charge. These
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black holes have naked timelike singularities like the negative mass Schwarzschild so-

lution, and they are usually deemed unphysical. The naked singularity remains in the

M → Q− limit, but it is seen as a benign effect of the Kaluza-Klein reduction: the

ten-dimensional geometry has only a null singular horizon. Geometries with the same

sort of naked singularity in five dimensions have been studied in [?] and also in [?, ?, ?]

in connection with confinement. The well-defined ten-dimensional geometry provides

the first clear-cut evidence that such singular five-dimensional geometries must have

a role in the correspondence. It should be noted that the n = 4 geometry can also

be obtained as a M → (Q/
√

2)+ limit of a doubly-R-charged black hole correspond-

ing to D3-branes with two equal angular momenta in orthogonal planes, and that the

distribution σ4 arose in [?] in this context.

It is in principle straightforward to derive all the information in Table 1 by the

following strategy. First integrate the supersymmetry conditions (10), which for our

five special flows become

dµ

dρ
=
g

2

∂W

∂µ
,

dA

dρ
= −g

3
W , (14)

to obtain

W (µ) = −5

4
e

2√
15

µ − 1

4
e
− 10√

15
µ
, A(µ) =

1

2
log

∣∣∣∣∣∣ e
2√
15

µ

1− e
12√
15

µ

∣∣∣∣∣∣+ log(
`

L
) for n = 1 ,

W (µ) = −e 2√
6
µ − 1

2
e
− 4√

6
µ
, A(µ) =

1

2
log

∣∣∣∣∣∣ e
2√
6
µ

1− e
√

6µ

∣∣∣∣∣∣+ log(
`

L
) for n = 2 ,

W (µ) = −3

4
e

2√
3
µ − 3

4
e
− 2√

3
µ
, A(µ) =

1

2
log

∣∣∣∣∣∣ e
2√
3
µ

1− e
4√
6
µ

∣∣∣∣∣∣+ log(
`

L
) for n = 3 ,

(15)

where log( `
L
) is the integration constant for the first order differential equation. For

n = 4, W (µ) and A(µ) are the same functions as for n = 2 but with µ → −µ; and

for n = 5, the same as for n = 1 but again with µ → −µ. Next map the matrix M

to a deformed S5 metric, ds2
K , in the manner described in [?], and use ds2

K in (3) to

extract the full ten-dimensional metric. Finally, introduce coordinates yi transverse to

the brane so that the metric assumes the form (12). We will give details of the analysis

in [?], and here quote only the results for the ten-dimensional metrics in their warped
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product form:

n = 1 :


dŝ2 =

ζr2

λ3L2

(
dx2

µ −
L4

r4

dr2

λ6

)
− L2λ3

ζ

(
ζ2dθ2 + cos2 θdΩ2

4

)

λ12 = 1 +
`2

r2
, ζ2 = 1 +

`2

r2
cos2 θ , ∆−2/3 =

ζ

λ5

n = 2 :


dŝ2 =

ζr2

L2

(
dx2

µ −
L4

r4

dr2

λ6

)
− L2

ζ

(
ζ2dθ2 + cos2 θdΩ2

3 + λ6 sin2 θdΩ2
1

)

λ6 = 1 +
`2

r2
, ζ2 = 1 +

`2

r2
cos2 θ , ∆−2/3 =

ζ

λ2

(16)

n = 3 :


dŝ2 =

ζr2λ

L2

(
dx2

µ −
L4

r4

dr2

λ6

)
− L2

λζ

(
ζ2dθ2 + cos2 θdΩ2

2 + λ4 sin2 θdΩ̃2
2

)

λ4 = 1 +
`2

r2
, ζ2 = 1 +

`2

r2
cos2 θ , ∆−2/3 =

ζ

λ
.

The metrics for n = 4 and n = 5 can be obtained from the n = 2 and n = 1 cases,

respectively, by replacing `2 → −`2.

