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Abstract

The problem of establishing correspondence and mea-
suring the similarity of a pair of planar curves arises in
many applications in computer vision and pattern recogni-
tion. This paper presents a new method for comparing pla-
nar curves and for performing matching at sub-sampling
resolution. The analysis of the algorithm as well as its
structural properties are described. The performance of the
new technique applied to the problem of signature verifica-
tion is shown and compared with the performance of the
well-known Dynamic Time Warping algorithm.

1. Introduction and Motivation

One of the research areas that is receiving a lot of at-
tention nowadays is the area of biometric techniques for
personal identification. Signature verification belongs to
this set of biometric techniques. In most systems, signature
verification requires the use of electronic tablets or digitiz-
ers for on-line capturing and optical scanners for off-line
conversion [14]. These interfaces have the drawback that
are bulky (they need to have at least the minimum area re-
quired to sign) and require the presence of dedicated hard-
ware. Cameras, on the other hand, are much smaller and are
becoming ubiquitous in the current computer environment.
We have demonstrated [5] the feasibility of using a visual
interface that can be built with video technology and com-
puter vision techniques in order to capture signatures to be
used for personal identification. This visual interface allows
the user to write on a normal piece of paper with a normal
pen, providing him/her with a more natural and comfort-
able environment to interact with the computer. We have
presented the performance [5, 6, 7] of our visual-based sig-
nature verification system using the well-know Dynamical
Time Warping technique in order to measure the similarity
of the signatures.

Motivated by the application of interest, i.e. signature
verification, in this paper we study the problem of perform-
ing comparison of parameterized curves. There is a number

of different methods proposed in the pattern recognition lit-
erature that could be applied to this problem. Some of the
methods require the extraction of a prototype that summa-
rizes the “mean” behavior of the examples and a measure
of the deviation from this prototype that exists in the train-
ing set. Some other methods compute the similarity of the
curves based on a time-distortion function that best aligns
the curves. A measure of this similarity is later on used for
classification.

Dynamic Time Warping (DTW) is a technique that is
well-suited for the latter type of mentioned methods. DTW
finds for each sample in one of the curves, the correspon-
dent sample in the other curve that is closest to the original
sample using some predefined metric. Given this correspon-
dence, it is possible to calculate a “distance” between the
curves under comparison. DTW has been successfully used
for signature verification [3, 4, 6, 7, 8, 9, 11, 15] in the past.
However, this technique has some disadvantages. In parts
of the curves where the sampling is sparse, there is a lack
of resolution in the matching process due to the fact that the
algorithm matches only discrete samples rather than con-
tinuous curves. One possible solution for this problem is
to oversample the curves using a spline interpolation before
matching them. This oversampling provides the desired res-
olution; however, it increases the computational cost of the
matching proportionally to the square of the oversampling
factor. Furthermore, it is not clear how to choose this over-
sampling factor in a principled way and, depending on the
local constraints imposed on the algorithm, the resultant
distortion function could be non-invertible. In the case of
aligning several examples with a reference one, the calcu-
lation of the correspondence of all the examples with the
reference would allow to obtain a prototype of the training
set. However, due to the non-invertibility of the distortion
function, it is difficult to obtain such prototype.

This paper describes an algorithm based on the general
method of Dynamic Programming [2] that overcomes the
mentioned disadvantages of DTW by using a continuous
formulation. The algorithm would be allowed to find cor-
respondence not only from sample points in one curve to
sample points in the other curve but also from sample points
in one curve to inter-sampling points in the other and vice-



versa (figure 3).
To our knowledge, the only existing previous work is the

one of Serra and Berthod [12, 13]. They worked on match-
ing curves or contours extracted from sequences of images
or from a stereo image pairs. They also proposed a con-
tinuous dynamic programming technique in order to obtain
sub-pixel matching of the contours, and, therefore, better
estimation of the three dimensional structure of the scene.
Our algorithm is related to the one described in [12] but it
is quite different from the one presented in [13]. Both algo-
rithms rely on the use of suitable heuristic approximations
in order to keep the complexity of the algorithm under con-
trol, while, in our case, we are able to derive several proper-
ties that exploit the structure of the problem and provide the
tools to decrease the spatial complexity of the algorithm.

