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Abstract. In this paper we shall analyze a new variational method for approximating
the heat equation using continuous finite elements in space and time. In the special
case of linear elements in time the method reduces to the Crank-Nicolson Galerkin
method with time-averaged data. Using higher-order finite elements in time, we obtain
a new class of time stepping methods related to collocating the standard spatial Galerkin
differential equations in time at the Gauss-Legendre points. Again the data enters via
suitable time averages. We present error estimates and the results of some numerical
experiments.

1. Introduction. In this paper we shall analyze a variational method for ap-
proximating parabolic problems using continuous finite elements in space and time.
For simplicity, we shall apply the method to the following initial-boundary value
problem for the heat equation. Let Q be a polygonal domain in R2 with boundary
dfi, let T > 0, and let u(x, t) satisfy

ut = Au + f   V(x,i)Giix(0,T),
(1.1) ií = 0 V(x,t)e9Ox[0,T],

u = tío Vx G O and t = 0,

where /(x, t) and uo(x) are given functions. The extension of our method to more
general linear problems follows in obvious ways.

To formulate the finite element method, let S£(H) C H¿(Q) be a finite element
space of continuous piecewise pth degree polynomials on f2 with mesh parameter
h (we shall give more details of the finite element spaces used in Section 2). Let
0 = t0 < ii < t2 < ■ ■ ■ < tN = T be a partition of [0,T], and let S£([0,T]) be a
finite element space on this partition consisting of continuous piecewise qth degree
polynomials in time (k = maxi<¿<jv |í¿ — £¿-i|)- Then define W^k to be the tensor
product space

whfc = s£(n)®s*([o,r]).
If we let (•, •) denote the inner product on L2(fi), our finite element method for
approximating (1.1) is to find uhk G Wnk such that

(1.2) uhk = Pxu0    at t = 0
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256 A. K. AZIZ AND PETER MONK

where Px is the elliptic projection onto S£(f2) (see Section 2), and

(1.3) /   {uhtk,wthfc) + (Vuhk, V^fc)dt = /   (/,«**)dr   Vu'1* G Whfc.

The finite element solution uhk can be computed by marching through successive
time levels. To see this, let Pq{J) denote the set of polynomials of degree q on an
interval J; then for n = 0,1,2,..., N — 1 we can compute uhk on [tn, in+i] as the
unique solution (see Section 3) of

(1.4) I      («?*, whk) + {Vuhk, Vwhk) dt= [ "+1 (/, «/"*) di
•/in Jtn

Vwfc*6Sj(n)«P«-1([tn,*n+l])

with u'1* at í = £„ fixed by continuity (or initial conditions if n = 0). Clearly, a
solution of (1.4) for n = 0,1,... ,N — 1 is also a solution of (1.3) and vice versa.
Thus, although uhk is continuous in space and time, we can solve the finite ele-
ment problem (1.3) by marching in time. Equation (1.4) also shows that the finite
element method proposed in (1.3) can be viewed as a Petrov-Galerkin method for
approximating the heat equation, in which the trial function uhk is continuous in
space and time, whereas the test function whk = v^k is discontinuous in time and
continuous in space.

Many finite element methods for the heat equation have been proposed and ana-
lyzed in the literature (cf. [18]). A common approach is to first apply the Galerkin
method in space to reduce (1.1) to a system of ordinary differential equations. In
that approach, called the method of lines, we seek uh(t) G S^(Q) such that

(1.5) (uî,vh) + (Vu\Vvh) = (f,vh)   \/vheS£{n).

A suitable method is then applied to integrate this system of ordinary differential
equations. One interesting scheme results when the trapezoidal rule is applied to
(1.5) and this fully discrete method is called the Crank-Nicolson Galerkin method
(cf. [20] and [18]). In contrast to the method of lines described above, we use fi-
nite elements to discretize in space and time simultaneously. However, if we use
piecewise linear functions in time (i.e., q = 1) in (1.3), we obtain a version of the
Crank-Nicolson Galerkin method in which the data / enters as time averages. Thus
our analysis yields an alternative proof of convergence for a Crank-Nicolson type
method. To understand the method when q > 1, consider discretizing the homoge-
neous problem (1.1) with / = 0. If we apply ç-point Gauss-Legendre quadrature on
each subinterval in time, we evaluate the time integrals in (1.4) exactly. Further-
more, by a suitable choice of whk, we can show that (1.5) is exactly satisfied at the
Gauss-Legendre points in time. Hence, for the homogeneous problem, our method
is exactly equivalent to collocating (1.5) at the Gauss-Legendre points on each
subinterval in time. Furthermore, for this linear problem g-point Gauss-Legendre
collocation is known to be equivalent (in the sense of giving the same nodal values of
the solution) to using the qth diagonal Padé approximation (cf. [9]). For the inho-
mogeneous problem, our method differs from Gauss-Legendre point collocation in
that the data / appears as suitable time averages. The Gauss-Legendre collocation
methods can be thought of as a good quadrature method applied to implement our
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method. The choice of a g-point Gauss-Legendre quadrature rule for integration
in time is not the only possibility, however. One could approximate the time in-
tegrals in (1.4) by a g-point Radau quadrature on each subinterval [ín,í„+i] with
tn+i chosen as a quadrature point. Again, for the linear homogeneous problem, we
obtain a collocation method for (1.5) and this method is equivalent to using the
(q, q — 1) subdiagonal Padé approximation (cf. [8]). In this case the integrals in
time are not computed exactly by the quadrature formula, and there is a loss of
accuracy in the time step.

The use of continuous finite element methods to discretize time-dependent prob-
lems has been analyzed before for ordinary differential equations. Hulme [9], [8] has
investigated continuous time Galerkin methods for ordinary differential equations,
and shown how they relate to collocation methods. He has proved convergence for
the associated collocation schemes applied to nonlinear ordinary differential equa-
tions. For hyperbolic problems, Winther [21] has analyzed exactly the time stepping
scheme we propose when applied to a system of first-order hyperbolic problems.
As pointed out above, our variational method is closely related to Gauss-Legendre
point collocation methods for the heat equation, and these methods have been an-
alyzed by Douglas and Dupont [3] in the context of collocation in space and time
for one space dimension problems. Our work is the first analysis of the continuous
time Galerkin method applied to the heat equation.

