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Abstract - A new continuous finite-time control scheme 
for trajectory-tracking problem of robotic manipulators is 
proposed using terminal sliding mode (TSM). The finite-
time convergence property of TSM is applied in both the 
reaching phase and the sliding phase of the sliding mode 
control system. As a result, the closed-loop system is 
globally finite-time stable and the trajectory-tracking 
objective is achieved in finite time. The resulting control 
law is continuous therefore chattering-free. Furthermore, 
it overcomes the common singularity problem in TSM. 
Theoretical analysis shows that the proposed control 
strategy has stronger robustness and disturbance-
attenuation ability compared with the conventional 
boundary-layer method. Simulation results are given to 
illustrate the effectiveness of the proposed algorithm. 

Keywords: finite-time stability, terminal sliding mode, 
fractional power, trajectory tracking 

1 Introduction 
    Trajectory tracking control of robot manipulators is of 
practical significance, and as the most fundamental task in 
robot control, has been extensively studied in recent 
years[1]. Conventionally, most of the existing results are 
achieved by computed torque control or inverse-dynamics 
control[2], which is a special application of feedback 
linearization of nonlinear systems, leading to a linear time-
invariant closed-loop system with asymptotic stability, 
which means that the system trajectories converge to the 
equilibrium as time goes to infinity. Some kinds of 
continuous nonsmooth feedback controllers have been 
developed for the finite-time stabilization problem of 
dynamical systems, which means that with the proposed 
feedback control laws, the closed-loop systems are finite-
time convergent to the desired states besides being 
Lyapunov stable, such as finite-time control for the double 

integrator system[3] and homogeneous finite-time control 
using homogeneity with negative relative degree [4,5]. 
    As a matter of fact, a kind of non-Lipschitz sliding mode 
- TSM also has finite-time convergent property[6,7] and has 
been applied to control robotic manipulators for finite-time 
stability[8-12]. Sliding mode control is a kind of robust 
nonlinear feedback control technique. The basic control 
strategy can be designed in two steps: the choice of a 
sliding manifold such that the corresponding zero 
dynamics exhibits the desired behavior; the determination 
of a control law, which is often discontinuous, capable of 
forcing system trajectory to reach the manifold in a finite 
time and remain on it, featuring the so-called sliding mode, 
in spite of possible matched disturbances and parameter 
uncertainties with the known upper and lower bounds. The 
standard sliding mode is a linear one with asymptotical 
stability. TSM is based on the properties of terminal 
attractor[13], which is a class of nonlinear differential 
equations with finite-time solution. Its main advantage 
consists in the ability to significantly reduce the transient 
time to finite time. 
    Although the finite-time-stabilizing problem of dynamic 
system has been studied by quite a few people from 
different perspectives, among the controllers there is a 
common point, that is the smooth parts of the controllers 
are constructed by the terms with fractional powers, which 
are referred as fractional power control[4,5]. Different from 
homogeneous finite-time control which is constructed with 
only positive fractional powers, the negative fractional 
powers emerging in the TSM control may arise the 
singularity problem around the origin, and some 
restrictions decided by the strict sliding modes have been 
added to the parameters of TSM to avoid the difficulty[6-

11]. However, exact sliding mode is hardly guaranteed in 
practice, and even in simulation. Recently, a discontinuous 
non-singular TSM control scheme only with the items of 
positive fractional power has been developed while 
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maintaining the major advantages of the traditional TSM 
control such as stabilizing the system in finite time[12]. 
    As pointed out above, sliding mode control is usually 
discontinuous on the sliding manifold for robustness. Due 
to dscontinuities, sliding mode control systems encounter 
a drawback of chattering, which is undesirable in practice, 
since it involves high control activities and further may 
excite undesirable high frequency dynamics. One 
conventional way to counter the chattering phenomenon is 
adding a boundary layer around the sliding manifold and 
use continuous control inside the boundary[2]. Thanks to 
the finite-time convergent property of TSM, we will use it 
to design a kind of continuous reaching law to achieve 
finite-time convergence of the state on the sliding 
manifold. Combining the continuous reaching law and the 
non-singular TSM, we develop a new kind of continuous 
finite-time controller for trajectory tracking of robotic 
manipulators. The resulting control can be viewed as a 
trade-off between discontinuous feedback and linear 
feedback. If the parameters are carefully selected, it may 
enjoy the benefits from these two classes of controllers 
such as robustness and chattering-elimination. Compared 
with conventional boundary layer method, the proposed 
approach has better robustness property and disturbance-
attenuation ability. 

