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Abstract: One’s internal state is mainly communicated through nonverbal cues, such as facial
expressions, gestures and tone of voice, which in turn shape the corresponding emotional state.
Hence, emotions can be effectively used, in the long term, to form an opinion of an individual’s
overall personality. The latter can be capitalized on in many human–robot interaction (HRI) scenarios,
such as in the case of an assisted-living robotic platform, where a human’s mood may entail the
adaptation of a robot’s actions. To that end, we introduce a novel approach that gradually maps and
learns the personality of a human, by conceiving and tracking the individual’s emotional variations
throughout their interaction. The proposed system extracts the facial landmarks of the subject,
which are used to train a suitably designed deep recurrent neural network architecture. The above
architecture is responsible for estimating the two continuous coefficients of emotion, i.e., arousal
and valence, following the broadly known Russell’s model. Finally, a user-friendly dashboard is
created, presenting both the momentary and the long-term fluctuations of a subject’s emotional state.
Therefore, we propose a handy tool for HRI scenarios, where robot’s activity adaptation is needed for
enhanced interaction performance and safety.

Keywords: human-centered computing; affective computing; continuous emotion recognition;
behavior modeling

1. Introduction

Nonverbal cues, such as facial expressions, body language and voice tone, play prin-
cipal roles in humans’ communication, transmitting signals of the individual’s implicit
intentions that cannot be expressed through spoken language. The above cues compose
the emotional state which can be used to convey one’s internal state throughout an inter-
action. Therefore, current research is investigating the development of empathetic robots
capable of perceiving emotions as an attempt to enhance the overall performance of several
human–robot interaction (HRI) scenarios [1,2]. The present study is anticipated to benefit
the development of competent social robotic platforms [3,4] and enhance their applications
in several recent real-world scenarios [5,6]. All the above render affective computing an
emerging research field, which aims to address a wide set of challenges that play key roles
in the development of human-like intelligent systems [7].

Based on the existing literature in the fields of psychology and neuroscience, one’s emo-
tional state can be described following two distinct representational approaches, namely
the categorical and the dimensional approaches. The first approach, introduced by Ekman,
suggests the following six universal basic emotions: happiness, sadness, fear, anger, surprise
and disgust [8]. Following Ekman’s model, several alternative works were developed for
categorical emotion estimation, either by dropping the emotional classes of surprise and dis-
gust or by introducing some secondary ones, such as hope and neutral state [9]. Since the vast
majority of emotion recognition systems have adopted the Ekman’s categorical approach,
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most works resort to classification schemes [10]. In spite of the promising performances
achieved by the aforementioned methods, this approach lacks in representation capacity
since the elicited information is displayed in the discrete space. The above fact, coupled
with the limited number of emotional classes that can be efficiently estimated, further
restricts the capacity of such systems, as also denoted by the corresponding datasets [11].
To that end, the adoption of a continuous representation approach is of the utmost impor-
tance. Such an approach is based on the two-dimensional emotion model proposed by
Russel and Barrett [12], suggesting arousal and valence as the two distinct coefficients of
human emotion. Thus, the estimation of two continuous variables is required, reducing
the emotion recognition problem to a regression problem. The two estimated variables of
arousal and valence lie within the range of [0, 1].

Inspired by the categorical and the dimensional emotional representations, researchers
resort to respective recognition systems with the objective of perceiving the emotional
state of humans. This field of affective computing exploits different modalities that trans-
mit information regarding the subject’s internal state. Hence, contemporary recognition
systems utilize facial data from RGB images [13]; three-dimensional data [14]; facial land-
marks [15,16]; audio features from speech [17]; physiological signals [18], such as elec-
tromyography, pulse rate, galvanic skin response and respiration [19]; sentiment analysis
from text [20]; and multimodal approaches [21]. Each of the above modalities can be effi-
ciently processed by a wide variety of machine learning techniques to produce the desired
recognition rate. To that end, a genetic algorithm is able to choose the optimal subset of the
geometric and kinematic features extracted from a Kinect sensor for advanced multimodal
emotion recognition [22]. Moreover, particle swarm optimization can achieve competitive
performance in several state-of-the-art speech emotion recognition challenges [23]. More
specifically, in facial emotion recognition, the utilization of support vector machines has
been proven to be particularly beneficial [24].

Taking into consideration recent methods in computer science, the reader can easily
notice the considerable advancement of deep neural networks (DNNs) in the field, thanks
to their advanced feature learning capabilities [25]. Their ability to learn robust high-level
features renders their use preferable over other conventional methods in several tasks [26].
Similarly, their rapid advent is noticeable in the field of emotion recognition for both repre-
sentation models [27,28]. More specifically, a previous work of ours proposed an online
audio–visual emotion classification system which consisted of two convolutional neural
network (CNN) architectures and long short-term memory (LSTM) layers [29] that conceive
the temporal characteristics of emotion [30]. Focusing on a dimensional emotion estimation
scheme, conformable CNN unimodal architectures have been combined with LSTM layers,
leading to a particularly efficient solution [10]. Consequently, the development of even
more sophisticated neural architectures and the introduction of reinforcement learning in
the field further enhanced the recognition capacities of DNN-based systems [31,32].