The use of finite elements in space and time for parabolic problems is not new. A
significant body of work has analyzed the use of discontinuous in time finite element
methods (cf. [6] and [10], and the references contained in those works). In particu-
lar, the discontinuous in time Galerkin methods of Eriksson, Johnson and Thomée
[6] generalize the implicit Euler scheme for time stepping the heat equation, using
as data time averages of /. In general, when applied to the homogeneous prob-
lem, the discontinuous Galerkin method is equivalent to using a subdiagonal Padé
approximation to discretize (1.5) in time. Thus the smoothing properties of the
below-diagonal Padé approximation are built into the method. The discontinuous
Galerkin method may be useful in designing adaptive schemes, and Eriksson and
Johnson [5] have examined this possibility. It is hoped that our method will also
provide a basis for an adaptive scheme; however, since the Crank-Nicolson method
is known to behave poorly on problems with rough solutions (and this is presum-
ably also true of the higher-order methods), the applicability to adaptive methods
is not certain.

Other finite element methods using elements that are continuous in time have
been proposed in the past. For example Lesaint and Raviart [13] proposed a collo-
cation method for solving the heat equation rewritten as a first-order system. Jamet
[11] has also investigated methods on variable grids. However, we believe that (1.3)
is a new Galerkin formulation for the heat equation, and that the resulting methods
are novel.

The plan for the remainder of this paper is as follows. In Section 2 we will
summarize notation and describe in detail the finite element spaces used. In Section
3 we shall prove some global error estimates for the solution of (1.4) and show
the method is of optimal order.  Our analysis will draw on the work of Falk and
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258 A. K. AZIZ AND PETER MONK

Richter [7] who have analyzed a continuous finite element method for the transport
equation, which motivated our formulation. We have also used ideas from [18].

We should comment on the smoothness and convexity requirements of our the-
orems. We have assumed O to be a polygonal domain in order to avoid the in-
creased complexity of dealing with variational crimes which arise when approxi-
mating Dirichlet problems on a smooth domain. Unfortunately, on polygonal do-
mains, smooth data may not give rise to smooth solutions, because corners induce
singularities. Thus we have not attempted to relate the smoothness required by our
estimates to properties of the data. Of greater concern is that we cannot apply du-
ality arguments on a general polygonal domain, and so in some theorems we have
to assume the domain is convex. It is our opinion that the clarity of exposition
possible with a polygonal domain outweighs these difficulties.

The fact that our time stepping method is equivalent to a diagonal Padé ap-
proximation when applied to the homogeneous problem, suggests that the method
should converge with time discretization error proportional to k2q at the time step
points tn, and in Section 4 we shall prove such a superconvergence result. The
proof of superconvergence uses some special projections introduced by Winther
[21], which are related to the quasi-projections of Douglas, Dupont and Wheeler
[4]. Finally, in Section 5 we will present some limited numerical results concern-
ing superconvergence estimates and the utility of higher-order methods for smooth
problems.

2. Notation and Finite Element Spaces. First let us define some notation
to be used in the remainder of this paper. Let fi be a bounded polygonal domain
in the plane, and let L2(Q) be the standard space of square integrable functions on
f2 with inner product (■, •) defined by

u, v) — /  it(x)i>(x) cix
Jn

and norm ||u||o = (it,«)1/2. For integral s > 0, Ha(Q) is the completion of C°°(Q)
in the norm

11*11? = ¿2 ii^iio.
\a\<s

where a — (i,j), \a\ — i + j, and Da = (d/dxi)1 + (d/dx2)J. For nonintegral s,
Hs{ü) is defined by interpolation (cf. [14]), and H¿{Q) = {u G i/1 (O) | u = 0 on
dQ}. We shall also need to use anisotropic Sobolev spaces. Let J be an interval;
then C°°(J; HS(Q)) denotes the set of infinitely differentiable functions from J into
HS(Q) for which all derivatives have continuous extensions to J. For nonnegative r
and s we define Hr(J; HS(Q)) to be the completion of C°°(J; HS(Q)) in the norm

2

dt,
s

and we define

with norm

{\\u\\Hr(j;H°(n)))2 = £/    âïj^"'*)

Hr>s{n xJ) = H°(J; Hr(n)) n Hs{J; H°{Q))

(2-1) (IMIr.s)     — \\U\\H°(J;Hr(Q)) + \\U\\h*(J;H°(Q))-
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For each nonnegative r and s, HT<S (fi x J) is a Hubert space defined by interpolation
in r and s [15]. Further, let

Hq'1 = {ue #M(fi x (0,r)): u = 0 on dû x (0,T)}.

In addition, in the section of the paper concerning superconvergence, we shall also
use the spaces Hs(Q;Hr(0, T)) which are defined analogously to the spaces dis-
cussed above.

Properties of the spaces defined above, including trace theorems and theorems
concerning the existence of mixed derivatives, are proved in [14] and [15] when fi is
smooth. For polygonal domains, the existence of mixed derivatives and extension
theorems are proved in [17]. The use of anisotropic spaces on polygonal domains
for parabolic problems is discussed in [12].

Now let us describe the finite element spaces used in this paper. Let rn(U)
denote a regular triangulation of fi satisfying the usual finite element geometric
constraints [2], where h is the maximum diameter of the triangles in r/,(fi). Let
S£(fi) C Hr){Q) be the set of all continuous piecewise pth degree polynomials on
r/,(fi) that vanish on dfi. We remark that (1.3) can also be applied using finite
element spaces based on a quadrilateral tesselation of fi, and the estimates we shall
prove in Sections 3 and 4 also hold in that case.

Now define Px: Hç){Q) —> S£(fi) to be the elliptic projection, so that if u G
Hr]{ü), Pxu G S£(fi) satisfies

(2.2) (VPxu,V<ph) = (Vu,V<ph)    V</)hG^(fi).

By virtue of the regularity of the triangulation it is well known (cf. [1], [2]) that Px
has the following approximation properties. If u G Hr){Q) D Hr(Q), then

(2.3) ||u - Pxu\\s < CrV_8||u||r

for 1 < r < p + 1 and s = 1. In addition, if fi is convex, this estimate holds for
0<s< 1.