2 Basic concepts 
    Definition 2. Consider a free system 

nR��� xfxfx ,0)0(),(�      (1) 
where nRD �:f  is continuous on an open 
neighborhood D  of the origin, the equilibrium point 

0�x  of the system is (locally) finite-time stable if it is 
Lyapunov stable and finite-time convergent in a 
neighborhood DU � . Here, the finite-time convergence 
means:  for any initial condition }0{0 U�x , there is 

settling-time function ),0(}0{:)( 0 ��UT x  such 

that every solution ),( 0xx t  of the system (1) is defined 

with }0{),( 0 Ut �xx  for � �)(,0 0xTt �  and satisfies 

0),(lim 0)( 0

�

�

xx
x

t
Tt

 and 0),( 0 �xx t , if )( 0xTt � . 

Moreover, if nRDU �� , the origin is globally finite-
time stable. 
    Definition 2. Consider a controlled system 

mn RuRxuxgxfx ���� ,,)()(�    (2) 
with 0)( �xg . It is finite-time stabilizable if there is a 
feedback law )(xu  such that 0�x  is a (locally) finite-
time stable equilibrium of the closed-loop system. 
    Lemma 1. Consider the nonlinear system described in 
(1), suppose there is a 1C  (continuously differentiable) 
function )(xV  defined in a neighborhood nRD �  of 

the origin, and there are real numbers 0��  and 
10 �� � , such that 0)( �xV  on D  and 

0)()( �� xx ��VV�      (3) 
(along the trajectory) on D . Then the origin of the system 
is finite-time stable. Moreover, the settling time, depending 
on the initial state 0)0( xx � , is given by 

)(
)1(

1)( 0
1

0 xx �

��

�

�

� VT     (4) 

for 0x  in some open neighborhood of the origin. If 
nRU �

ˆ  and )(xV  is also radially unbounded, the origin 
is globally finite-time stable. 
    Definition 3. The TSM and fast TSM can be described 
by the following first-order nonlinear differential equations 

0)( �� xsignxx �

�� 0)( ��� xsignxxx �

��� (5) 

where 10,0,, ���� ���Rx . 
    Remark 1. The expression (5) is a little different from 
the previously reported TSM and fast TSM[6-12]. 

0���
pqxxs �� , 0����

pqxxxs ���    (6) 
where 0,0, ��� qp�� are integers,  p  is odd. 
This is because of the fact that for 0�x , the fractional 
power pq  may lead to the item Rx pq

� , which 
means Rx��  contradicting with the system we are 
considering. The equation (5) should be the exact 
expression of TSM in spite that we have been suggesting 
only real solution for (6) is considered because this 
suggestion has been involved in (5). 
    Remark 2. We can easily express the so-called non-
singular TSM[12] in the new form TSM[6-12]. 

21,0,0)( ������ ���
� xsignxxs ��   (7) 

    Theorem 1. The equilibrium point 0�x  of the 
continuous non-Lipschitz differential equations (5) is 
globally finite-time stable, i.e., for any given initial 
condition 0)0( xx � , the system state converges to 

0�x  in finite time 
�

��

�

�

�

1
00 )1(

1)( xxT           

�

��

��

�

�

�

�

�1
0

0 ln
)1(

1)(
x

xT         (8) 

respectively and stay there forever. 
    Theorem 1 can be easily proved with the definition 1 of 
finite-time stability. Furthermore, another extended 
Lyapunov function description of finite-time stability of 
Lemma 1 can be described with the form of fast TSM as 

0)()()( ��� xxx ��� VVV�     (9) 
and the settling time can be given by  
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� )(
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)1(
1)( 0

1

0
x

x
V

T    (10) 

    It is evident that the inequalities (9) and (10) means 
exponential stability plus finite-time stability means faster 
finite-time stability. 

3 Finite-time controller design 
   In the absence of friction, the dynamics of a serial n-link 
rigid robotic manipulator can be written as 

τqGqqqCqqM ��� )(),()( ����    (10) 

where nR�qqq ���,,  denote the vectors of joint angular 

position, velocity and acceleration respectively. nR�τ  is 
the vector of applied joint torque, nnR �

�)(qM is the 

positive definite inertia matrix, nR�qqqC ��),(  is the 

vector of centripetal and Coriolis torques, nR�)(qG  is 
the vector of gravitational torques. 
    The trajectory tracking control of robot manipulators 
can be formulated as follows: Let n

d R�q be a given 
twice differentiable desired trajectory, and define the 
tracking error as dqqq ��

~ . The control objective is to 

find a feedback control law ),( qqu �  such that the 

manipulator output q  tracks the desired trajectory dq , the 
tracking error converges to zero in finite time. 
    The following notions are introduced for simplicity and 
used in the analysis and design of TSM controller. 