Section 2 describes the algorithm for matching planar
curves. Section 3 presents the experimental setup and the
results of experiments. The final section summarizes the
results and discusses future work.

2. Curve Matching using Continuous Dynamic
Time Warping

2.1. A translation-invariant measure of curve simi-
larity

Given two 2-dimensional curvesC1 = fP1(t); t =
1; � � � ; T1g and C2 = fP2(t); t = 1; � � � ; T2g as in fig-
ure 1(a), and assuming that we have a warping or corre-
spondence map� = [�1(t); �2(t)]

T betweenC1 andC2,
such that a pointP1(�1(t)) 2 C1 corresponds to a point
P2(�2(t)) 2 C2, for t 2 f1; � � � ; Tg. We define the follow-
ing similarity measure:

D(C1; C2) =

TX
t=2

d((P1(�1(t�1)); P2(�2(t�1))); (P1(�1(t)); P2(�2(t))))

=

TX
t=2

k
�����������!
P1(�1(t))P2(�2(t)) �

���������������!
P1(�1(t�1))P2(�2(t�1))k

2

wherek:k2 is the Euclidean norm.
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Figure 1.(a) Two curvesC1 andC2 with the correspondence be-
tween points indicated. (b) Warping plane and warping path.

It easy to see that the above distance will be invariant
with respect to any translation ofC1 andC2.

Given that we have defined the distance between curves,
the actual problem to solve is to find the warping or distor-
tion function� = [�1(t); �2(t)]

T that minimizes this dis-
tance. So, the problem to solve will be the following:

� =

�
�1
�2

�
= argmin

�
D(C1; C2)

This high dimensional minimization has in general com-
binatorial complexity in the number of samples. Dy-
namic Programming allows to perform the full minimiza-
tion as a sequence of 1-dimensional minimizations in the
so-called amulti-stage decision process[2]. Let’s call
D(t � 1) = D(�(t � 1)) the cumulated distance up to
the t � 1 decision stage, i.e., up top thet � 1 match-
ing, andd((P1(�1(t�1)); P2(�2(t�1))); (P1(�1(t)); P2(�2(t))))
the elementary distance added by makingP1(�1(t)) cor-
responds toP2(�2(t)) given thatP1(�1(t�1)) corresponds
toP2(�2(t�1)). The solution of the above problem will be
based in the following recursion:

D(t) = min
�(t�1)

fD(t� 1) +

d((P1(�1(t�1)); P2(�2(t�1))); (P1(�1(t)); P2(�2(t))))g
(1)

The matching process could be visualized on the “warp-
ing plane” of figure 1 where�1(t) will be represented on
the x-axis and�2(t) will be represented on the y-axis. The
correspondence function� defines a path on this plane, pa-
rameterized byt, that encodes in this way the causality of
the matching process. The set of sample points onC1 and
C2 defines a grid on the warping plane. If the warping
path crosses one vertex(i; j) of the grid, it means that point
P1(i) 2 C1 corresponds toP2(j) 2 C2.

2.2. Dynamic Time Warping (DTW)

This algorithm provides the discrete solution to the
above problem. The individual warping functions�1 and
�2 are allowed to take values only onf1; � � � ; T1g and
f1; � � � ; T2g respectively. In other words, the warping path
is only allowed to go through vertices of the grid as shown
in figure 2 (a). The recursion equation 1 has the following
form:

D(i; j) = min
(i0;j0)

fD(i0; j0) + d((i0; j0); (i; j))g (2)

where we have simplified the notation by identifying
P1(�1(t) = i) with the indexi andP2(�2(t) = j) with the
indexj.