However, the task of emotion recognition, which is confronted by all the above works,
focuses on the estimation of a human’s emotional state during a moment or a very short
period of time. A momentary or even a short-term estimation of one’s emotional state is
not able to capture the actual state of that person. The above constitutes an open topic in
ongoing research into user profiling and authentication, which aims to create a pattern
using behavioral biometric techniques [33]. To understand that, the reader can imagine the
difference that the state of anger can convey in the case of an introverted and an extroverted
person. The above ambiguity inspired us to investigate the development of a behavioral
modeling tool based on the experience gained throughout an interaction with a subject.
Thus, previous knowledge of emotional variation can be used to normalize the momentary
emotional state with a subject-specific behavioral pattern. Such an attempt is followed by a
set of difficulties owing to the spontaneous nature of HRI scenarios. Firstly, physiological
signals are difficult to exploit in natural HRI scenarios. Moreover, the audio modality
cannot be selected since the interaction usually consists of nonverbal parts that also have to
be processed by the system. In terms of facial data, the exploitation of facial landmarks
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is highly desirable as they provide a more robust representation of the human face when
the subject moves, a fact that is commonly observed during a natural interaction. In a
previous work of ours, we discussed the benefits of understanding the long-term behavior
of a subject throughout an interaction and proceeded with a first attempt of providing such
an estimation [34]. The introduced system performed the following: (a) extracted the facial
landmarks from a subject; (b) used a DNN architecture to predict the values of arousal and
valence; (c) built a long-term overview of their behavior according to emotional variations
during the interaction; (d) displayed both the momentary and the long-term estimated
values on the two-dimensional unit circle through a user-friendly dashboard. The present
paper extends the above work, providing the following qualities:

• Enhanced continuous emotion recognition performance, employing recurrent neural
network (RNN) architectures instead of the DNN ones;

• Competitive recognition results compared with the state-of-the-art approaches in the
field, following the more strict and realistic leave-one-speakers-group-out (LOSGO)
evaluation protocol [35];

• Implementation of an efficient and user-friendly human behavior modeling tool based
on the experience gained through interaction.

The remainder of the paper comprises the following structure. Section 2 lists the
utilized materials and methods of the system, namely the dataset adopted for the experi-
mental studies and the evaluation of the system, as well as the modules that constitute the
final total system. In Section 3, we display the ablation and experimental studies conducted
to conclude an efficient emotion recognition system and the validation procedure followed
to assess its final performance. Section 4 provides an extensive discussion regarding the
application of the proposed system and its importance in HRI and assisted living environ-
ments, while Section 5 concludes with a summary of the paper, and Section 6 discusses
interesting subjects for future work.

2. Materials and Methods

This section describes the database used to train the deep learning models. In addition,
we discuss the tools that constitute the overall emotion estimation system.

2.1. Database

During our experimentation, we employed the Remote Collaborative and Affective
(RECOLA) database [36], which includes a total of 9.5 h multimodal recordings from
46 French participants. The duration of each recording was five minutes with the subjects
attempting to perform a collaboration task in dyads. The annotation of all recordings was
performed by 3 female and 3 male French-speaking annotators through the Annotating
Emotions (ANNEMO) tool. The database includes many modalities, i.e., audio, video,
electro-dermal activity (EDA) and electro-cardiogram (ECG) modalities. The provided
labels include the arousal and valence values in the continuous space regarding the spon-
taneous emotions expressed during the interaction. In our work, we used the 27 subjects
provided by the open-source database. We followed the standard evaluation protocol pro-
posed in the Audio/Visual Emotion Challenge and Workshop (AVEC), 2016 [37], splitting
the dataset into three parts of nine subjects each, i.e., training, evaluation and testing set.

2.2. Face Detection Tool

Aiming to aid the facial landmarks extractor, it is highly important to crop the input
RGB image before, so as to remove the noisy background and pass only the facial image
to the extractor. The above step was necessary to avoid several errors in the feature
extraction process, such as the one illustrated in Figure 1a, where the noisy background
of the video frame leads to wrong keypoint extraction. Such an error can be efficiently
removed, by previously detecting and cropping the face of the participant before passing
it to the landmark extractor. For this purpose, the well-established feature-based cascade
detector [38], employed in our previous work, detects and crops facial images from the
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captured video frames. The selection of the specific detector was based on both its simple
architecture and its ability to sustain the real-time operation. The only difference between
the introduced detection tool is a resize performed to each facial image after the extraction,
so as to keep constant eyes distance at 55 pixels [30,39].

(a) Error 1 (b) Error 2

Figure 1. Common errors occurred during facial landmarks extraction, due to (a) noisy regions within
the input image and (b) the attached microphone.

2.3. Facial Landmark Extraction Tool

The facial images, produced from the output of the tool described in Section 2.2, were
fed into a facial landmark extraction tool. Following our previous approach, the tool’s
implementation was based on the dlib library, proposed by Kazemi and Sullivan [40].
The algorithm extracts landmarks from the mouth, nose and jaw, as well as the two
eyebrows and eyes, as shown in Figure 2. The above procedure led to the extraction of
68 total facial points, each described, as usual, by its 2 spatial coordinates, x and y [41].
However, since the subjects had an attached microphone on the right side of their jaw,
as shown in Figure 1b, the landmark detector commonly could not locate the points
of the specific region. Thus, the entire facial region of the jaw was excluded from the
extraction,while taking into account that the emotional state was not particularly conceived
by the specific region. Consequently, the x and y values of the 49 resulting landmarks
were kept in two vectors, l(t)x and l(t)y ∈ R49, forming the input at time step t to be fed
into the emotion recognition tool. The difference of the current tool, compared with the
extractor of our previous work, lies in the introduction of a landmarks standardization
scheme. To that end, all detected features were forced to present zero mean value and
standard deviation equal to 1 in both x and y dimensions. More specifically, we computed
the mean (µ

(t)
x , µ

(t)
y ) and standard deviation (σ

(t)
x , σ

(t)
y ) values of each vector given a time

step t. Then, the standardized values were computed, as follows:

l̂(t)xi =
l(t)xi − µ

(t)
x

σ
(t)
x

, for i ∈ N, i ∈ (0, 49] (1)

and

l̂(t)yj =
l(t)yj − µ

(t)
y

σ
(t)
y

, for j ∈ N, j ∈ (0, 49]. (2)

The above is proved to considerably aid the performance of the DNN model. Finally,

the vectors l̂
(t)
x and l̂

(t)
y are concatenated, forming the following vector:

l(t) = [l̂
(t)
x ; l̂

(t)
y ], (3)

where l(t) ∈ R98.
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Figure 2. The selected 49 facial landmarks extracted from the RGB facial image.