Px can be extended to functions of x and t in an L2 sense. Thus we define the
extended projection Px :i0M(flx (0, T)) -» S£(fi) ® L2(0, T) by

(2.4) f   {VPxu,V<i>h)dt= [   {Vu,Vcph)dt   V(^GS£(fi)®L2(0,r).
Jo Jo

Error estimates for the extended projection are given later in Lemma 2.2 and follow
from the approximation properties of Px given by (2.3). Note, in particular, if u
is smooth enough that u(-,t) G Hr){Q) for each t, we can define Pxu pointwise in
time, and error estimates for the extended projection follow from (2.3).

We shall use the finite element solution of the Dirichlet problem for Laplace's
equation on fi.   Let T: H~l{ü) -» H¿{Q) be such that if g G #-1(fi), then
TgeHr\{Vl) satisfies

{VTg,V4>) = {g,4>)    V^^ffi).
Let Tn be the finite element approximation to T defined as follows. Tn : ,r7-1(fi) —>
5?(fi), such that if g G H'^U) then Thg G S£(fi) satisfies

(2.5) (VThg,V^) = (g,0h)   V0fc€S£(íí).
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The approximation properties of Tn are also well known and follow from the prop-
erties of Px (cf. [1]) since Tn = PXT. Of course, Tn can also be extended to
apply to functions in i/°'°(fi x (0,T)) in an L2 sense (in the same way as for PX).
Furthermore, Tn is a symmetric operator, and Tn satisfies the following a priori
bound

(2.6) o^ig.T^Kcywl,   vje/r1^).
The left-hand inequality follows from the definition of Th. The right-hand inequality
is proved using the a priori estimate ||T(j||i < C||<7||_i and the approximation
property ||(T - Th)g||i < C||Tff||i. Note also that Th is invertible on S£(fi), since
if Thuh = 0 for some uh G S£(fi), then (uh,uh) = {VThuh,Vuh) = 0 and hence
uh = 0.

Next we discuss finite element subspaces in time. Let 0 = tç, < ti < t2 <
■ ■ ■ < íat = T be a partition of [0,T] and let k = maxi<n<jv \tn — *n-i|- Then
define Sk([0,T}) c i/1(0,T') to be the set of all continuous piecewise qth degree
polynomials on this partition. Suppose «/„ = [0,i„], 0 < n; then S£(Jn) is the
restriction to Jn of functions in S£([0, T\).

We also need to consider projections in time. Let P1: ii1(0, T) —► S£([0, T]) be
the one-dimensional projection such that if w G H1^,T), then Pxw G ^([O,T])
satisfies Ptw(0) — w(0) and

(2.7) [  (Ptw)t<t>kdt= [   wt<pkdt   V0fc G Sqk([0,T}).
Jo Jo

By standard techniques, we can see that Pl satisfies the estimate

(2.8) \\w - P'HItf.fAT) ^ Ckr-a\\w\\Hr(0tT)

ïor—q + l<s<l<r<q + l with C independent of w but dependent on T.
Again, we can extend Pl to apply to functions of x and t in an L2 sense. Thus we
define P«: //^(fi x (0,T)) -► L2(fi) <g> S9k([0,T}) by

(2.9) /   ((Ptw)t,<pk)dt= f   (wt,tf)dt   V/eL2(fl)®S«([0,T])
Jo Jo

with the initial condition ((P'u)(-,O),0) = (tt(-,0),<£) V* G L2(fi) (the trace of
u G H°'l(U x (0,T)) is defined at t = 0, cf. [15]). Error estimates for the extended
operator are given in Lemma 2.2.

Note that by taking cpk = t for 0 < t < tn and 4>k — tn for t > tn in (2.7), we
conclude that

(2.10) Ptw(tn) = w{tn)

(in particular, if q = 1, P* is just the interpolant). Thus the projection of w onto
Sfc([0, fn]) defined similarly to (2.7) (with T replaced by t„) is just the restriction
of Plw to [0, i„] and satisfies estimate (2.8) with [0, T] replaced by [0, tn] (and C
independent of n but dependent on T).

Now let Whk = Sfc(fi)®Sfc([0,T]). We will need some approximation properties
of this space. First we note that operators in space and time commute.
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LEMMA 2.1.   Suppose u G i/2,2(fi x (0,T)); then

(2.11) (Pxu)t=Px(ut),

(2.12) VP'ii = P'Vu,
(2.13) PxPtu = PtPxu,

(2.14) ThPtu = PlThu.

Proof. The regularity assumed for u guarantees that Vu( is well defined (cf.
[17]). The results then follow from the linearity of the operators, and we will give
a proof only of the first result. Let cph G ¿>£(fi) ® H1 (0, T) be an arbitrary function
with <^(-,0) = <j>h(;T) = 0; then

f  (VPxut,V<ph)dt=   f  {Vut,Vqbh)dt = - f  (Vu,V<^)dt
Jo Jo Jo

= - f  (VPxu,Vcpï)dt= i  (V(Pxu)uV<ph)dt,
Jo Jo

thus Pxut = Px(Pxu)t but {Pxu)t G S£(fi) <8> L2(0,T), and the result is proved.
The remaining results can be proved similarly, and we shall not provide details
here.    D

Lemma 2.1 allows us to prove the following approximation results:

LEMMA 2.2. LetPx andP1 he defined in the extended sense by (2A) and (2.9),
and let Jn — (0, tn), 1 < n < N. Then there is a constant C independent ofn such
that the following hold.

1. Suppose v G H°>s(n x J„).  Then for -q + 1 < r < 1 < s < q + 1,

»   n —1

(2.15) /   Y.Wv-P'vfnr^^^dxKCk
Jnm=0

2(s-r)(NioJrJ2-

2. Suppose v G H*-1 (il x J„) n i70M(fi x Jn) and v(-,t) G /fp+1(fi) for ail i;
then for s = 1 in general, or for 0 < s < 1 if fi is convex,

(2.16) ||(i;-P*«)(.,0IU <Cft"+1-"||t;(-,0llp+i-

3. Suppose v G //r'°(fi x Jn) n Hq1îï x Jn) and fi is convex. Then for 1 < r <
P+l,

(2.17) ii^-«iioJro<^riKo-

4. Suppose u G i/°'«+1(fi x Jn) n H^'l{iï x Jn) and ut G i/p+1'°(fi x Jn) n
H0' (fi x Jn) and fi is convex.  Then

(2.18) ||(« - rPuMfo < c{hv+1\\Ut\\JPiU0 + fc«||«||0J»+1}.