From the recursion equation 2, the obtainment of the op-
timal path is straight forward. For each node on the dis-
crete plane(i; j), the minimum cumulated cost is computed
sequentially column-wise or row-wise. The previous node
that provides the minimum cost is stored in memory. Fi-
nally, the last column or row are searched for the node with
minimum cost and then the optimum warping path is found
by backtracking the stored nodes.



(a)

T2

j

i T1

Optimal time alignment 

(b)

T2

j

i T1

Optimal time alignment 

Figure 2. (a) Warping path corresponding to a Dynamic Time
Warping solution of equation 1. (b) Warping path corresponding
to a Continuous Dynamic Time Warping solution of equation 1.

For the time alignment process to be meaningful in terms
of time normalization for different realizations of a signa-
tures, some constraints on the warping functions are neces-
sary. Unconstrained minimization in equation 2 may con-
ceivably result in a near-perfect match between two differ-
ent signatures, thus making the comparison meaningless for
recognition purposes. Typical time warping constraints that
are considered reasonable for time alignment include end-
point constraints, monotonicity conditions, local continu-
ity constraints, global path constraints and slope weighting
(see [10] for a more extensive treatment of the subject).

In the results described in references [5, 6, 7], we en-
forced only a few simple constraints. First, we only allow
monotonic paths to be explored, so if pointi is matched with
pointj, then pointi+1 can only be matched with a point af-
ter pointj. Second, we only allow point(i; j) to be reached
from points(i�1; j), (i�1; j�1) and (i; j�1). Third,
we require that the warping path starts at point(0; 0) and
ends at point(T1; T2). Finally, we constrain the number of
pointsj that can be explored for each pointi in minimizing
equation 2. Similar constraints are used for the continuous
algorithm.

2.3. Continuous Dynamic Time Warping(CDTW)

This algorithm is the continuous counter-part of DTW.
We are still trying to solve the same minimization prob-
lem that gives rise to the recursion equation 1 and we are
still trying to find matches for the sample points ofC1 and
C2. The only difference is that a sample point in one of the
curves is allowed to match a point in-between two samples
in the other curve as shown in figure 3(b). In other words,
the warping path is allowed to go through points between
the vertices of the grid as shown in figure 2 (b). The recur-
sion equation will be the same as 1, with the condition that
if �1(t) takes values onf1; � � � ; T1g, then�2(t) is allowed
to take non-integer values, and vice-versa.
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Figure 3.(a) Matching of the two curves using DTW. (b) Matching
using CDTW, where the crosses show matching points that are not
samples.

The generation of these intermediate matching points as-
sumes a particular interpolation model for the curves. We
assume a linear interpolation model between sample points
since it allows us to derive the equations for the recursion in
closed and simple form.

Figure 4 shows the parameterization of the curves and
the notation that is used in the continuous algorithm. Arc-
length parameterization is the most convenient way to de-
scribe the curves using the linear interpolation model. The
equations for the coordinates of points belonging to the
piece-wise linear segments ofC1 andC2 will be the fol-
lowing:

C1 :

(
x1=x1(i�1) + r1

�x1

�1

y1=y1(i�1) + r1
�y1

�1

C2 :

(
x2=x2(j�1) + r2

�x2

�2

y2=y2(j�1) + r2
�y2

�2

�x1 = x1(i)� x1(i�1) �x2 = x2(j)� x2(j�1)
�y1 = y1(i)� y1(i�1) �y2 = y2(j)� y2(j�1)

�1 =
q

�2
x1

+�2
y1

�2 =
q

�2
x2

+�2
y2
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Figure 4.Curve parameterization used in CDTW.

2.3.1 Analysis of a single step of the algorithm

Due to the recursive nature of the dynamic programming
method, a single step of the algorithm is the basic building
block to be studied. This single step corresponds to a seg-
ment joining two sides of one of the square boxes of the
grid imposed onto the warping plane by the samples of the
curves, as shown in fig. 2(b). Figure 5 shows the four pos-
sible matching cases and the correspondent segments in the
warping plane.