2.4. Continuous Emotion Recognition Tool

The final component of our system is the continuous emotion recognition tool (CERT),
which is responsible for estimating the valence and arousal values of the subject. Given
a time step t, the extracted vector l(t) is organized into a sequence along with the ls −
1 previous vectors, where ls ∈ N∗ a hyper-parameter of the system to be empirically
configured. This procedure was followed for each time step t, producing a final set of
sequences with length ls. The above sequences, which constitute the input of CERT, were
fed into an RNN architectureRN with N ∈ N∗ as the number of layers. Note that, due to
their proven efficacy, we used LSTM cells [29] for our RNN architecture. Each layer can
have distinct number of hidden units Hn ∈ N∗ with n = [1, 2, ..., N], a number that also
defines the layer’s output dimension. Considering the above, an architecture is denoted
asRN{H1, H2, ..., HN}. In that way, the output ofRN becomes a vector of size HN . Given
that there are two values to be estimated, we have HN = 2, implying an output vector
o ∈ R2. This output was passed through a hyperbolic tangent activation function F = tanh,
producing the final prediction p ∈ R2:

p = tanh(o). (4)

The network’s parameters θR are optimized, trying to minimize the mean squared
error (MSE) cost function:

CR(θR) =
1
2

2

∑
i=1

(pi − p̃i)
2, (5)

where p̃i the corresponding ground-truth value.
All experiments have been conducted using Python 3.9.7 and Pytorch 1.10.0 on an

NVIDIA GeForce 1060 GPU, 6 GB. Each training procedure lasted 150 epochs with a batch
size of 256, using a stochastic gradient descent (SGD) optimizer [42]. We used an initial
learning rate at 10−3 that decays by an order of magnitude after the 75th epoch.

2.5. Validation Strategy

As already mentioned in Section 1, we employed the LOSGO scheme to validate our
models [35]. This is a more strict validation scheme compared with the one followed by
our previous approach [34]. Considering this approach, the initial dataset was split based
on the number of subjects, leaving one group of subjects only for evaluation and/or one
for testing. Following the standard AVEC 2016 protocol, the dataset was divided into three
parts of nine subjects each.

3. Results

In this section, we summarize the empirical study and the experimental results of our
work. Firstly, by adopting a similar DNN architecture and ls = 1, we proved that RNN
utilization benefits the system’s recognition performance on two different architectures.
Simultaneously, we searched for the optimal sequence length ls, evaluated on those two
RNN architectures. Subsequently, we studied several versions of recurrent architectures



Technologies 2022, 10, 59 6 of 14

to choose our best model. Finally, by exploiting the selected best model, we updated the
framework of continuous emotion estimation and long-term behavior modeling, presented
in our previous work. The updated framework was demonstrated in a similar way through
a user-friendly dashboard, which visualizes the estimated momentary and long-term values
of arousal and valence on Russel’s two-dimensional circle.

3.1. Ablation Study

We begin with the comparisons between the simple DNN architecture used in our
previous work against the recurrent one of the introduced approach. Note that, due to the
different validation strategies, the obtained MSE values differ from those presented in our
previous work. Hence, we replicated the experiments of DNN models to comply with the
adopted validation scheme of this paper. The architectures used for the experimentation
are depicted in Table 1. For a fair comparison, each LSTM layer was replaced by a fully
connected (FC) one. We keep the same notation for the investigated DNN models adopting
the symbol D. Hence, a DNN architecture is denoted as D{H1, H2, ..., HN}, with N ∈ R∗
as the number of layers and Hn ∈ N∗, n = [1, 2, ..., N] as the number of neurons of the nth
hidden layer.

Table 1. The RNN (R) and DNN (D) architectures used.

R3{98, 128, 2} R3{98, 256, 2} D3{98, 128, 2} D3{98, 256, 2}
Input [ls × 98] [ls × 98] [98] [98]

H1 LSTM(128) LSTM(256) FC(128) FC(256)
H2 LSTM(2) LSTM(2) FC(2) FC(2)
F tanh() tanh() tanh() tanh()

Output [ls × 2] [ls × 2] [2] [2]

Subsequently, in Table 2, we depict the corresponding obtained MSE values for each
architecture of Table 1. For each experimentation, we display the last MSE value, that
is the value obtained after the last epoch as well as the best one achieved during the
training procedure on the validation set of the RECOLA database. The reader can clearly
understand the benefit of utilizing an RNN architecture instead of a simple DNN. Paying
careful attention, we can observe that the overall performance improved considerably
when a DNN was replaced by a corresponding recurrent architecture. All the above prove
the constraint capacity of the system proposed by our previous work, while denoting the
necessity of updating it with a more efficient one.

Table 2. Obtained MSE values from the corresponding architectures.