3 A two-point function

Usually the simplest two-point function to compute in supergravity is 〈O4(x)O4(0)〉,
where O4 = trF 2 + . . . is the operator which couples to the s-wave dilaton. By s-

wave we mean asymptotically independent of the S5 coordinates. In ten dimensions

the dilaton obeys the free wave equation, ˆφ = 0. Solutions exist which are exactly

independent of the S5 coordinates (not just asymptotically), and these obey the five-

dimensional laplace equation φ = 0 in the near-horizon geometry. If we restored the

1 in the harmonic function H , then this equation would only hold in the near-horizon

region, and only in the limit where

`� L� 1

ω
. (17)

Here ω is the energy of a radially infalling dilaton. The ratio ω`/L2 can be arbitrary in

the limit indicated in (17). The absorption cross-section for the dilaton is a complicated

function of `, L, and ω, and only the leading term in small ωL and small `/L is available

via the AdS/CFT correspondence.

The properties of the five-dimensional wave equation will be most transparent if the

metric is of the form

ds2 = e2A(z)
(
dt2 − dx2

1 − dx2
2 − dx2

3 − dz2
)
. (18)
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Figure 1: The various behaviors for V (z) far from the boundary of AdS5: a) Vanishes;
b) Asymptotes to a finite value; c) Increases without bound; d) Decreases without
bound.

One can show that far from the boundary of AdS5 one has the behavior A → −∞
and dA/dz → (const.)eA(1−6ζ2), where ζ is the largest positive entry in the vector γa.

If ζ ≤ 1/
√

6, the geometry is conformal to the half of R4,1 where z > 0. In general,

curvatures are unbounded as z →∞. If ζ > 1/
√

6, then A→ −∞ at some z = z∗, and

there is a naked timelike singularity there. We have ζ < 1/
√

6 for n = 1, ζ = 1/
√

6 for

n = 2, and ζ > 1/
√

6 for n > 2.

Setting

φ = e−ip·xe−3A(z)/2R(z) , (19)

one finds that the five-dimensional wave-equation φ = 0 reduces to[
−∂2

z + V (z)
]
R = p2R where V (z) =

3

2
A′′(z) +

9

4
A′(z)2 . (20)

As usual we work in +−−−− convention. The potential V (z) exhibits four different

behaviors, which are illustrated in Figure 1. The first is encountered for the n = 1

flow; the second for the n = 2 flow; the third for n = 3; and the fourth for n = 4, 5.

The spectrum of possible values for s = p2 is determined by the form of V : it consists

of discrete points for solutions of (20) which are normalizable and/or a continuum

corresponding to solutions which are almost normalizable in the same sense as plane

waves are. For n = 1 the spectrum is continuous, and it covers the whole positive

real s-axis. For n = 2 the spectrum is also continuous, but it covers only the interval

(`2/L4,∞) on the s-axis: there is a mass gap! For n = 3, 4 the spectrum is discrete

8



and positive, and the lowest eigenvalue for s is on the order `2/L4. For n = 5, the

negative potential near z = z∗ is strong enough that the spectrum has a continuous part

which is unbounded below. This instability allows us to rule out the n = 5 geometry

on purely five-dimensional grounds, without requiring a ten-dimensional calculation of

the brane distribution. It is interesting to ask how generally one can conclude that five-

dimensional geometries that pass linear stability tests lift to physical ten-dimensional

geometries.

The spectrum of (20) determines the analyticity properties of the two-point function

Π4(p
2) =

∫
d4p

(2π)4
eip·x〈O4(x)O4(0)〉 (21)

in the complex s-plane, where again s = p2. The function Π4(s) is analytic except at

the points along the s-axis which are included in the spectrum: points in the discrete

spectrum correspond to poles in Π4(s), and intervals in the continuous spectrum cor-

respond to cuts. In principle, Π4(s) can be determined from solutions to (20) which

approach a constant as z → 0, using the prescription of [?, ?]. In practice one needs

an explicit solution to make much progress, and so far we have results only for n = 2

and n = 4. To compute the two-point function for n = 2, the relevant solutions to the

wave equation φ = 0 is

φ = e−ip·xvaF (a, a; 2 + 2a; v)

where v = 1/λ6 and a = −1

2
+

1

2

√
1− L4p2

`2
(22)

where F (a, b; c; v) is the hypergeometric function. The two-point function is

Π4(s) = − N2

32π2
s2 ψ

(1

2
+

1

2

√
1− L4s

`2

)
, (23)

where ψ(z) = Γ′(z)/Γ(z). The cut across the real s-axis extends over the interval

(`2/L4,∞), and this is indeed the spectrum of (20). The discontinuity across the cut

is related to an absorption cross-section where an s-wave dilaton falls into the branes

from asymptotically flat infinity (far from the D3-branes).