Using the cosine law, the elementary distance
d((P1(�1(t� 1)); P2(�2(t� 1))); (P1(�1(t)); P2(�2(t))))
is calculated as follows:

c1: d(r1; r2) = r22 + (�1�r1)
2 � 2r2(�1�r1) cos �

c2: d(r1; r2) = r21 + (�2�r2)
2 � 2r1(�2�r2) cos �

c3: d(r01; r1) = �2
2 + (r1�r01)

2 � 2�2(r1�r01) cos �
c4: d(r02; r2) = �2

1 + (r2�r02)
2 � 2�1(r2�r02) cos �

(3)

wherer01 and r02 are the corresponding values ofr1 and
r2 obtained in the previous iteration andcos � is the co-
sine of the angle defined by the vectors

���������!
P1(i�1)P1(i) and

���������!
P2(j�1)P2(j). We see that case 2 is the dual of case 1, and
case 3 is the dual of case 4. The use of a linear interpola-
tion in the curves gives rise to elementary distances that are
quadratic in the variables of interestr1 or r2. Assuming that
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Figure 5.Different matching cases that are possible at each step of
the algorithm.

the value of the one of this variables is given, the minimiza-
tion of this elementary distance is quite simple and results
in a quadratic function of this fixed variable. The recursion
equation 1 takes the following form for case 1:

D(i; r2) = min
r1

fD(r1; j � 1) + d(r1; r2)g

where theD(i; r2) is now a function of a continuous vari-
abler2 and the minimization is performed w.r.t. a contin-
uous variabler1. We have simplified the notation as in the
case of DTW, by identifyingP1(�1(t) = i) with the index
i, P1(�1(t� 1)) with r1, P2(�2(t) = j � 1) with the index
j � 1, andP2(�2(t)) with r2. We see that, at each step in
the algorithm, we have a function of a continuous variable
instead of a single number, as we had in DTW. This con-
tinuous function will propagate from one step to the other
via the recursion equation. Given the simple expression for
the elementary distances shown in equation 3, it is easy to
show using mathematical induction that the cumulated dis-
tance functionD(:; :) is a quadratic function of the contin-
uous variable of interest. In fact, the cumulated distance
is a quadratic function for the first step of the induction as
shown in equation 3. Assuming that we are working in case
1 (the study of the other ones is very similar) and that the
cumulated distance at stepk is a quadratic function ofr1,
then the cumulated distance at stepk+1 is computed as
follows:

D(i; r2) = min
r1

f(A1r
2
1 + 2B1r1 + C1) + r22 +

(�1�r1)
2 � 2r2(�1�r1) cos �g = A2r

2
2+2B2r2+C2

A2 = A1+1�cos
2 �

A1+1
B2 = � cos �(A1�1+B1)

A1+1

C2 = C1 +�2
1 �

(�1�B1)
2

A1+1
r2 = �r1 cos �+(�1�B1)

A1+1

(4)

The above equations show how the cumulated distance
function propagates through the warping plane. At each
step, there is a linear relationship between the correspond-
ing curvilinear coordinatesr1 andr2 that makes the back-
propagation of the optimal path through the warping plane
very simple. It can be shown that the value of coefficientA
has the property that0 � A � 1.

Consider the square box corresponding to point(i; j) in
the grid. Assume the sides of the box corresponding to
(i; r2) or (r1; j) to be the “output” sides and the remain-
ing two sides to be the “input” sides of the box (this as-
sumption makes sense since we explore the warping from
left to right and from bottom to top). We observe that for
each square box in the grid, there are 4 different cumulated
distance functions, each of them corresponding to each of
the 4 possible cases. Then, for each output side we have
two cumulated distance functions corresponding to each of
the input sides. The result is that each step of the algo-
rithm doublesthe number of distances functions associated
to each side of the square box.