R3{98, 128, 2} R3{98, 256, 2} D3{98, 128, 2} D3{98, 256, 2}
Final MSE 0.0249 0.0251 0.0281 0.0276
Best MSE 0.0248 0.0251 0.0281 0.0275

3.2. Sequence Length Configuration

Given the superiority of RNNs in the specific application, we proceed with an exper-
imental study that deals with the definition of an optimal value for the sequence length
parameter ls. We searched within the range of [5, 50] with a step of 5. Similarly to our
previous study, we kept both the best and the final MSE values of each training procedure.
The obtained results are graphically illustrated in Figure 3. In the horizontal x-axis, we
demonstrate the investigated ls values, while the vertical y-axis refers to the obtained MSEs.
The blue color represents the final MSE values for each experimentation, whereas the
orange represents the corresponding best ones. The above study was conducted both on
R3{98, 128, 2} andR3{98, 256, 2}. We can observe that, for both architectures, high values
of ls lead to better results. Yet, we have to keep in mind that the higher the ls, the more
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operating time the system requires. Hence, we search for a value that combines both low
processing time and low MSEs. For better comprehension, we display the best MSE values
of both architectures in Table 3. According to that, we selected ls = 35, since it seemed to
present close-to-optimal recognition performance in both cases, while sustaining operating
time at low levels.

0 10 20 30 40 50

ls

0.0245

0.0255

0.0265

0.0275

0.0285

M
S
E

(a)

0 10 20 30 40 50

ls

0.0245

0.0255

0.0265

0.0275

0.0285

M
S
E

(b)

Figure 3. Best (orange) and final (blue) MSE values for different values of sequence length ls,
evaluated on two distinct RNN architectures. (a)R3{98, 128, 2}. (b)R3{98, 256, 2}.

Table 3. Obtained best MSE values for different values of sequence length ls.

ls = 5 ls = 10 ls = 15 ls = 20 ls = 25 ls = 30 ls = 35 ls = 40 ls = 45 ls = 50

R3{98, 128, 2} 0.0287 0.0271 0.0263 0.0260 0.0255 0.0253 0.0248 0.0252 0.0247 0.0254
R3{98, 256, 2} 0.0274 0.0266 0.0268 0.0260 0.0258 0.0254 0.0251 0.0251 0.0250 0.0250

3.3. Architecture Configuration

After the selection of the suitable ls value, we investigated several architectural varia-
tions of RNNs, taking into consideration both different number of layers and hidden units.
We conducted several experiments using the experimental setup of Section 2.4 and the
validation strategy of Section 2.5. After this point, we collected the top seven models, which
are presented in Table 4. A quick overview of the table shows that the specific emotion
recognition tool is more accurate when architectures with fewer hidden layers are used.
Meanwhile, the final performance was not considerably benefited by increasing the number
of the hidden units. Overall, we selectedR3{98, 128, 2} as our best model. In Figure 4, we
can observe, indicatively, the training curves of two of our best models.

Table 4. Obtained final and best MSE values for different architectures of CERT.

R3{98, 128, 2} R3{98, 256, 2} R3{98, 512, 2} R4{98, 128, 128, 2} R4{98, 128, 256, 2} R4{98, 256, 256, 2} R5{98, 128, 128, 128, 2}
Final MSE 0.0249 0.0251 0.0251 0.0272 0.0282 0.0262 0.0280
Best MSE 0.0248 0.0251 0.0250 0.0272 0.0281 0.0262 0.0280

0 40 80 120

epochs

0.0250

0.0255

0.0260

0.0265

M
S
E

Training

Validation

(a)

0 40 80 120

epochs

0.0250

0.0255

0.0260

0.0265

M
S
E

Training

Validation

(b)

Figure 4. Training (blue) and validation (orange) curves of R3{98, 128, 2} and R3{98, 256, 2}.
(a)R3{98, 128, 2}. (b)R3{98, 256, 2}.
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3.4. Comparative Results

To place our emotion estimation system within the state of the art, we compare
the obtained results of our best architecture against the corresponding ones achieved by
proposed works in the field. A quick overview of the related literature shows that such a
comparison is realized by employing the concordance correlation coefficient (CCC) metric.
The above metric calculates the correlation between two sequences x and y, as follows:

CCC =
2σ2

xy

σ2
x + σ2

y + (µx − µy)2 , (6)

where µx, µy are the mean values, σx, σy are the standard deviation values and σxy = cov(x, y)
are the covariance of x and y, respectively. Thus, for a fair comparison, we calculate the
CCC values between the predictions ofR3{98, 128, 2} and the corresponding ground truth
values for both the arousal dimension and the valence dimension. Note that the above
estimations were performed on the validation set since this is the most common set used
in the existing methods. The obtained results are collected in Table 5 along with the ones
achieved by state-of-the-art works in the field. For better comprehension, we also display
the features of the respective methods, i.e., geometric, appearance and raw RGB image.

Table 5. RECOLA results in terms of CCC for prediction of arousal and valence values.

Method Features Arousal Valence

Baseline [37] Geometric 0.379 0.612
RVM [43] Geometric 0.467 0.571
Weber et al. [44] Geometric 0.476 0.683
Somandepalli et al. [45] Geometric 0.297 0.612

Baseline [37] Appearance 0.483 0.474
RVM [43] Appearance 0.615 0.530
Weber et al. [44] Appearance 0.594 0.506
Somandepalli et al. [45] Appearance 0.481 0.474
Brady et al. [46] Appearance 0.346 0.511

Tzirakis et al. [10] Raw image 0.371 0.637

Ours Geometric 0.446 0.676

The obtained results reveal the competitive recognition performance of the introduced
architecture both in terms of arousal and valence values. Paying more careful attention,
the reader can observe that the methods that exploit geometrical features for the recognition
of the emotional state reach a better estimation of the valence dimension compared with
the arousal ones. Similarly, the proposed system appears to better conceive the valence
values of the emotional state.