Proof. Each of parts (1), (3) and (4) are proved in the same way, so we will give
details only for part (1). We start by proving the estimate for a smooth function
u G C°°(fi x Jn). Using (2.8) together with the fact that Pl is a local projection
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on each subinterval in time,

n-lft — j.       p

£ /  Wv-ptv\\h(tm,tm+1)dx
m=0

n-l

(2.19)
=  ¿    í|Kx,.)-(PM(x,.)||2Hr(tm,tm + l)dx

m=0
n-l

<y: /cfc2(-)Hx,.)n^(tm,Wl)dx
m=0

< Cifc2^-7"' lo.sJ

Now consider a sequence of smooth functions {vi} converging to a function v in
H°'S(U x Jn) and apply the above estimates to each u¿. Since the estimate holds
for each », it holds in the limit. This completes the proof of (1).

Part (2) follows from (2.3) since the regularity assumptions ensure v(-,t) G
i/o(fi) for each t. Part (3) is proved in a fashion similar to part (1). Part (4)
is also proved for a smooth function first. If v G C°°(fi x Jn) with v = 0 on ¿>fi,
then using the commutation properties of Px and Pl in Lemma 2.1,

||(« - p1^)^ < ||(« - Phuii + IK« - **«)tllfo
+ iK(«-pa!«)-pt(«-pi«))tiiíro-

Application of (2.3) and (2.8) pointwise proves the estimate if u is smooth. A
limiting argument similar to that given for part (1) completes the proof of part

(4).    D

3. Global Error Estimates. In this section we will prove existence, unique-
ness, and some global error estimates for the numerical scheme given by (1.3).

THEOREM 3.1. For any u0 G #o(fi) and f G i/0,0(fi x (0,T)) there exists a
unique solution uhk satisfying (1.2) and (1.3). Furthermore, the following stability
estimate holds for 1 < n < N with constant C independent of n and N:

(II^MfcCn))2 + hhk(;tn)\\l < C^WT^fC^)2 + \\Pxu0\\2}.

Proof. As discussed in the introduction, problem (1.2)—(1.3) is equivalent to the
problem of finding uhk G Whk such that

(3.1) Uhk(;0)=PXU0

and
ftm + l ftm+1

/        {uîk,whk) + {Vuhk,Vwhk)dt=  /        {f,whk)dt
(3-2)    Jtm Jtm

WwhkeS^(n)^pg-1([tm,tm+1))

for m = 0,1,2,..., N — 1. For each m, uhk is determined at tm (by t¿o if m = 0, and
by continuity if m > 0). Thus, for each m, the number of equations given by (3.2)
and the number of degrees of freedom (just |S£(fi)| • q where |S^(fi)| is the number
of degrees of freedom in S£(fi)) are equal, and it suffices to prove uniqueness.
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Uniqueness can be proved via the stability result in the theorem. To prove
stability, consider (3.1)-(3.2), and take whk = ThU^k. Then using the definition of
Th in Section 2,

/**m+l ftm+\
/        («**,Thuhtk) + (uhk,uhtk) dt = /        (/,Thuhtk) dt.

•>tm Jtm

Adding this estimate for m = 0,1,..., n — 1, and using the definition of || • \\¿0
given in Section 2, we obtain

(3.3)     (WT^u^C^)2 + \\uhk(;tn)\\l < C{(||T¿/2/||o0ótn))2 + ||«"(-,0)||8).

Using the initial condition (3.1) proves the stability estimate.

To prove uniqueness, we apply the stability estimate with uo = 0 and / = 0,
and conclude uhk{x,tn) = 0 for x G fi and 0 < n < N, and ||T¿/2uí,fc||0°0t") = 0.
But since Th is invertible on S^(Q) (see Section 2), we conclude u^k = 0, and so
uhk = 0. Hence existence and uniqueness are guaranteed.    D

Our next theorem guarantees approximability in /T1(fi) norms:

THEOREM 3.2. Let u solve (1.1), let uhk satisfy (1.2) and (1.3), and let e(x,i)
= u(x, t) — uhk(x, t). Then the following estimates hold for n = 1,2,..., N:

1. Suppose u{-,t) G Hp+1(Q) for 0 < t < T, Au G H°'q+1{Q x (0,T)), and
uteHP'°{nx(0,T)). Then

||e(-,i„)||i < C{k"+1\\Au\\0°^l + rV(|kOtn) + |K-,i„)||p+1)}.

2. Suppose AueH°<q{nx(0,T)), u€H°<q+1(nx{0,T)), ittG/ip+1'o(fix(0,T))
and fi ta convex. Then

\\etCt0tn) < C{kq(\\u\\0°Ül + IIAullSi*»)) + rV+MMjK'i}.

Remark. The estimate for et is of optimal order, since the norm is global. For
a general polygonal domain we must replace the term hp+l by a power of h that
depends on the nature of the corners of the polygon.

In order to prove this theorem, and a subsequent theorem concerning error in
lower norms, we first state and prove the following lemma.