� � � � � �� � nT

nn Rxsignxxsignxsig n
��

�� ,,11
1

�

γx  

   � � nT

n Rxx n
��

�� ,,1
1 �

γx          (12) 

                  � � nT
n Rxx �� ,,1 �x  

where nR�x .Then the TSM can be defined as 

    � � 0~~
���

γ
qβqs �sig       (13)  

with � � nT
n Rss �� ,,1 �s , � �ndiag �� ,,1 ��β  

and nii ,,2,1,21 ���� � .  

� �d

γγ

qqGqqqCτqM

βqs

����

�
�

���

���

�
�
��

�
��	

�

��

))(),(()(

~,,~~

1

11

11
1 n

nn qqdiag ��
 (14)  

    The conventional TSM control can be designed as a 
discontinuous control law according to a discontinuous 
reaching law such as 

)(sks sign���         (15)  

where � � nikkkdiag in ,,1,0,,,1 �� ���k and  

� �Tnssignssignsign )(,),()( 1 ��s . A discontinuous 
TSM control can be designed as 

�
�
��

�
� ����	

�

��

γ
qγβqskqMqGqqqCτ

211 ~)()()(),( ����� dsign

      (16) 
which is similar with the reference [12]. 
    Retaining the property of finite-time reaching of TSM 
but eliminating discontinuities, we propose a kind of 
continuous fast-TSM-type reaching condition as 

ρsksks )(21 sig����       (17) 
The inverse dynamics controller is designed as 

�
�
��

�
� ���

��	

�

��

γρ qγβqsksk

qMqGqqqCτ
211

21
~)(

)()(),(

���

��

dsig
  (18) 

Then Replacing the control τ  in (14) with (18) yields 

� �ρ
γγ

skskβs )(~,,~
21

11

11
1 sigqqdiag n

nn ��
�
��

�
��	

��

���� ��

      (19) 

Thus, if 0~
�q� , the equation (19) satisfies the reaching 

condition (17), and the system will reach TSM 0�s  in 

finite time. Here we note that submanifold 0~
�q�  might 

hinder reachability of TSM when 0�s  but 0�s� . 
Indeed, the closed-looped system of robotic manipulator 
(11) under the control law (18) with 0~

�q�  can be written 
in the form of 

ρskskq )(~
21 sig���

��       (20) 

Therefore, if 0~
�q�  and 0�s , 0~

�q��  when 0�s , 

0~
�q��  when 0�s , and 0~

�q�� only when 0�s . It 
means that with respect to a small time interval � , at the 

next instant 0~~
�� �qq ���  in the reaching phase where 

0�s . Therefore we can conclude that TSM still can be 
reached in finite time and then stay in it thereafter. Once 
TSM is reached, the system will move along the TSM till 
converge to the equilibrium point 0~

�q  stably in finite 
time. 
    Remark 3. The control law (18) is continuous therefore 
chattering-free and does not involve any negative-
fractional power therefore singularity-free.  
    Remark 4. Please note even for the certain system as 
(1), the conventional TSM control design still need the 
discontinuous control as (16) to guarantee the finite-time 
reaching to TSM. Here we achieve the same objective with 
the continuous control. The commonly used boundary-
layer method can only guarantee the finite-time reaching to 
the boundary layer, inside which the control is linear, only 
asymptotical convergence can be obtained. 
    Remark 5. With fast finite-time convergence property 

of fast TSM, q��~  in (20) can be kept in a big value no 
matter how far or near to the TSM. This property can 
further avoid system state stuck in the neighbourhood of 
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0~
�q�  in the reaching phase. Furthermore, The nonlinear 

item 
1~ �i

iq
�

�  of the reaching condition (19) can increase 

the convergent rate to TSM around the neighbourhood of 

0~
�iq�  because the fractional power 110 ��� i�  

makes 
1~ �i

iq
�

�  amplify iq�~  when 1~
�iq� . For example, if 

we choose 00001.0~
�iq� , 2.1�� , 1.0~ 1

�

�i

iq
�

� . 