2.3.2 Complexity of the algorithm

In the previous section, we observe that there is a combina-
torial explosion in the number of cumulated distance func-
tions to be stored at each step of the algorithm and, there-
fore, the spatial complexity of the algorithm grows com-
binatorially. Serra and Berthod [12, 13] proposed the use
of heuristic constraints in order to keep the complexity un-
der control. They also divided the range of excursion of
r1;2 into a set of intervals, each of them corresponding to a
particular distance function that is the minimum of all dis-
tance functions for this interval. This division of the range
of r1;2 in intervals is questionable because it is based on
the assumption that the quadratic functions will keep their
intersection points in correspondence as the algorithm pro-
ceeds. In fig. 6 we show a counter-example to this assump-
tion. What goes wrong is that each distance function has
different propagation equations as shown in equation 4 and,
therefore, the intersection point of the two parabolas at one
iteration does not correspond to the intersection point of the
two parabolas after propagation.
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Figure 6.Propagation of two quadratic distance functions through
2 iterations of the algorithm. We observe that the position of the
intersection of the parabolas at the initial condition corresponds to
two different points after propagating the parabolas.

From figure 6, we observe that the relative position and
shapes of the parabolas change from one iteration to the
next. Therefore, the properties that allow us to discard a par-
ticular parabola in comparison with another parabola, are



the ones that state a relationship between the parabolas that
is preserved through the iterations.

Given two parabolas, we study their relationship by look-
ing at their difference function and the propagation of this
function through the computation. The following properties
are stated considering case 1 and similar properties could
be derived for the other cases. LetDb1(r1) = Ab1r

2
1 +

2Bb1r1 + Cb1 andDb2(r1) = Ab2r
2
1 + 2Bb2r1 + Cb2 be

two cumulate distance functions at a certain iteration of the
algorithm. Let’s callDa1(r2) = Aa1r

2
2+2Ba1r2+Ca1 and

Da2(r2) = Aa2r
2
2 + 2Ba2r2 + Ca2 the correspondent dis-

tance functions after propagation. The subindicesb anda
stands forbeforeandafterpropagation of the distance func-
tions. Let’s callfb(r1) = Db1(r1) �Db2(r1) = �Abr

2
1 +

2�Bbr1 + �Cb and fa(r2) = Da1(r2) � Da2(r2) =
�Aar

2
2 + 2�Bar2 + �Ca the corresponding difference

functions, then the following properties hold:
Property:

�Aa = �Ab cos
2 �

(1+Ab1
)(1+Ab2

)

(�Ba
2 ��Aa�Ca) = (�Bb

2
��Ab�Cb) cos

2 �

(1+Ab1
)(1+Ab2

)

The proof is conceptually simple and is omitted for lack of
space.
Corollaries:

1 If two parabolas intersect at a certain iteration in the
algorithm, then they will intersect at all further itera-
tions.

2 If two parabolas do not intersect at a certain iteration in
the algorithm, then they will not intersect at any further
iterations.

3 If Db1(r1) > Db2(r1) for all r1, thenDa1(r2) >
Da2(r2) for all r2.

The proof of corollaries 1 and 2 follows directly from the
second part of the above property and from the observation
thatcos2 � � 1 and0 � A � 1 for all cases. The proof of
corollary 3 follows by the fact that�A keeps its sign after
propagation as seen from first part of the above property, so
the parabolafb(r1) will have its opening pointing upwards
and will not intersect the horizontal axis after the propaga-
tion.

The above properties allow us to compare all the
quadratic distance functions pairwise and discard the ones
that are “minimized” by another parabola for all the real
line. This properties provides the tool to break down the
combinatorial explosion of the spatial complexity of the al-
gorithm; however, the computational cost is increased be-
cause we need to performo(N � (N � 1)=2) comparisons
at each step in the algorithm, whereN is the number of
parabolic functions that need to be compared with each
other. Whether there exists a theoretical bound on the av-
erage of the maximum number of parabolic functions that
need to be stored for a given set of curves is still an open
research area. However, we found experimentally that this
bound exists and it is a function of the number of samples

in each of the curves and the constraints imposed on the
warping plane.