LEMMA 3.1. Let Px and P* be the projections defined in Section 2, and assume
u G i/2'2(fi x (0,T)) n#0u(fi x (0,T)). Then for any <p G Whk,

L"{(PtPxu - uhk)u fa) + (V(PlPxu - uhk), V<t>t)dt

= f "((Pxu - u)t, fa) - (AfP'ti - u), &) dt.
Jo
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Proof.   We use the definitions of Px and P', together with the commutation
property of the projections (Lemma 2.1) as follows:

"((PtPxu - uhk)t,ct>t) + (V(PtPxu - uhk), V(j>t)dtIJo

= f \{PtPxu - P*u)t, 4>t) + {V{PtPxu - Pxu), Vfa) dt
Jo

+ / "((P*u - uhk)u <pt) + (V(Pxu - uhk),V<pt) dt
Jo

= [ \(Pxu - u)u <f>t) + (V(P*u - u), V&) dt
Jo

+ /""((«- uhk)u <fit) + (V(u - uhk), V<t>t) dt.
Jo

Use of the definition of uhk (1.3) and the equation for u, together with integration
by parts, completes the proof of this lemma.    □

Proof of Theorem 3.2.   The regularity assumptions on u and ut ensure that
u G H2'2{ü x (0,T)) n Pq"1^ x (0,T)), and hence we may apply Lemma 3.1 with
(p = PtPxu-uhk. Note by the interpolation property of P4 given by (2.10), <j>(-, 0) =
(PtPxu - uhk)(-,0) = {Pxu{-,0) - Pxu0{-)) = 0. Using Schwarz's inequality and
the arithmetic geometric mean inequality, we obtain

IKP'P*« - «fc*)t©B) + HVÍP'P'U - Uhk)(; in)||o

< C(\\(Pxu - u)t\\0°0u) + ||A(P«U - u)Cn)).

Hence, by the triangle inequality, and noting that, by (2.10), PtPxu{-,tn)  =
Pxu(-,tn),

||V(« - Uhk)(; in)||o < ||V(n - PXU)(; tn)\\0

+ C(||(P^ - n)tC") + IIAÍP«« - tOlß*"').
Use of the commutation and approximation properties of Px and P* in Lemmas
2.1 and 2.2 completes the proof of part (1) of the theorem.

In the same way, using the triangle inequality, we may write

IK« - «Äfc)tlföin) < IK« - P'P'^tC^ + W(ptpXu - uhk)t\\o,o"\
and again using (3.4) and the error estimates in Lemma 2.2 completes the proof of
part (2) of the theorem.    D

Our last theorem of the present section gives error estimates in the L2(fi)-norm,
which is the norm most usually considered in error estimates for the heat equation.

THEOREM 3.3.   Suppose fi is convex and the solution u of (I.I) is such that

ue/T,+ 1((0,T);H1(n))    and   nt G Pp+1'°(fi x (0,T)),

and u(-,t) G Pp+1(fi) for 0 < t < T.  Let e(x,i) = u(x,t) - uhk{-x.,t).   Then the
following estimate holds for n= 1,2,..., N:

(3.6)        ||e(-,in)||o < C{h*+1(\\u(;tn)\\p+1 + Iklfcó1) + fc,+1Vu||ftí}-
Remarks.  1. Except when q = 1, the estimates in this theorem do not give an

optimal estimate of the order of convergence.   With some extra assumptions, we
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can prove superconvergence in time (i.e., an estimate of the error at tn proportional
to hp+1 + k2q). However, the theorems in this section hold in more generality than
those concerning superconvergence.

2. When q = 1, the results in the above theorem should be compared to well-
known results for the standard Crank-Nicolson Galerkin method. For example,
let uJJ G 5£(fi) represent the Crank-Nicolson Galerkin estimate for u(-,tn) with
uo _ pxUQ. tne following estimate may be proved using standard methods (cf. [18,
Theorem 4, page 14]):

||u(in) - «KHo < C {/tP+1(||U(-,in)||p+1   +   i'" |K||p+1 dt)

+ k2J    (||ut„|| + ||Autt||)di|.

The use of averages in time has allowed us to decrease the number of derivatives
appearing in the norms in the term multiplying k2.

COROLLARY 3.4. Suppose the smoothness assumptions for Theorem 3.3 hold,
and let fi be convex.  Then

II« - «"Iff] < C |ftp+1 (Qsupr ||ti(-,t)IUi + IMli+Ii) + »^NlVttllSffi } •
Remark. The above result is an optimal estimate in terms of order for the global

L2 error.
Proof of Corollary 3.4. The result is proved in the obvious way by using the

estimate in Theorem 3.3 to estimate the error at each time step, and using the last
result of Theorem 3.2 to estimate the error between steps.    D

Proof of Theorem 3.3. Let <p — Th{PtPxu — uhk) in the conclusion of Lemma
3.1 and use the definition of Tj,. We obtain:

\{PtPxU - Uhk)uTh{I*P*U - Uhk)t)dt + \\\{PXU - Uhk){;tn)\\2
Jo

Itn
{{PtPxu - uhk)t, Th{PtPxu - uhk)t)

tpi,,      „,hk\  rr>tr>x.,      „,hk

I
+ ({PtPxu - unk), (PtPxu - uhk)t) dt

tn

({PtPxu - uhk)t,Th{PtPxu - uhk)t)
0

+ {V{PtPxu - uhk), VTh(PtPxu - uhk)t) dt

= f"((Pxu-u)t,Th(PtPxu-uhk)t)
Jo

- (A(PÉn - u),Th{PtPxu - uhk)t) dt.

Hence by the triangle inequality, the symmetry (and nonnegativity) of Th, and the
arithmetic geometric mean inequality, the following estimate holds:

IK« - «"*)(-,*n)llo < C (||(u - P*«)(-,<„)||t. + /tn((pI« - u)uTh(Pxu - u)t)

+ (A(P*u - u), Th A(P*u - u)) dtj
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Hence via the a priori estimate for Th (2.6), we obtain

IK«-«")(-, t„)||o

< C 11|(« - P*u)(-,i„)||o + (£" ||Pxn( - utWU + ||V(P«u - n)||2di)      1 .

Use of error estimates in Section 2, Lemma 2.2 completes the proof.     D

4. Superconvergence in Time. As discussed in the introduction, the Galer-
kin method described in this paper is equivalent to using a diagonal Padé approxi-
mation in time when both methods are applied to the homogeneous heat equation.
Thus we expect our Galerkin time stepping scheme to be superconvergent at certain
special points in time. This is easy to prove in the absence of spatial discretization,
and we shall consider that case first. The proof involves semidiscrete parabolic du-
ality and stability estimates for the homogeneous semidiscrete problem. Then we
shall provide a more complex proof of superconvergence for the fully discrete prob-
lem, using some techniques related to those introduced in [4] and used by Winther
in his analysis of hyperbolic problems [21].