For n = 4, the relevant solution to φ = 0 is†

φ = e−ip·xF (a,−1− a; 1; u)

where u = λ6 and a = −1

2
+

1

2

√
1 +

L4p2

`2
.

(24)

†An equation equivalent to φ = 0 for n = 4 arose in the study of Euclideanized D3-branes with
a single large imaginary angular momentum [?, ?]. This is not a surprise, since the n = 2 and n = 4
metrics are related via ` → i`, and this same replacement is necessary in Wick rotating n = 2 to
Euclidean signature. The discrete “glueball” spectrum computed there (numerically) coincides with
(26), but it appears to have a rather different interpretation in this context: the Higgs VEV’s are
responsible for the energy scale, not confinement. S.S.G. would like to thank M. Cvetic for useful
discussions regarding discrete spectra in similar contexts.
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The two-point function,

Π4(s) = − N2

64π2
s2

ψ(1

2
+

1

2

√
1 +

L4s

`2

)
+ ψ

(1

2
− 1

2

√
1 +

L4s

`2

) , (25)

has poles at s = m2 where

m2 =
4`2

L4
j(j + 1) for j = 1, 2, 3, 4, . . . . (26)

These are precisely the excited state energy levels of a rigid rotator, but we do not see

any obvious interpretation of j as an angular momentum quantum number. The wave

functions for these values of m2 are hypergeometric polynomials.

It is straightforward to extend the analysis to two-point functions of operators cor-

responding to partial waves of the dilaton whose angular momenta are in planes with

θ = 0. We will not go into detail here, but only state that it does not affect the

qualitative behavior of V , and for n = 2 it does not even effect the numerical value of

the gap. Partial waves with angular momentum not perpendicular to the D3-branes

lead in general to non-separable partial differential equations in our variables, but we

expect the same qualitative conclusions to stand.

In weakly coupled gauge theory, the behavior of the two-point function is very differ-

ent. The operator O4 can create two gauge bosons, and the two-point function at zero

’t Hooft coupling can be evaluated from a one-loop graph with two O4 insertions. In

the conformal vacuum of super-Yang-Mills theory, the results of [?] indicate that the

one-loop graph, with only gauge bosons running around the loop, gives exact agreement

with the strong coupling result. The subsequent understanding of this agreement from

the point of view of non-renormalization theorems [?, ?, ?, ?, ?], and the role of lower

spin fields and on-shell ambiguities in O4, are for us side issues, because none of the

non-renormalization theorems is expected to hold away from the origin of the moduli

space. The masses of individual gauge bosons or their superpartners are protected,

and this is because they are BPS excitations; but this does not imply that interactions

cannot correct the one-loop graph.

The distribution of masses of gauge bosons follows from the distribution of branes

through the formula

ρ(m) = α′ VolSn−1(α′m)n−1
∫
dny σ(~y)σ(~y + α′mê) , (27)

where ê is an arbitrary unit vector in n dimensions. In all cases the maximum mass for

a gauge boson is 2`/α′, because the diameter of σ(~y) is 2`. The average gauge boson

mass, 〈mW 〉, is also `/α′ up to a factor of order unity. In (27) we have normalized ρ
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so that
∫
dmρ(m) = 1. The qualitative features follow from the support of ρ, which is

(0, 2`/α′), and the behavior near m = 0, which is

n = 1 : ρ(m) ∼ 1

〈mW 〉
n = 2 : ρ(m) ∼ m

〈mW 〉2

n = 3 : ρ(m) ∼ m2

〈mW 〉3 log
〈mW 〉
m

n = 4 : ρ(m) ∼ m2

〈mW 〉3 .