3. Experiments

We evaluate the performance of our continuous dynamic
time warping algorithm (CDTW) in comparison with DTW
with and without oversampling. We use synthetic data as
well as real signatures in order to perform the comparison.
The system used to acquire the signatures have been de-
scribed in references [5, 6, 7]. Figure 7 shows a block dia-
gram of the system and the experimental setup.

(a)

Detector
Writing end

FilterFilter

Detector
Writing end

Tracker
Pen TipPreprocessing
Tracker
Pen TipPreprocessing

Camera

Signature
Verification

(b)

            

Figure 7.(a) Block Diagram of the signature acquisition system.
The camera feeds a sequence of images to the preprocessing stage.
This block initializes the algorithm and selects the template to per-
form the tracking of the pen tip. The tip tracker obtains the position
of the pen tip in each image of the sequence. The filter predicts the
position of the pen tip in the next image. Finally, the last block of
our system performs signature verification. (b) Experimental setup.
The camera is looking at a the pen tip while the user is signing on
a piece of paper.

3.1. Experiment 1: Comparison of CDTW with
DTW with and without oversampling for the
case of synthetic data

Figure 8 shows the matching results for the three al-
gorithms under comparison. The first plot corresponds to
DTW without oversampling, the second plot corresponds
to DTW with oversampling of the more coarsely sampled
curve with a factor such that both curves have similar num-
ber of samples, the third plot corresponds to CDTW, and
the fourth plot shows the warping functions corresponding
to each of the algorithms. We observe that the the warping
path corresponding to the continuous case is smoother than
the warping path obtained with DTW. The case of DTW
with oversampling provides a reasonable result in terms of
matching, even though the correspondence map is still not
invertible. This problem appears because the re-sampling
of the curve is uniform and independent of the position of
the samples of the other curve, therefore, many new sam-
ples may be allocated in a region in which the other curve
has few samples. The continuous algorithm instead, by its
very nature, adapts to the number of samples in each of the
curves, providing in this way a better matching between the
two curves.
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Figure 8.The first 3 plots shows the results of DTW, DTW with
re-sampling and CDTW applied to a synthetic pair of curves. The
last plot display the warping plane and the corresponding warping
paths for each of the algorithms.

3.2. Experiment 2: Comparison of the algorithm
with DTW for the case of signatures

Figure 9 shows the matching results using DTW and
CDTW for two signatures in the data set. Both algorithms
seem to perform in a similar way, although they have a big
difference in the warping path. The path corresponding to
DTW saturates at some point due to the discrete nature of
the matching while the continuous algorithm manages to
give a reasonably smoother result. We also plot the cor-
responding path obtained for the case in which the perform
DTW after having re-sampled the two signatures by a factor
of 5, this last warping path is much more similar to the lin-
ear warping than the other two as expected when increasing
the number of samples.
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Two signatures of subject s049

1 60 120 180
1

40

80

120

φ
x

φ y

Warping paths

DTW
DTW with oversamp.
Continuos matching

Figure 9.Signature matching using DTW and CDTW. The first two
plots show the correspondence provided by the matching. The third
plot shows the signatures and the fourth plot shows the correspond-
ing warping paths and the warping path for DTW applied on a
re-sampled version of the signatures.