Let us first define the semidiscrete problem without spatial discretization. We
seek uk G ZT¿(íí) ® S£([0,T]) such that

(4.1)      [  (uk,vk) + (Vuk,Vvk)dt= [  (f,vk)dt   V«tGi/01(n)®^([0,T|)
Jo Jo

with initial condition uk = uo at t = 0. Using the same arguments as for Theorem
3.1, we can see that uk exists and is unique.  The following error estimate shows
that the solution uk of the semidiscrete problem is superconvergent at the time grid
points tn, n= 1,...,N.

THEOREM 4.1. Suppose the solution u of (1.1) is such that T~q+l/2u G
H0,q+1(Q x (0,T)). Then, if uk solves (4.1), the following error estimate holds
for 1 < n < N:

IK«-«*)(^)llo<CA^||I^«+1/3«||g^>.
Remark. For ||T_9+1/2u||00¿^J to be bounded, it is sufficient that

llull//«+i((o,T);//2«-1(n)) be bounded and A3u = 0 on dfi for 0 < j < q — 1 [18]. Us-
ing Eq. (1.1) at the boundary, together with the boundary data and the conditions
that AJ« = 0 for 0 < j < q - 1, we can show that Akf = 0 on dfi for 0 < k < q- 2.
In view of a priori estimates for parabolic problems on smooth domains [12], the
need to impose boundary conditions of this type on / is unexpected, but these
type of constraints also appear in other work on superconvergence for parabolic
problems (e.g. [6]).

Before proving this theorem we shall prove a lemma concerning the stability of
the semidiscrete problem in negative spatial norms.

LEMMA 4.1. Suppose z satisfies Eq. (4.1) with / = 0 (i.e., the homogeneous
semidiscrete problem). Then for 1 < r < q and 1 < n < N, the following stability
estimate holds with constant C independent of n:

n-l    / /   ^ \  r (tm,tm+l)\ 2

<C||**(.,0)|ß.M> t   IK'" (s)
m=0   \ v       '

zk
0,0
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Proof. The proof is by induction on r. First, in the case r = 1, we take vk — Tzk
in (4.1), and the result follows by the same arguments as used in the proof of the
stability result in Theorem 3.1.

Now suppose the result is true for 1 < r < R — 1 < q. Let çl'™ •*•»+!] be the
L2{tm,tm+1) projection onto Pq~1([tm,tm+i})', then taking vk = Twk in (4.1),
where wk G Hr]{fl) ® S¡([0,T]), we find that zk satisfies Tzk = Q[Wm+i]z* on
[tm,tm+i]- Hence, using the fact that the operators in time and space commute,
we obtain

y.fi-1/2 f^_\ zk _  i^_\ Q[tm,tm+l]TR-3/2zk_

Thus, if km = tm+i - tm, and using inverse estimates on a single interval in time,
we find that

-ñ- "(*)
R-l (tm,tm+l)

0.0

<
fi-1

— I (Q[*m,tm + i] - I)TR~3/2zk
(*m,tm+l)

0.0

(4.3)
+

R-l
d_\ rpR-3/2     k
dt)

(ímitm+l)

0,0

< CkmR+1\\{Q^'tm^ - 7)Tñ-3/22fc||0'0"'tm+l)

.    n_! (tm,tm+l)
O

.dt+ j.ñ-3/2   k

0,0

But, by standard estimates for the L2 projection,

¡\(Q[tm,tm+l]   _ I)J,R~3/2Zk\\[t'^'tm+1^
110,0

(4.4) < CkR~l— v '"m (l)v 3/2^
(ím,ím+l )

0,0

and hence combining (4.3) and (4.4), we have shown that

's'
[*m t^n

o.o
<C j.fi-3/2

fi-1 \*m t*r\

o.o

and induction completes the proof of the lemma.    D
Proof of Theorem 4.1. The proof rests on a discrete duality argument similar to

those used in [16], [19], and [6]. Let zk G Hr]{ü)®Sqk{[0,T\) satisfy the semidiscrete
backward heat equation

(4.5) f  (zk,vk)-(Vzk,Vvk)dt = 0   VvkeHoi(n)®Sq([0,T})
Jo

together with final data zk(-,tn) — (u-uk)(-,tn). Now let ek = Ptu-uk and note
that zk = ek at t = tn. Letting vk — Tek in (4.5), and integrating the second term
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by parts in time, we obtain
r-tr.

(Vzk, VTek)\tn = f \ek,Tzk) + (Vek,VTzk)dt.
Jo

Next, if we use the equation for u, the definition of uk and the definition of P', we
can show that

(Vzk,VTe%n =   Í \{Ptu~u)uTzk) + {V{Ptu-u),VTzk)dt
Jo

n{{Ptu~u),zk)dt.
'0

Finally, using the Cauchy-Schwarz inequality and the error estimates for P* from
Lemma 2.2, we find that

IK« - «*)(•> *n)llo = i'" «pt - J)r-,+1/a«, Tq-l'2zk) dt
Jo

fJo

'0
n-1

< J2 ii(^t-^)îi-9+i/2uiiti+i+i)iiT9-i/22tfcn0^:tr+i)
m=0

n-1
<■  nir^Q   V*   IIT_9+l/2,,l|(tm,<m + l)|n-.<2-l/2_fc||(*m,tm + l)-ut    Z-i II «llo,a+i       HJ *t llo,fl-i

m=0

Use of the result of Lemma 4.1 to estimate the term in zk completes the proof. G
The method of proof used for Theorem 4.1 can be used to analyze the fully dis-

crete problem. However, the final result contains quantities involving inverse powers
of Th rather than T. In particular, the estimate involves ||T^9+1/2Px«||0'^t1m+l),
which seems difficult to bound independently of h without some extra assumptions
on the spatial grid. For this reason, when we prove error estimates for the fully
discrete problem, we adopt a slightly more complex proof technique to estimate the
term involving (P{ —I). To do this, we use some auxiliary functions related to those
introduced in [4] and used by Winther [21] in his analysis of hyperbolic problems.
The essential features of the fully discrete proof are still that we use discrete duality
and trade inverse norms in time against positive norms in space. The next theorem
provides a superconvergence estimate for the fully discrete approximation.