3.5. Continuous Speaker Estimation

Having defined the final architecture of CERT, we evaluate its performance in the
testing speakers group of RECOLA. Given a speaker of this set, we exploit our best model
to estimate the arousal and valence values during the interaction. The extracted values are
organized in two separate one-dimensional signals through time and compared against
the corresponding ground truth ones. For illustration purposes, in Figure 5, we display an
indicative example of the comparison, where we can recognize the ability of the system to
follow the ground-truth values. Considering the above, we can conclude that the adopted
RNN architecture improves CERT’s capability of perceiving the long-term variations of
emotional state.

The calculated MSE values between the signals are presented in Table 6 for each subject
of the validation set. The performance of the system remains at a competitive level for
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each speaker of the set. Meanwhile, the reader can observe the large difference in MSE
values between the valence and the arousal coordinates. This owes to the fact that arousal
is a more difficult dimension to be captured by visual data through geometrical features,
as already stated in Section 3.4. Hence, audio input is often used to enhance the efficiency
of an emotion recognition system [30]. In contrast, valence can be accurately captured
through the extracted facial landmarks.

(a) (b)

Figure 5. Estimated (orange) and ground truth (blue) values of valence and arousal for an indicative
speaker of the testing set of RECOLA. (a) Valence. (b) Arousal.

Table 6. Best MSE values of valence and arousal using R3{98, 128, 2} for every speaker of the
validation set.

Subject 1 Subject 2 Subject 3 Subject 4 Subject 5 Subject 6 Subject 7 Subject 8 Subject 9

Valence 0.0096 0.0090 0.0091 0.0044 0.0085 0.0072 0.0088 0.0101 0.0091
Arousal 0.0394 0.0402 0.0401 0.0384 0.0357 0.0402 0.0410 0.0397 0.0410

4. Discussion

In this section, we hold a conversation about the proposed system as a whole. More
specifically, we demonstrate an updated version of the dashboard introduced in our pre-
vious work, focusing on a user-friendly and low-complexity solution. Subsequently, we
discuss the beneficiary role of the system in application fields, such as HRI and collaboration
tasks, as well as in more specific tasks, such as robots in assisted living environments.

To begin with, in Figure 6, an indicative graphical snapshot of the proposed tool is
depicted. The left part of the dashboard provides a demonstration of the current frame of the
processing video, where the estimated facial keypoints of the Facial Landmark Extraction
Tool are projected on the image plane. We believe that the above part is crucial since on
the one hand, it provides the user with a general overview, regarding the development
of the processing procedure in the case of video processing, while in cases of real-time
execution, the speaker is capable of continuously supervising their position to the camera
and accordingly correcting their position and/or orientation, if needed. On the other hand,
the projection of the extracted facial landmarks on the illustrated frame is also highly
desirable since it provides feedback on the capability of efficiently tracking the interaction.
Thus, the user is informed that the environmental conditions, such as illumination and
background, as well as their position and point of view, allow the accurate surveillance
of the system. At this point, we have to consider that the efficient extraction of the facial
keypoints is of the utmost importance for the final performance of the system. Consequently,
we deduce that the above part provides the user with a higher level of certainty, knowing
that they can observe the general procedure and proceed to corrective actions.

The central part of the dashboard shows the CERT’s momentary estimation of the
speaker’s emotional state for the specific frame depicted in the right part of the dashboard.
The predicted arousal and valence values of the CERT are projected on the two-dimensional
Russel’s unit circle. Valence is represented by the horizontal axis (x-axis) and arousal by
the vertical one (y-axis). Hence, the momentary emotional state occupies a particular point
within Russel’s circle. At the next time step, the new values of arousal and valence are
calculated and projected, in the form of a new point. The result that the user observes is a
point that continuously moves within the unit circle.
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Figure 6. The updated dashboard exploiting the proposed RNN architectures. Firstly, from left to
right, we see a frame from the recorded video capturing the speaker, along with the projected facial
keypoints predicted from the Facial Landmark Extraction Tool. Then, the estimated momentary
values of arousal and valence are projected and illustrated in the Russel’s two-dimensional unit
circle. Finally, in a similar way the development of the speaker’s emotional variations are depicted,
demonstrating a long-term behavioral pattern during the interaction.

Concentrating on the main contribution of this work, which constitutes the modeling
of a speaker’s long-term behavior during an interaction, the right part of the dashboard
provides the pictorial result. A similar two-dimensional unit circle, from now on called a
history circle, is utilized to provide the projection space of the estimated behavioral pattern.
Valence and arousal are represented by the horizontal and vertical axes, respectively. Thus,
at each time step, the point provided by the momentary estimation is incorporated into the
history circle. The incorporation is realized by adding the current estimated value to the
previous ones stored in the history circle. The stored values are previously multiplied by a
discount factor d f = 0.9, thus fading the older estimations and paying more attention to
the recent ones. The obtained illustrative result, shown in Figure 6, is a heatmap within the
history circle. The lighter the value of the map, the more frequently the specific emotional
state is expressed by the speaker throughout the interaction.

Bringing the presentation of the dashboard to a close, we discuss its benefits along
with several fields of application in HRI and assisted living scenarios. With the last term,
“robotics in assisted living”, also known as aging in place [47], we refer to the specific field
of research that focuses on the design, development and test of efficient robotic platforms,
enabling elderly people to live and be served in their own houses [48]. The above entails
the amenity of a wide variety of services from the side of the technology providers focusing
on safety, health monitoring, supervision and assistance in everyday activities, i.e., cleaning,
object movement, cooking, etc. [49,50]. Some technological solutions examined in this field
include smart houses, wearable devices, ambient sensors and robotic platforms [51,52].
The main advantage of the robotic solution lies in the mobility that it provides, enabling
the continuous supervision of the elderly, as well as its capability of proceeding to several
actions when required [53]. However, the relatively low level of comfort that older people
feel when they coexist with a robotic agent, that in some way inspects their movements,
remains an open unanswered question. Therefore, the development of efficient tools that
improve the capacity of the robotic agent to comprehend the state of the subject is highly
desired, so as to cultivate a sense of familiarity [54].