3.3. Experiment 3: Experimental evaluation of the
computational cost

In this experiment we evaluated the computational per-
formance of CDTW in comparison with DTW with and
without oversampling. We took a couple of examples from
each of the subjects in the database and we proceed to align
them with each of the three methods, for four different val-
ues of the maximum deviation from linear warping in the
warping plane. For the oversampling case, we re-sampled
the signatures by a factor of five. We measure the time
required to for each algorithm to compute as well as the
maximum storage required for CDTW. Figure 10 shows the
result of this experiment. The first column corresponds to
computational time measurements of the three algorithms
and the second column corresponds to maximum storage of
CDTW.
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Figure 10.The first column displays the results of the time required
to perform the computation for each of the three algorithms and
for each of the four cases of the warping plane constraint. The first
plot shows the the value of the computation time for each of the
subjects. The lower curves in the plot corresponds to DTW without
oversampling, the middle curves corresponds to DTW with over-
sampling and the upper curves corresponds to CDTW. The different
curves within each group represent the different warping plane con-
straints. The second plot in the first column shows the same time
computation as a function of the length of each of the signatures
used in the alignment. We observe that the CDTW is three orders
of magnitude slower than DTW, but, if oversampling of the signa-
tures is used, the computational time becomes similar. We observe
that the time required by the three algorithms has a roughly linear
relationship with the length of the sequences, in semilogarithmic
space, all of them with similar slopes. However, for CDTW, this
linear relationship depends on the warping constraint used, i.e., it
depends on the number of nodes needed to be visited in the warping
plane. The second column shows the maximum storage required
by CDTW for each of the subjects and as a function the signature
length. We observe that the average maximum storage required by
the algorithm is roughly 200 distance functions. We also see that
the maximum storage does not diverges as a function of neither the
signature length nor the warping constraints, showing in this way
that the property that we described previously is powerful enough
to keep the spatial complexity of the algorithm bounded.



3.4. Experiment 4: Application to signature verifi-
cation

We used for this experiment the same data set that we
used in reference [7]. It consists of signatures from 56 sub-
jects, 18 of them were women and 4 were left handed. Each
of them was asked to provide 25 signatures, 10 of them to be
used as the training set and the other 15 to be used as the test
set. The data was collected in three sessions that took place
in different days in order to get a sample of the variabil-
ity of the subject’s signatures while avoiding the distortion
produced by the boredom of the repetitive task of signing.
We also asked a few of the signers to provide forgeries for
each of the subjects in the database, as the ones shown in
figure 11.

There are two different errors that characterize the per-
formance of the algorithm. The Type I error (or False Re-
jection Rate (FRR)), measures the number of true signa-
tures classified as forgeries as a function of the classifica-
tion threshold. The Type II error (or False Acceptance Rate
(FAR)), evaluates the number of false signatures classified
as real ones as a function of the classification threshold. The
test set allows us to compute the FRR. We computed the
FAR in two different ways. First, we used all the signatures
from the other subjects asrandom forgeries, and second, we
used the acquired forgeries.

During training the system mustlearn a representation
of the training set that will yield minimum generalization
error. The algorithm provides the optimal alignment of two
signatures, so we perform pairwise alignment between all
elements in the training set. The signature that yields min-
imum alignment cost with all the remaining ones is chosen
to perform the final matching. All signatures are placed in
correspondence with this particular one. The prototype that
represents the training set is computed as the mean of the
aligned signatures. The individual costs of aligning each of
the signatures in the training set with this reference signa-
ture are collected in order to estimate the statistics of the
alignment process. This statistics is subsequently used for
classification. In figure 11 we show several examples of
signatures collected for our database, their corresponding
training reference and one of the forgeries provided by other
subject. We observe that the prototype obtained with DTW
is much noisier than the one obtained with CDTW, due to
the fact that DTW computes the prototype only with the
given discrete samples while CDTW calculates the refer-
ence signature with inter-sample points.

As we stated before, we used a test set of 15 signatures
for computing the FRR and all the other signatures from
other subjects or the forgeries, for computing the FAR, both
of them as a function of the classification threshold. Clearly,
we can trade off one type of error for the other type of er-
ror. As an extreme example, if we accept every signature,
we will have a 0% of FRR and a 100% of FAR, and if we
reject every signature,we will have a 100% of FRR and a
0% of FAR. The curve of FAR as a function of FRR, us-
ing the classification threshold as a parameter, is called the

Signature from set s025 Signature from set s027 Signature from set s037

DTW prototype for set s025 DTW prototype for set s027 DTW prototype for set s037

CDTW prototype for set s025 CDTW prototype for set s027 CDTW prototype for set s037