THEOREM  4.2.   Suppose that fi is convex and that the solution u of (1.1) is
sufficiently smooth that

ueHq+1{{0,T);H2q-1(ü))    and   ut G H2q+p-lfi{Ü x (0,T)).

Furthermore, suppose u(-,t) G Pp+1(fi) for each t, and AJu = 0 on dfi for 0 <
j < q — 1. Then

||(«-«"*)(■, *n)||0

<C{/7P+1(H^in)||P+l + ||«t||K_1,o) + fc29||«llH,+1((0,t„);^,-1(n))}.
Remark. When q = 1, ¡;his estimate reduces to the estimate proved in Section 3.
Before proving this result, let us define some notation. If s > 0, we define the

special norm
N-1

in     iii2 \~~*   ii     n2
in     ins,«; /   j ii     ntt°(tm,tm+i)

m=0
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and H3'k(0, T) = {w G L2(0, T) : |||w|||s,fc < oo}. For a a negative integer, we define

. l0Tw<pdt
IIMIIa,* =       SUP        lïïbii—•4,eH-°*(0,T)  \\\w\h-s,k

Clearly, if w G Ha[0,T) with a > 0, then IHIkfc < NI/f(o,T)> and if a < 0,
IIHI»'(o,r) < IIMIkfc-

Now we introduce a special sequence of functions. Let W^ = (P* — I)u, and
let lyW G L2(fi) ® S£([0,T]) for j = 1,2,... be defined as the unique solution of

(4.6) f   Wtij)4>tdt= f   AWU-Vfadt   V0 g Sq([0,T])
Jo Jo

with the initial condition W^(x, 0) = 0 for x G fi. Of course, this construction
can be extended in the L2 sense in space if AWt/-i) G P°'°(fi x (0,T)). Note
that W^ inherits whatever spatial smoothness is present for AW^~X\ so that, for
a>0,

(4.7) I^IIS'-^cikiiS:^,
and if AW^-V G H^ifl x (0,T)) then W& G H01A{n x (0,T)). We shall need
W(a-i) e P0M(fi x (0,T)), and this holds if A-»« = 0 on dfi for 0 < j < q - 1 and
u is smooth enough (e.g., u G Hl({Q,T);H2q-l(tt))).

Note that if we define the function W by

9-1
(4.8) W = J2wU),

3 = 1

then

(4.9) ¡n{A{Pt-I)u,4>t)dt= [n{{Wt-AW + AW(q-V),<l>t)dt
Jo Jo

for all <p G L2(fi) ® 5¿([0,in]). Next we shall prove two lemmas concerning the
auxiliary functions W^3\ which show that the functions are small in an appropriate
sense. The lemmas correspond to the two lemmas used by Winther [21] and are
proved in a similar way.

LEMMA 4.2. Let j be an integer with 0 < j < q — 1. Then there is a constant
C such that for 0 < s <q — j — 1,

W^\\L2{(1.H-.,H0tT)) < CAr«+s^+1||«||H,+,((oiT);H^(n))-

Proof. The result is proved by induction on j. When j = 0, the estimate holds
by using the estimates for Pl in Lemma 2.2. Next, assume the result is true for
0 < J - 1 < q - 1, and let 0 < a < q - J - 1. For n G Hs'k{0,T), define
<p G Ps+1'fc(0,T) by <¡>t = n and </>{T) = 0. By (4.6) and the definition of </>,

/   WÍJ)r)dt=  f   W{J)<ptdt
Jo Jo

f  {W¡J) - AW{J-l)){4> -n) + AW(J-l)<pdt
Jo
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for all functions \i such that u|[tm,tm+1] € L2(Q)®Pq 1{[tm,tm+i]) when 0 < m <
N — 1. Hence, since |||^|||s+1]fc < C|||i7|||Sifc, we find that

W^ndt < Cks+1(\\Wt{J)\\L2{0,T) + IIAW^-^H^io.DJIIIi/llkfc/Jo
+ |||A^-1)|||_(s+1),fc|Hlu,fc.

Now we note that by (4.6), ||Wt(,/)||L2(o,r) < ||AW(J_1)||L2(0,r)- Furthermore, if
/O) = AWÜ\ 0 < j < q — 1, then Z^ satisfies all the equations and estimates
satisfied by W^]\ except with u replaced by An. Hence the induction hypothesis
implies estimates for Z^\ 0 < j < J — Í < q — 1, and so

||AIV(j-i)||(o,r) < Cfc^J||Au||jrt+,((0,r);jr,(,-O(n)).

Estimating ||Aíy('7_1)||í,2(n;ií-(»+i)(o,T)) similarly by induction proves the desired
estimate for W^J\    □

From Lemma 4.2 we obtain the following estimates for W^\

LEMMA 4.3. Let j be an integer such that 0 < j < q — 1. For each r > 0 there
is a constant C such that

1. ||Ww||ftT) <Cfc^+l«||„,+1({0,r);H^(n));
2. maXiXrKivllW^H-^nJIIr < Ck2q\\u\\Hq + i ((0,T);//^ + '(n)) •
Proof. As in the proof of the previous lemma, we note that derivatives in space

commute with the operations in time. Thus to estimate ((9/9xp)W^_1'(x,t),
p = 1,2, it suffices to estimate W^3'~x\x,t) with u replaced by (d/dxp)lu. With
this observation, the first estimate follows directly from Lemma 4.2 with a = 0.
The second estimate is also easy to prove if j = 0 since Ptu = u at the time mesh
points, so we need only consider the case 1 < j < q — 1, and r = 0. But

n-1     ftm+¡
w^{x,tn)= 5Z /     (g|tm'tm+i,Aiy(j-1))(x,í)dt,

hence, using the stability of Q^tm •'•"+•] in negative norms,

||W(j)(-,<n)||o < C\\AW^-^\\L2{a,Hu-^{0tT)),

and an application of Lemma 4.2 with u replaced by An completes the proof.    D
Proof of Theorem 4.2. The proof of this theorem uses a discrete parabolic duality

argument in a way similar to the proof of Theorem 4.1. Let zhk G Whk solve the
fully discrete backward heat equation