Considering the above, the reader can understand our concern regarding the transpar-
ent operation of the proposed tool, under the prism of communicating the basic steps of its
processing procedure to the interacting person. As far as the main task of the introduced
system is concerned, namely the long-term behavior estimation, we envisage it under
the aspect of user personality profiling. Considering the deviating personality patterns,
the same momentary emotion expressed by two different subjects can imply totally dif-
ferent meanings regarding their internal state. An indicative example can be the different
meanings of anger by an introverted and an extroverted person. Thus, the ability of humans
to create a behavioral model of other people, gives us the ability to weight the impact of
the expressed emotions. The proposed system provides the exact same capability since
the creation of the subject’s behavioral history enables the comparison of the contextually
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perceived momentary emotional state against the subjects behavioral pattern, leading to
individualized conclusions regarding its internal state. The above can be used both for
comparing momentary estimations against the user’s complete behavior profile or against
shorter behavioral patterns, such as daily mood, according to the nature of the interaction.

5. Conclusions

To sum up, the paper at hand proposes an advanced solution for estimating the
momentary and long-term emotional state of a speaker during the interaction procedure,
utilizing RNN architectures. Using face detection and landmarks extraction techniques,
the most informative emotional features are extracted and fed into a suitably designed
recurrent architecture. Our empirical study proves that its utilization considerably aids
the estimation performance. Subsequently, it benefits the system’s efficiency in creating
an accurate behavioral model of the speaker. The above are summarized into an updated
version of the graphical tool that communicates the basic steps and results of the process.
Then, we discuss the importance of developing transparent and explainable tools that
can understand and map the internal state of an interacting person, in order to build a
relationship of familiarity and trust between them. The above is highly anticipated to
improve the performance rates of the existing robotic platforms in the field of HRI, as well
as improving humans’ openness to confidently collaborate with robots. At this point, we
particularly focus on elderly people because, on the one hand, they seem to be one of the
more skeptical age groups, while on the other hand, the rising need for people to age in
their familiar places reinforces the necessity of human–robot coexistence.

6. Future Work

As part of future work, we aim to incorporate the proposed system in a more realistic
and complicated HRI scenario, such as a human–machine collaboration task, and evaluate
its capacity of improving the performance of the scenario. Taking into consideration the
discussion in Section 4, the above system is anticipated to be applied in a use case relative
to fall detection for elderly people since it provides the opportunity to model fatigue,
among other internal states, in a personalized manner. Moreover, the adoption of cutting-
edge techniques, focusing on DNNs’ representation learning capacity, can be tested to
further enhance the system’s recognition performance [55,56]. The above examines novel
hidden layers and loss functions that improve feature learning capabilities of existing
CNNs, providing more robust feature extractors [57,58].

Finally, as already stated in Section 1, the audio modality is not processed by our CERT
mainly because we aim for a system capable of estimating human behavior throughout
the whole interaction scenario, i.e., including nonverbal parts. As part of future work,
a more sophisticated system can be investigated, capable of shifting from a visual to an
audio–visual processing tool based on the speech of the person. The above is anticipated
to improve recognition performance mainly in the arousal dimension, as proved by novel
audio–visual approaches [10,30].
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17. Akçay, M.B.; Oğuz, K. Speech emotion recognition: Emotional models, databases, features, preprocessing methods, supporting
modalities, and classifiers. Speech Commun. 2020, 116, 56–76. [CrossRef]

18. Marín-Morales, J.; Higuera-Trujillo, J.L.; Greco, A.; Guixeres, J.; Llinares, C.; Scilingo, E.P.; Alcañiz, M.; Valenza, G. Affective
computing in virtual reality: Emotion recognition from brain and heartbeat dynamics using wearable sensors. Sci. Rep. 2018,
8, 13657. [CrossRef]

https://diuf.unifr.ch/main/diva/recola
http://doi.org/10.3389/fpsyg.2016.01688
http://www.ncbi.nlm.nih.gov/pubmed/27840616
http://dx.doi.org/10.1016/j.patrec.2017.06.002
http://dx.doi.org/10.1016/j.robot.2017.03.002
http://dx.doi.org/10.3390/robotics8030054
http://dx.doi.org/10.1007/s12369-018-0507-2
http://dx.doi.org/10.1037/0022-3514.53.4.712
http://dx.doi.org/10.1109/JSTSP.2017.2764438
http://dx.doi.org/10.1109/TAFFC.2017.2740923
http://dx.doi.org/10.1037/0022-3514.76.5.805
http://dx.doi.org/10.3390/s18020401
http://dx.doi.org/10.3390/app9183904
http://dx.doi.org/10.1016/j.specom.2019.12.001
http://dx.doi.org/10.1038/s41598-018-32063-4


Technologies 2022, 10, 59 13 of 14

19. Picard, R.W.; Vyzas, E.; Healey, J. Toward machine emotional intelligence: Analysis of affective physiological state. IEEE Trans.
Pattern Anal. Mach. Intell. 2001, 23, 1175–1191. [CrossRef]

20. Ali, S.; Wang, G.; Riaz, S. Aspect based sentiment analysis of ridesharing platform reviews for kansei engineering. IEEE Access
2020, 8, 173186–173196. [CrossRef]

21. Zhang, J.; Yin, Z.; Chen, P.; Nichele, S. Emotion recognition using multi-modal data and machine learning techniques: A tutorial
and review. Inf. Fusion 2020, 59, 103–126. [CrossRef]

22. Ahmed, F.; Sieu, B.; Gavrilova, M.L. Score and rank-level fusion for emotion recognition using genetic algorithm. In Proceedings
of the 2018 IEEE 17th International Conference on Cognitive Informatics & Cognitive Computing (ICCI*CC), Berkeley, CA, USA,
16–18 July 2018; pp. 46–53.

