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Abstract: The usefulness of error-related potentials (ErrPs)
for control in non-invasive Brain-Computer interface (BCI) re-
search has been established over the last decades. To contin-
uously correct for erroneous action of an end effector (e.g.,
robot arm) in a BCI however, these neural correlates relat-
ing only to the discrete perception of errors remain problem-
atic. Using a pre-recorded dataset offering feedback in a 2D
tracking task in different correct or erroneous conditions, we
analyzed whether error processing during continuous feed-
back can be observed from the electroencephalogram (EEG).
Within this dataset comprising 30 sessions of recordings, we
were able to detect significant differences between correct and
erroneous conditions. Furthermore, minimal significant differ-
ence between two erroneous conditions is reported, confirming
the direct connection between error and cognitive response.

Keywords: Electroencephalography (EEG), continuous error
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1 Introduction

In the early 1990, the existence of a neural correlate in elec-
troencephalographic (EEG) signals to the perception of errors
was first established [1, 2]. This correlate, the Error-related
Potential (ErrP), is characterized consecutively by a peak in
fronto-central negativity and parietal positivity, which appear
shortly after an erroneous event is perceived. As decoded sig-
nals within a brain-computer interface (BCI), especially within
motor decoding, remain erroneous, BCI research has been uti-
lizing ErrPs to identify erroneous action (e.g., of an end ef-
fector) as an interaction error in the EEG and correct accord-
ingly [3]. However, apart from varying considerably with age
[4], the neurophysiology of the ErrP was additionally shown
to modulate strongly with the level of attention the erroneous
event receives, as well as with the significance that is attributed
to the error by the participant [5, 6]. Especially the latter has
led to the necessity of limiting the number of erroneous tri-
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als in EEG studies to ensure the detection of an ErrP, which
however cannot readily be translated to everyday situations.
The exploration of neural correlates to continuously detected
errors may provide a solution to this problem [7, 8]. In this
work, we analyzed a previously recorded dataset comprising
EEG recordings during the perception of correct, slightly er-
roneous and severely erroneous continuous feedback within a
2D tracking task. We hypothesized that significant differences
should be visible between correct and erroneous conditions,
while minimal distinction between slight and severe error con-
dition should be observed. Here, we present the results of a
time series analysis in two different frequency bands, provid-
ing further evidence that non-discrete errors can be detected
from the EEG during continuous tasks as well.

2 Methods

2.1 Dataset and recording

Data of a prior study were used [9], comprising recordings
(60 channel EEG according to the 10-10 system, four channel
electrooculogram (EOG), sampling rate 200Hz) of ten right-
handed, non-disabled participants within three sessions each,
amounting to a total of 30 sessions of recordings. For the fol-
lowing analysis, data of calibration snakeruns, 50% and 100%
EEG feedback snakeruns were used.

2.2 Paradigm and setup

Within each session, the participants were asked to track a
moving target (white snake; Fig.1a-c) on a TV screen visually,
as well as via attempted movement of their dominant arm as
if controlling a computer mouse. An encasing around the limb
akin to [10] (see Fig.1f) prevented overt movement. Simulta-
neously, feedback (red dot, Fig.1a-c) was depicted to visualize
the current performance.

2.3 Conditions

Each session was divided into an offline calibration part, fol-
lowed by online runs of varying feedback conditions. During
calibration, fake feedback in the form of a slightly delayed
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Fig. 1: Processing pipeline
and analysis scheme. De-
picted target (white snake)
and feedback (red dot) dur-
ing (a) Correct, (b) Slight Er-
ror and (c¢) Severe Error con-
ditions. Data processed as
shown in (d) and band-pass
filtered between 1-30Hz and
30-80Hz was finally epoched
to windows of [-1, 3]s within
the local maximum of the
Euclidean error between
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feedback and snake (e).

snake was depicted to accustom the participants to the feed-
back dot as data (48 trials) were recorded to calibrate the tra-
jectory decoder [11-13] (Fig.1a). Aside from this delay, the
feedback largely coincided with the target, implying that no er-
ror processing was induced during the calibration runs. Epochs
of calibration data are thus henceforth labelled Correct. Within
the online part of the measurement, ongoing EEG signals were
used to infer the aspired position on screen, which was de-
picted as real-time feedback via feedback dot. To facilitate the
transition from fake to real (erroneous) feedback, only 50% of
the EEG-decoded positional information was first used (36 tri-
als, henceforth Slight Error), before 100% EEG-decoded in-
formation (36 trials, henceforth Severe Error) was depicted.
As the delivered feedback deviated considerably from the tar-
get with increasing EEG information, we hypothesized that er-
ror processing had to be happening during both online condi-
tions.

2.4 Data processing

Data of EEG and EOG were band-pass filtered between 1-
80Hz, line noise was removed, and bad channels were inter-
polated. Eye artifacts were attenuated using SGEYESUB [14],
followed by the removal of EOG and AF row electrodes. Data
were re-referenced to common average reference, pops and
drifts were removed using the HEAR algorithm [15]. From
here, data were band-pass filtered between 1-30Hz and 30-
80Hz, following the line of previous work which reported delta
to beta bands [16—18], as well as subbands of the gamma [19]
to carry relevant information during error processing. Next, the
Euclidean error between target position (see Fig.la-c, snake)
and decoded position (red dot) was calculated for each condi-
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Setup with the participant’s
dominant arm strapped to
the chair to mimic attempted
movement (f).
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tion (Correct, Slight Error, Severe Error). Afterwards, the EEG
signals were time-locked to the local maxima of the Euclidean
error and sliced into epochs lasting from 1s prior until 3s after
an error maximum as shown in Fig.le.