(28)

In the weakly coupled gauge theory, each massive species contributes a pair-production

threshold to the discontinuity in Π4(s). The total discontinuity has the approximate

form

Disc Π4(s) ≈ N2s2
∫ √

s/2

0
dmρ(m)

√
1− 4m2

s
. (29)

One recovers the conformal limit Disc Π4(s) ∼ N2s2 for s � 〈mW 〉2, with corrections

suppressed by powers of 〈mW 〉2/s. If ρ(m) ∼ mδ/〈mW 〉1+δ for m � 〈mW 〉, then

Disc Π4(s) ∼ √s5+δ
/〈mW 〉1+δ for s� 〈mW 〉2. This is in contrast with the supergravity

results: there the conformal limit is recovered for s � `/L2, which is a much lower

energy since `/L2 ∼ 〈mW 〉/
√
g2

Y MN ; also, in the n = 2 case, one can show that

corrections to Disc Π4(s) ∼ N2s2 are suppressed by powers of e−πL4s/`2 . Also the

gapped spectrum for n = 2 and the discrete spectrum for n = 3, 4 are in contrast with

the expectation based on the continuous distribution of branes. In summary, the two-

point function Π4(s) exhibits nearly conformal power-law behavior down to a much

lower energy scale than the typical gauge boson mass. Below this low scale the physics

is radically different from gauge theory expectations, and very sensitive to n. We will

come back to this conundrum in section 5.

4 Wilson loops

To compute the quark-anti-quark potential from Wilson loops on the supergravity side,

we follow [?, ?]. The asymptotically AdS5 geometry controls the small r behavior:

Vqq̄(r) ∼
√
g2

Y MN/r. The deviations from the Coulomb law become important on a

length scale L2/`, rather than α′/` as in the weakly coupled gauge theory. Beyond this

point, one sees a stronger power law for n = 1, and perfect screening (with a caveat

which we will come to shortly) for n > 1.

Because there is no dilaton profile, the ten-dimensional string metric and Einstein

metric are the same, and “Wilson” loops (more properly ’t Hooft loops) built from

11



θ = 0 θ = π/2

n = 1 Vqq̄ ∼ 1/r2 Vqq̄ ∼ 1/r4

n = 2 perfect screening perfect screening
n = 3 perfect screening perfect screening
n = 4 perfect screening “confinement”
n = 5 perfect screening “confinement”

Table 2: Quark/anti-quark interactions derived from Wilson loops with two different
orientations relative to distribution of branes.

D1-branes will show the same behavior as those built from fundamental strings, up

to the overall coefficient of Vqq̄. Near the boundary of AdS5, each end of the string

can be constrained to lie anywhere on S5. Most of the trajectories do not lie in a

plane, and are difficult to analyze. The simple cases are where the string stays either

in the hyperplane of R6 which contains the brane distribution, or in the orthogonal

hyperplane. The first case is θ = π/2 for n ≤ 3 and θ = 0 for n > 3, in the coordinate

systems used in (16); the second case is θ = 0 for n ≤ 3 and θ = π/2 for n > 3. The

analysis proceeds most straightforwardly with a radial variable u such that ĝttĝuu = −1.

Then the distance between the quark and anti-quark and the potential energy between

them are

r =
∫

C
dx

Vqq̄ =
1

2πα′

∫
C
dx

√√√√f(u) +

(
∂u

∂x

)2

f(u) = −ĝttĝxx ,

(30)

where C is the trajectory of the Wilson loop in the x–u plane. By assumption, u = 0

is the location of the branes (in our cases, it is where curvatures become infinite).

Assuming convex f(u), one can proceed as in Appendix A of [?] to determine the

qualitative behavior of Vqq̄(r). Namely, if f(u) ∼ uγ with 0 < γ < 2, then there

is perfect screening (Vqq̄ = 0) at sufficiently large r; if f(u) ∼ uγ with γ > 2, then

Vqq̄(r) ∼ r2/(2−γ) (note that γ = 4 corresponds to the Coulomb law), and if f(u) is

bounded below, then one obtains an area law Vqq̄(r) ∼ r.

It is straightforward to transform to variables u in each of the ten cases we consider,

or to derive the general result that if ĝtt ∼ rα and ĝrr ∼ rβ, then γ = 4α/(2+α+β). A

subtlety arises when n > 3: in these cases the distribution of branes is at r = ` rather

than r = 0, so one should replace r → r + ` before performing the scaling analysis

around r = 0. The results are quoted in Table 2. For the n = 2, θ = 0 case we find

that perfect screening sets in at r = πL2/2`. We have put “confinement” in quotations
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in Table 2 because it is really a fake: while it is true that a Wilson loop constrained to

lie in the θ = π/2 plane for n > 3 does exhibit an area law, a physical string at large r

would eventually find it energetically favorable to creep up toward the θ = 0 plane and

enjoy perfect screening. There is a spontaneous SO(n) symmetry breaking associated

with the orientation of the string in the (n − 1)-sphere of (16). This is the caveat we

mentioned in the first section.