23. Daneshfar, F.; Kabudian, S.J. Speech emotion recognition using discriminative dimension reduction by employing a modified
quantum-behaved particle swarm optimization algorithm. Multimed. Tools Appl. 2020, 79, 1261–1289. [CrossRef]

24. Tsai, H.H.; Chang, Y.C. Facial expression recognition using a combination of multiple facial features and support vector machine.
Soft Comput. 2018, 22, 4389–4405. [CrossRef]

25. Kansizoglou, I.; Bampis, L.; Gasteratos, A. Deep Feature Space: A Geometrical Perspective. IEEE Trans. Pattern Anal. Mach.
Intell. 2021. [CrossRef]

26. Tsintotas, K.A.; Bampis, L.; Gasteratos, A. Probabilistic appearance-based place recognition through bag of tracked words. IEEE
Robot. Autom. Lett. 2019, 4, 1737–1744. [CrossRef]

27. Allognon, S.O.C.; de S. Britto, A., Jr.; Koerich, A.L. Continuous Emotion Recognition via Deep Convolutional Autoencoder
and Support Vector Regressor. In Proceedings of the 2020 International Joint Conference on Neural Networks, Glasgow, UK,
19–24 July 2020; pp. 1–8.

28. Lee, H.S.; Kang, B.Y. Continuous emotion estimation of facial expressions on JAFFE and CK+ datasets for human–robot interaction.
Intell. Serv. Robot. 2020, 13, 15–27. [CrossRef]

29. Hochreiter, S.; Schmidhuber, J. Long short-term memory. Neural Comput. 1997, 9, 1735–1780. [CrossRef]
30. Kansizoglou, I.; Bampis, L.; Gasteratos, A. An active learning paradigm for online audio-visual emotion recognition. IEEE Trans.

Affect. Comput. 2019. [CrossRef]
31. Zhang, K.; Li, Y.; Wang, J.; Cambria, E.; Li, X. Real-time video emotion recognition based on reinforcement learning and domain

knowledge. IEEE Trans. Circuits Syst. Video Technol. 2021. [CrossRef]
32. Li, W.; Shao, W.; Ji, S.; Cambria, E. BiERU: Bidirectional emotional recurrent unit for conversational sentiment analysis.

Neurocomputing 2022, 467, 73–82. [CrossRef]
33. Stylios, I.; Kokolakis, S.; Thanou, O.; Chatzis, S. Behavioral biometrics & continuous user authentication on mobile devices: A

survey. Inf. Fusion 2021, 66, 76–99.
34. Kansizoglou, I.; Misirlis, E.; Gasteratos, A. Learning Long-Term Behavior through Continuous Emotion Estimation. In Pro-

ceedings of the 14th PErvasive Technologies Related to Assistive Environments Conference, Corfu, Greece, 29 June–2 July 2021;
pp. 502–506.

35. Zhalehpour, S.; Onder, O.; Akhtar, Z.; Erdem, C.E. BAUM-1: A spontaneous audio-visual face database of affective and mental
states. IEEE Trans. Affect. Comput. 2016, 8, 300–313. [CrossRef]

36. Ringeval, F.; Sonderegger, A.; Sauer, J.; Lalanne, D. Introducing the RECOLA multimodal corpus of remote collaborative and
affective interactions. In Proceedings of the 2013 10th IEEE International Conference and Workshops on Automatic Face and
Gesture Recognition (FG), Shanghai, China, 22–26 April 2013; pp. 1–8.

37. Valstar, M.; Gratch, J.; Schuller, B.; Ringeval, F.; Lalanne, D.; Torres Torres, M.; Scherer, S.; Stratou, G.; Cowie, R.; Pantic, M. Avec
2016: Depression, mood, and emotion recognition workshop and challenge. In Proceedings of the 6th International Workshop on
Audio/Visual Emotion Challenge, Amsterdam, The Netherlands, 16 October 2016; pp. 3–10.

38. Viola, P.; Jones, M. Rapid object detection using a boosted cascade of simple features. In Proceedings of the 2001 IEEE Computer
Society Conference on Computer Vision and Pattern Recognition, CVPR 2001, Kauai, HI, USA, 8–14 December 2001; p. I.

39. Zhang, S.; Zhang, S.; Huang, T.; Gao, W.; Tian, Q. Learning affective features with a hybrid deep model for audio–visual emotion
recognition. IEEE Trans. Circuits Syst. Video Technol. 2017, 28, 3030–3043. [CrossRef]

40. Kazemi, V.; Sullivan, J. One millisecond face alignment with an ensemble of regression trees. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, Columbus, OH, USA, 23–28 June 2014; pp. 1867–1874.

41. Vonikakis, V.; Winkler, S. Identity-invariant facial landmark frontalization for facial expression analysis. In Proceedings of
the 2020 IEEE International Conference on Image Processing (ICIP), Abu Dhabi, United Arab Emirates, 25–28 October 2020;
pp. 2281–2285.

42. Bottou, L. Stochastic gradient learning in neural networks. Proc. Neuro-Nımes 1991, 91, 12.
43. Huang, Z.; Stasak, B.; Dang, T.; Wataraka Gamage, K.; Le, P.; Sethu, V.; Epps, J. Staircase regression in OA RVM, data selection

and gender dependency in AVEC 2016. In Proceedings of the 6th International Workshop on Audio/Visual Emotion Challenge,
Amsterdam, The Netherlands, 16 October 2016; pp. 19–26.