(4.10) /  (z?k,v?k)-{Vzhk,Vvtk)dt = 0   Vvhk eWhk
Jo

together with final data zhk{-,tn) = (Pxu - uhk){-,tn). Let ehk = PxPlu - uhk;
then as in the proof of Theorem 4.1,

||(P*u - uhk)(-, tn)\\2 = Í" (e1k,Thz?k) + (Vehk, VThz?k) dt
Jo

and so by Lemma 3.1,

(4.11) ||(P»U - uhk)(-, tn)\\2 = f n((Pxu - u)t,Thz?k) + (A(P'U - u),Thz1k)dt.
Jo
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We now estimate each term on the right-hand side of (4.11).   The first term is
estimated as follows:

(4.12) fn{{Pxu-u)t,Thzîk) < ||Th1/3(Pa!«-«)t||00ót")||rh1/2^fc||0^''>.
./o

But by the stability estimate in Theorem 3.1,

(4.13) l|Ifc/Vllí,!í")<C,||efc*(-,ín)llo.
Using the a priori estimate (2.6) for Th and the estimates for Px in Lemma 2.2
completes the estimate of the first term on the right-hand side in (4.11).

To estimate the second term on the right-hand side of (4.11), we use the function
W defined in (4.8). By (4.9), and integration by parts in time and space,

f "{AiP'u - u),Thz?k)dt =  f \{Wt -AW + AW(q-V),Thztk)dt
Jo Jo

=  [ " {Thzkk, PxWt) - (VThzhk, VWt) dt
Jo

+ f n(Thz*h,{I-Px)Wt) + {AWto-1\Thz?k)dt
Jo

+ (VW,VThzhk)\tn.

Hence, using the properties of Th, then the fact that zhk satisfies (4.10) and the
definition of P1, we find that

f " (A(P'u - «), Thzkk) dt=  [" (z?k, ThPxWt) - [Vzhk, VThPxWt) dt
Jo Jo

+ I n{Th2*k,{I-Px)Wt) + (AWb-l\Th$k)dt
Jo

+ (VPxW,VThzhk)\tn

=  f "(Thz?k, (I - Px)Wt) + (AW(q~l\ Thzhk) dt
Jo
+ {PxW,zhk)\tn.

Applying the Cauchy-Schwarz inequality, and noting that zhk satisfies the a priori
estimate (4.13), we obtain

I rtn
\       [A(Ptu-u),Thz'lk)dt
\Jo

(4.14) < (||Tfc1/2(/-PI)Wtß")-l-||rfc1/2AW(«-1)|ut-)

+ ||pIiy(-,ín)||o)||e'l'c(-,í„)||o.

But by (2.6) and Lemma 4.3,

||P*w(-,f„)||o + Wt^aw^-^w^ < c(\\w(;tn)\u + wwo-^w^)
< C'fc2c||u||rí,+i((o,r);i/2'í-'(n))'
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and since Wt G Hq1 (fi x (0, T)) (by virtue of assuming A3u = 0 for 0 < j < q - 1),
and using (4.7),

||TV2(/ _ p-)iyt||(^-) < Ch^WWtW^l
9-1

(4.16) <Chp+1J2\\AwU~1}C+ä
3 = 1

5: O«        ll«tllp+29-l,0-

Use of estimates (4.15) and (4.16) in (4.14) completes the estimate of the second
term on the right-side of (4.11). Then use of the triangle inequality and the estimate
for Px given by (2.16) from Lemma 2.2 complete the proof.    D

5. Numerical Results. In this section we shall present the results of some
simple numerical experiments with (1.3). We seek to investigate two questions:
first, do the higher-order in time methods possess an advantage in terms of overall
computing time when compared to the lower-order methods? Second, in the theo-
rems concerning superconvergence we require restrictive conditions on the data /.
Are these conditions always necessary?

For simplicity we have taken p = q and have performed any necessary integra-
tions by Gauss rules (order in time depending on q as discussed in the introduction,
and sufficiently higher order in space).

We have only examined the case when fi is an interval (our estimates for R2
hold for R1). So we take fi = [0,1], «o = 0, and

f{x, t) = 3x cos(37rx/2) cos(3t) + 3tt sin(37rx/2) + (37r/2)2 cos(3ttx/2) sin(3t),

which results in an exact solution

u(x, t) = xcos(37Tx/2)sin(3t).

In order to investigate the computing time question, we take h = k, which is the
relationship suggested as best by our most general theorems on global convergence.
Figure 3.1 shows the errors in the solution at t = 3 plotted against elapsed time
for the computation with various h values. These experiments were performed on
a SUN3/50 (with MC68881) with no other users, and so elapsed time is a good
measure of cpu time for the process. The unevenness of the graphs for small time
is because the process was timed to the nearest second. Figure 3.1 suggests that a
given accuracy of solution is obtained more rapidly by a higher-order method (at
least for the smooth solution in this example).

The second question concerns superconvergence. For these experiments we take
p = q = 2, and k is chosen to be the smallest value of the time step larger than
h3/4, which results in t = 3 being an integral number of time steps from t = 0.
If the superconvergence results of the previous section hold, we would expect the
L2 error at í = 3 to be 0(k4). Our results are shown in Figure 3.2; the slope of
the l? error line is approximately 3.9, which strongly suggests superconvergence is
occurring. However, / does not satisfy the conditions of our theorems in Section
4 on superconvergence, since / is nonzero at x = 1. This result suggests that it
may be possible to relax some of the conditions on / required by the theorems in
Section 4 concerning superconvergence.
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Figure 3.1
A graph of relative error at í = 3 against elapsed time for the computation (elapsed time was
measured using the SUN time utility which measures in units of one second). Here relative error is
\\(u - uhk)(-,t)\\s/\\u(-,t)\\s with a = Oor s = 1. In this case, p = q with q = 1,2 or 3, and h = k.
Elapsed time includes time needed to assemble the matrices involved. These results suggest that
the time necessary for a given accuracy of solution decreases as the order of the method increases
(at least for this smooth example).
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Figure 3.2
A graph of relative error at t = 3 against time step size k. Here, p = q = 2 and k is taken to be
essentially h3l* (adjusted so t = 3 is a time mesh point). The slope of the L2 error line is about
3.9, which suggests that superconvergence is occurring. However, the data / does not satisfy the
conditions of the superconvergence theorems in Section 4.
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