The weak coupling gauge theory expectation, given a distribution ρ(m) which is cut

off around m = 〈mW 〉 and has the behavior ρ(m) ∼ mδ/〈mW 〉1+δ for m� 〈mW 〉, is

Vqq̄(r) = g2
Y MN

∫
dmρ(m)

e−mr

r
∼


g2

Y MN

r
for r � 1

〈mW 〉

g2
Y MN

〈mW 〉1+δr2+δ
for r � 1

〈mW 〉 .

(31)

As before, 〈mW 〉 = `/α′ up to a factor of order unity. Interestingly, the infrared power

law in the n = 1 case is 1/r2, just as we saw for θ = 0 in supergravity.

5 Discussion

We have constructed and studied geometries which have simple descriptions both in

five-dimensional gauged supergravity as asymptotically AdS5 geometries with profiles

for some scalars in SL(6,R)/SO(6), and in N = 4 super-Yang-Mills theory as vacua on

the Coulomb branch. The ten-dimensional geometry, composed ofN parallel D3-branes

in some continuous distribution in the R6 space perpendicular to their world-volumes,

leaves little doubt of the Coulomb branch interpretation; but the gapped or discrete

spectra in the two-point function and the perfect screening observed in Wilson loops

do not seem compatible with gauge theory expectations. In particular, there just isn’t

a mass gap of size `/L2 in the gauge theory: one can construct color singlet states of

lower mass by putting two light gauge bosons far apart.

Before suggesting a possible resolution, let us re-examine the energy scales involved.

A typical gauge boson has mass 〈mW 〉 = `/α′, so this is the energy scale at which one

would expect deviations from conformality to become important. But the two-point

function and Wilson loop calculations identify the much smaller energy Ec = `/L2 =

〈mW 〉/
√
g2

Y MN as the scale at which conformal invariance is substantially lost and

the interesting dynamics (e.g. screening, gaps, and discrete spectra) takes place. In a

sense this is precisely the discrepancy in normalization of energy scales observed in [?]:

when converting an energy into a value of the radial coordinate U , energies such as

〈mW 〉 pertaining to stretched strings differ by a factor of
√
g2

Y MN from the conversion

appropriate to supergravity probes. In the present context, U can be generalized to

a coordinate system Ui = yi/α
′ on the R6 perpendicular to the branes. This does
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not seem a satisfactory resolution because a mass gap in an absorption calculation is

something that can be compared to masses of brane excitations without any
√
g2

Y MN

ambiguity.

A feature that all our geometries share is that curvatures become large close to

the brane distribution. This raises the possibility that an analog of the Horowitz-

Polchinski correspondence principle [?] is at work. For specificity let us consider only

the n = 2 case. There is a “halo,” of thickness `/
√
g2

Y MN in the flat metric
∑

i dy
2
i ,

surrounding the disk of branes in R6, inside which curvatures are stringy. Outside this

halo supergravity applies, and it keeps track of the strong coupling super-Yang-Mills

dynamics at high energies; inside, or at lower energies, one may expect that a direct

gauge theory description becomes practical. An open string running from the disk to

a test D3-brane on the edge of the halo has a mass on the order `/L2. At this energy

scale, one may argue that the gauge theory is no longer strongly coupled because most

of the degrees of freedom have been integrated out: the large N in the ’t Hooft coupling

g2
Y MN is substantially reduced.