3 Results

Significant differences between correct and both erroneous
conditions in each frequency band (1-30Hz, 30-80Hz) were
assessed via a permutation paired t-test. Corrections for mul-
tiple comparisons relating to timepoints (801), channels (55),
pairwise comparison between the possible conditions (3) and
observed frequency bands (2) were made using FDR correc-
tion at a significance level of 0.05 [20]. For the high frequency
band (30-80Hz), no significant differences in the time series
within any pair of conditions could be observed.

The results for the low frequency band (1-30Hz) are shown
in Fig.2. The grand average Euclidean error in pixels within
the epoched time frames for all three conditions is shown in
Fig.2a. Results of the pairwise comparisons between condi-
tions are shown in Fig.2b-d (Correct vs. Slight Error, Correct
vs. Severe Error, and Slight Error vs. Severe Error). The upper
plot (red, bright/dark gray) always corresponds to the grand
average signals at the electrode FCz (red diamond in the sen-
sor plot, top left corner), the lower plot (blue, bright/dark gray)
to the grand average signals at Pz (blue diamond in the sensor
plot). Topoplots below each comparison show significant ar-
eas in the difference (non-significant areas shaded light grey).
Shaded areas around the signals denote the standard error of
the mean (SEM), shaded rectangular light gray areas denote
timepoints of significant difference in the respective channel.
The timepoint corresponding to the local maximum of the Eu-



Pulferer and Miller-Putz, Continuous error processing during a closed-loop 2D tracking task =—

clidean error (t=0ms) is marked with a red vertical line.

For both comparisons of Correct vs. Error (Fig.2b,c,
topoplots), significant differences in the patterns are seen
throughout the duration of the epoch, with a strong frontal neg-
ativity around 0-250ms, followed by a parietal positivity be-
tween 500-750ms. In general, the difference signals (Correct-
Error; red/blue signals) appear modulated by the Euclidean er-
ror (Fig.2a), with peaks in negativity at FCz (red) following
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Fig. 2: Grand average Euclidean error for all conditions and elec-
trode layout with selected channels FCz (red) and Pz (blue) (a).
Grand average signals at FCz (red, bright/dark gray - top) and Pz
(blue, bright/dark gray - bottom) with statistically significant activa-
tions (topoplots) for Correct vs. Slight Error (b), Correct vs. Severe
Error (¢) and Slight Error vs. Severe Error (d) comparisons. (For
visualization, EEG signals above were band-pass filtered between
1-10Hz.)

shortly after an error maximum, peaks in positivity at Pz (blue)
appearing at a negative slope of the error.

Comparing the two different error conditions (Slight Error vs.
Severe Error, Fig.2d), a significant difference in the patterns is
only seen around 750ms (topoplots, Fig.2d). For the channel
FCz, significant difference is only observed at 750ms (Fig.2d,
top). At Pz, short timeframes of significant differences are
shown between 500ms and 1000ms (Fig.2d, bottom).

For all conditions, grand average signals between approxi-
mately -0.5uV and 0.5uV are seen, wherein the parietal am-
plitude of the erroneous conditions is attenuated, the fronto-
central amplitude is increased compared to the correct condi-
tion.

4 Discussion and Conclusion

Within EEG recordings of ten different participants in a total
of 30 sessions, we investigated differences between epochs
of correct and epochs of erroneous feedback in two different
frequency bands (1-30Hz and 30-80Hz).

We observed significant differences in the lower regarded fre-
quency band, in line with previous works reporting delta and
theta [16], alpha [17] and beta [18] as informative bands. We
could not observe significant differences in the gamma band
(30-80Hz) time domain within any pair of conditions.

For the 1-30Hz band, in which significant differences were
observed, we showed the results of three different pairwise
comparisons (Fig.2b-d): Correct vs. (Slight/Severe) Error and
Slight Error vs. Severe Error. As hypothesized, we were able to
observe significant differences between correct and erroneous
epochs across the whole epoch length, with modulations in the
difference signals at FCz and Pz (red/blue curves in Fig.2b, c)
according to the behavior of the Euclidean error (Fig.2a). In
contrast, aside from significant differences at around 750ms
(topoplot Fig.2d), no significant differences can be reported
between the two erroneous conditions. Especially the sig-
nals recorded at FCz, an electrode position usually consulted
within error processing studies due to its location above the
anterior cingulate cortex [21], exhibit no significant differ-
ences apart from around 750ms (Fig.2d, top), confirming that
the reported results are in fact directly related to a cortical
response to the erroneous feedback.

Nevertheless, further analysis of responses related to dis-
crete errors compared to the observed responses reported here
needs to be done. Although we see a similar characteristic
as observed within an Outcome ErrP [7], both amplitude and
latency of the signals differ considerably from classical ErrPs
and further emphasize the discrepancy between the mental
processing of discrete and continuously appearing erroneous
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events. Additionally, time-frequency analysis remains to be
done specifically in the gamma band, as differences not ob-
servable within the time series of the signals may be found
for continuous error processing as well, as reported before by
[19], who found significant differences between correct and
erroneous conditions especially for the 70-80Hz subband of
the gamma when investigating the spectral power. And finally,
source space analysis, and specifically, connectivity analysis
between selected cortical regions of interest may yield ad-
ditional insights on how continuous feedback information is
processed in the brain.
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