44. Weber, R.; Barrielle, V.; Soladié, C.; Séguier, R. High-level geometry-based features of video modality for emotion predic-
tion. In Proceedings of the 6th International Workshop on Audio/Visual Emotion Challenge, Amsterdam, The Netherlands,
16 October 2016; pp. 51–58.

http://dx.doi.org/10.1109/34.954607
http://dx.doi.org/10.1109/ACCESS.2020.3025823
http://dx.doi.org/10.1016/j.inffus.2020.01.011
http://dx.doi.org/10.1007/s11042-019-08222-8
http://dx.doi.org/10.1007/s00500-017-2634-3
http://dx.doi.org/10.1109/TPAMI.2021.3094625
http://dx.doi.org/10.1109/LRA.2019.2897151
http://dx.doi.org/10.1007/s11370-019-00301-x
http://dx.doi.org/10.1162/neco.1997.9.8.1735
http://dx.doi.org/10.1109/TAFFC.2019.2961089
http://dx.doi.org/10.1109/TCSVT.2021.3072412
http://dx.doi.org/10.1016/j.neucom.2021.09.057
http://dx.doi.org/10.1109/TAFFC.2016.2553038
http://dx.doi.org/10.1109/TCSVT.2017.2719043


Technologies 2022, 10, 59 14 of 14

45. Somandepalli, K.; Gupta, R.; Nasir, M.; Booth, B.M.; Lee, S.; Narayanan, S.S. Online affect tracking with multimodal kalman
filters. In Proceedings of the 6th International Workshop on Audio/Visual Emotion Challenge, Amsterdam, The Netherlands,
16 October 2016; pp. 59–66.

46. Brady, K.; Gwon, Y.; Khorrami, P.; Godoy, E.; Campbell, W.; Dagli, C.; Huang, T.S. Multi-modal audio, video and physiological
sensor learning for continuous emotion prediction. In Proceedings of the 6th International Workshop on Audio/Visual Emotion
Challenge, Amsterdam, The Netherlands, 16 October 2016; pp. 97–104.

47. Wiles, J.L.; Leibing, A.; Guberman, N.; Reeve, J.; Allen, R.E.S. The Meaning of “Aging in Place” to Older People. Gerontologist
2011, 52, 357–366. [CrossRef]

48. Mitchell, J.M.; Kemp, B.J. Quality of life in assisted living homes: A multidimensional analysis. J. Gerontol. Ser. B Psychol. Sci. Soc.
Sci. 2000, 55, 117–127. [CrossRef]

49. Payr, S.; Werner, F.; Werner, K. Potential of Robotics for Ambient Assisted Living; FFG Benefit: Vienna, Austria, 2015.
50. Christoforou, E.G.; Panayides, A.S.; Avgousti, S.; Masouras, P.; Pattichis, C.S. An overview of assistive robotics and technologies

for elderly care. In Proceedings of the Mediterranean Conference on Medical and Biological Engineering and Computing,
Coimbra, Portugal, 26–28 September 2019; pp. 971–976.

51. Rashidi, P.; Mihailidis, A. A survey on ambient-assisted living tools for older adults. IEEE J. Biomed. Health Inf. 2012, 17, 579–590.
[CrossRef]

52. ElHady, N.E.; Provost, J. A systematic survey on sensor failure detection and fault-tolerance in ambient assisted living. Sensors
2018, 18, 1991. [CrossRef]

53. Mitzner, T.L.; Chen, T.L.; Kemp, C.C.; Rogers, W.A. Identifying the potential for robotics to assist older adults in different living
environments. Int. J. Soc. Robot. 2014, 6, 213–227. [CrossRef]

54. Pirhonen, J.; Tiilikainen, E.; Pekkarinen, S.; Lemivaara, M.; Melkas, H. Can robots tackle late-life loneliness? Scanning of future
opportunities and challenges in assisted living facilities. Futures 2020, 124, 102640. [CrossRef]

55. Kansizoglou, I.; Bampis, L.; Gasteratos, A. Do neural network weights account for classes centers? IEEE Trans. Neural Netw.
Learn. Syst. 2022. [CrossRef]

56. Tian, J.; Yung, D.; Hsu, Y.C.; Kira, Z. A geometric perspective towards neural calibration via sensitivity decomposition. Adv.
Neural Inf. Process. Syst. 2021, 34, 1–12.

57. Deng, J.; Guo, J.; Xue, N.; Zafeiriou, S. Arcface: Additive angular margin loss for deep face recognition. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 15–20 June 2019; pp. 4690–4699.

58. Kansizoglou, I.; Santavas, N.; Bampis, L.; Gasteratos, A. HASeparator: Hyperplane-Assisted Softmax. In Proceedings of the 2020
19th IEEE International Conference on Machine Learning and Applications (ICMLA), Miami, FL, USA, 14–17 December 2020;
pp. 519–526.

http://dx.doi.org/10.1093/geront/gnr098
http://dx.doi.org/10.1093/geronb/55.2.P117
http://dx.doi.org/10.1109/JBHI.2012.2234129
http://dx.doi.org/10.3390/s18071991
http://dx.doi.org/10.1007/s12369-013-0218-7
http://dx.doi.org/10.1016/j.futures.2020.102640
http://dx.doi.org/10.1109/TNNLS.2022.3153134

	Introduction
	Materials and Methods
	Database
	Face Detection Tool
	Facial Landmark Extraction Tool
	Continuous Emotion Recognition Tool
	Validation Strategy

	Results
	Ablation Study
	Sequence Length Configuration
	Architecture Configuration
	Comparative Results
	Continuous Speaker Estimation

	Discussion
	Conclusions
	Future Work
	References