In this picture, a natural expectation would be that the gap, the discrete spectrum,

and perfect screening will all be washed out in the process of matching onto the low-

energy weakly coupled gauge theory description, to be replaced with the power law

behaviors we described at the ends of sections 3 and 4. This indeed is one possible

resolution of our difficulties. It is not a complete resolution because there is still the

region of energies `/L2 � E � `/α′ where supergravity is valid and gives nearly con-

formal predictions at odds with the Higgs mass scale in the gauge theory. If it is taken

seriously, then the results of [?, ?, ?] regarding confinement from similarly singular

supergravity geometries must be regarded as suspect. However it seems possible to

argue, both in our case and in [?, ?, ?], that in an appropriate large N , large g2
Y MN

limit, the wave-function overlap of energy eigenfunctions with the region of stringy or

Planckian curvatures is controllably small. In such a limit the most one would expect

is a slight broadening of the eigen-energy delta functions.

As another possible resolution, we would like to suggest that the gauge theory physics

might not be as featureless as the usual Coulomb branch analysis implies. The super-

gravity solution specifies only a continuous distribution of branes, σ(~w), which can only

be approximated by the N branes at our disposal. It seems more natural to regard

σ(~w) as specifying not a single distribution of branes, but an ensemble of distributions

where the N branes are allowed to move slightly relative to one another. One should

then include an integration over the ensemble in the path integral: rather taking a

specific point in moduli space as the vacuum, one should integrate over the region of

moduli space which is consistent with the distribution σ(~w). If this integration is done

first, its effect is to induce extra interaction terms in the lagrangian. With regard to

color indices, these terms do not have a pure trace structure. Keeping only the lowest
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dimension operators, the schematic form we expect for the lagrangian is

Leff = tr(∂Xi)
2 + tr[Xi, Xj]

2 + λ(O20′)
2 + . . . , (32)

where for simplicity we keep only the scalar fields and work in Euclidean signature.

The operator O20′ is the dimension two trX(iXj) operator whose VEV characterizes the

state. The SO(6) singlet operator tr
∑

iX
2
i is excluded on the grounds that AdS/CFT

predicts a large dimension for it [?, ?]. The size of λ is controlled by how densely the

branes are packed in the distributions approximating σ(~w): the sparser the distribution,

the larger is λ.

The double trace form of (O20′)
2 leads to color-independent mass corrections through

diagrams shown schematically in figure 2.‡ Typically one expects such mass corrections

to be negative because they come from a second order effect in perturbation theory,

but because O20′ is a traceless combination of mass terms for the scalars, at least some

of the mass corrections are positive. Also, bubble graphs built using (O20′)
2 contribute

corrections to the two-point function Π4(s). It is possible that if the mass corrections

or the interactions due to (O20′)
2 are large, they may change the physics enough to

induce the mass gap at `/L2, the discrete spectra, and/or the screening observed in

sections 3 and 4. We emphasize the speculative nature of this scenario. However,

the N = 4 gauge dynamics alone does not seem likely to encompass the variety of

physical behaviors that we have seen, and we take it as a clue that the deviations from

the expected weak coupling behavior become more radical as the branes become more

sparsely distributed.

Acknowledgements

We would like to thank M. Grisaru, E. Martinec, H. Saleur, L. Susskind, E. Witten, and

particularly J. Polchinski for useful discussions and commentary. In communications

with K. Sfetsos, we have learned that he has independently obtained results which have

some overlap with the present work.§

The research of D.Z.F. was supported in part by the NSF under grant number PHY-

97-22072. The research of S.S.G. was supported by the Harvard Society of Fellows,

and also in part by the NSF under grant number PHY-98-02709, and by DOE grant

DE-FGO2-91ER40654. The work of K.P. and N.W. was supported in part by funds

provided by the DOE under grant number DE-FG03-84ER-40168.

‡We thank D. Kabat for a useful discussion regarding the use of a similar mechanism in another
context [?].

§Note added: These results have subsequently appeared in [?].

15



〈O20′〉 =

a
b = ∓ + . . .

1

p2 +m2
ab

=
1

p2 +m2
(0)ab

∓ λ〈O20′〉
(p2 +m2

(0)ab)(p
2 +m2

ab)
+ . . .

m2
ab = m2

(0)ab ± λ〈O20′〉+ . . .

Figure 2: Self-consistent treatment of leading order color-independent corrections to
masses of the scalar Xi. The shaded circle indicates the full dressed propagator, and a
and b are color indices. The operator (O20′)

2 is represented as a dotted line connecting
the two O20′ insertions. The ± sign is chosen according as O20′ includes a positive or
negative mass term for Xi.
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