Forgery in set s025 Forgery in set s027 Forgery in set s037

Figure 11.Several examples of signatures in our database. On the
first row we display signatures captured with the visual tracker, on
the second row and third row, we show the corresponding reference
signatures of the training set obtained with DTW and CDTW, and
on the fourth row we display the forgeries provided by the subjects.

error trade-off curve. It provides the behavior of the algo-
rithm for any operation regime and it is the best descriptor
of the performance of the algorithm. In practice, this curve
is often characterized by theequal error rate, i.e., the er-
ror rate at which the percentage of false accepts equal the
percentage of false rejects. This equal error rate provides
an estimate of the statistical performance of the algorithm,
i.e., it provides an estimate of its generalization error. We
calculate the value of the equal error rate by intersecting the
FAR and FRR curves that we computed, considering them
to be piecewise linear.

One common problem of many on-line system for sig-
nature verification is the lack of examples needed to build a
reliable model for a signature and to asses the performance
of the algorithm. This problem is inherent to the application
since it is not feasible to ask a subject for all the examples
of his/her signature required to perform these two tasks re-
liably. Thus, we have to build a model of the signature that
will perform well in practice and we have to infer the gener-
alization error of the algorithm, all with very few examples.
We could increase the number of examples in both the train-
ing and test set by usingDuplicate Examplesas described
by Y. Abu-Mostafa [1] if we know that the model that we
are building should be invariant with respect to some trans-
formation of the examples. In our particular case, one pos-
sible example of this transformation is time origin transla-
tion since our system should be insensitive to the particular
instant of time in which we started acquiring the signature.
Another possible transformation is given by affine deforma-
tion of the signatures, provided that the acceptable range of
the parameters of this affine deformation could be estimated



from the examples. We used both transformations in order
to produce duplicate examples for this experiment.

Figure 12 shows the error trade-off curves for CDTW
and DTW, calculated using our database of signatures. We
only plot a section of the curve that is most informative. We
observe that the performance of CDTW is about 0.1% better
than the performance of DTW for the case of random forg-
eries and about 0.3% worse than the performance of DTW
for the case of intentional forgeries. We see that the per-
formance of both methods is very similar, with CDTW not
showing a definite improvement over DTW. Nevertheless,
this results is an initial ground for the development of better
similarity measures in order to decrease the classification
error.
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Figure 12.Error trade-off curves for CDTW and DTW working on
our database of signatures. The first plot was obtained using ran-
dom forgeries and the second plot was obtained using intentional
forgeries.

4. Conclusions and Further Work

We presented a novel algorithm for establishing the cor-
respondence and measuring the similarity of pairs of pla-
nar curves. The algorithm belongs to the general class of
dynamic programming algorithms. We derived structural
properties that allows to keep the spatial complexity of the
algorithm bounded, as shown in the experimental results,
without the need for heuristic approximations as the ones
described in previously proposed algorithms for continuous
matching.

We have compared the performance of CDTW with the
performance of DTW on both synthetic and real data. DTW
was used with and without oversampling of the curves in or-
der to provide better matching spatial resolution. In terms
of computational time required to perform the matching,
CDTW is three orders of magnitude slower than plain DTW,
being equivalent for DTW with an oversampling factor of
25 (approximately).

We have compared the performance of CDTW with
the performance of DTW applied to signature verification,
showing that both algorithms achieve similar results. We
have shown that CDTW provides a less noiser way of com-
puting the reference from the training set, so, in principle,
the performance of CDTW could be improved by using a
better set of parameters for classification, that take advan-
tage of the matching at subsample resolution provided by
the algorithm. One unsolved problem is how to make use
of this alignment in order to extract a better prototype from

the training set as well as a better characterization of the
variability within the training set. Another problem for fur-
ther work is the development of a better similarity measure
between signatures given the correspondence obtained with
CDTW.
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