This property can accelerate the system to escape from the 

neighbourhood of 0~
�iq�  in the reaching phase. On the 

other hand, it can keep system state in TSM more strongly 
around the equilibrium point in the sliding phase. 

4 Robustness analysis 
    Generally, in practical robot systems, the perturbations 
in system parameters and external disturbances are 
inevitable. In this case, the parameter matrices in the 
model (1) can be divided as bounded external disturbance. 

)()()( 0 qδMqMqM ��  

),(),(),( 0 qqδCqqCqqC ��� ��            (21) 

)()()( 0 qδGqGqG ��  

where )(0 qM , ),(0 qqC �  and )(0 qG  are the nominal 

parts and are assumed to be known exactly, )(qδM , 
),( qqδC �  and )(qδG  represent the perturbations in the 

system matrixes. Then, the dynamical model of robotic 
manipulator can be rewritten as 

dττqqqFqGqqqCqqM ����� ),,()(),()( 000 �������

   (22) 
nR���� )(),()(),,( qδGqqqδCqqδMqqqF �������  is 

the lumped system uncertainties and is assumed to be 

bounded by positive known function � �Tn�� ,,1 ��ω , 

i.e., ωqqqF �),,( ��� , and n
dd R�� τDτ ,  is the 

bounded external disturbance. 
    Actually, the proposed algorithm is also robust with 
respect to the bounded system uncertainties and external 
disturbance. In this case, the derivative (14) becomes 

� �d

γγ

qFqGqqqCττqM

βqs

����

�
�

���

�����

�
�
��

�
��	

�

��

))(),(()(

~,,~~

00
1

0

11

11
1

d

nn
nqqdiag ��

 

     (23) 
With the similar controller as (18) and the nominal system 
functions, we have 

�
�
�

�
�
� ���

��	

�

��

γρ qγβqsksk

qMqGqqqCτ
211

21

000

~)(

)()(),(

���

��

dsig
   (24) 

Applying (24) to (23) yields 

� �)()()(

~,,~

1
021

11

11
1

FτqMsksk

βs

ρ

γγ

���

�
�
��

�
��	

�

��

d

nn

sig

qqdiag n
�

�
�� ��

   (25) 

Furthermore, we can change (25) into the following two 
forms 

�
�

�

�

�
�

�

�
�

�
�

�

�

�
�

�

�
�
�
�

�
�
�
�

� �
�

�
�
��

�
��	

��

ρ

γγ

sks
FτqM

k

βs

)(
))((

~,,~

2
1

'
0

1

11

11
1

sig
s

diag

qqdiag

di

nn
n

�
�

�� ��

 

(26) 

��
�

�

�

��
�

�

�

�
�

�

�

�
�

�

�

�
�

�

�

�
�

�

� �
��

�
�
��

�
��	

��

ρ

γγ

s
FτqM

ksk

βs

)(
)(

))((

~,,~

11

'
0

21

11

11

1

1

sig
ssigns

diag

qqdiag

di

nn
n

�

�� �
�

��

 

(27) 

� � n
i

T
n R��

� )(,)(,),()( '
0

'
0

'
01

1
0 qMqMqMqM � . 

)(0 qM  is a positive definite inertia matrix, so we have 

))(())(( '
0

'
0 ωDqMFτqM ��� idi   (28) 

Therefore, if we choose 

1
1

'

1
))((

η
ωDqM

k ��
�

�

�

�
�

�

� �
�

s
diag i   (29) 

2

1

'

2 1

))((
η

ωDqM
k �

�
�

�

�

�
�

�

� �
�

�s
diag i    (30) 

with ),,(),,,( 22121111 nn diagdiag ���� �� �� ηη
, niη ii ,,1,0, 21 ���� , The equations (25) and (26) 
can be respectively rewritten as 

� �ρ

γγ

sksk

βs

)(

~,,~

2
'
1

11

11
1

sig

qqdiag n

nn

�

�
�
��

�
��	

��

���� ��
   (31) 

� �ρ

γγ

sksk

βs

)(

~,,~

'
21

11

11
1

sig

qqdiag n

nn

�

�
�
��

�
��	

��

���� ��
   (32) 

where � � 11
'
01

'
1 ))(( ηFτqMkk ���� sdiag di ,  

� �� �
2

'
02

'
2 )())(( 1

η
FτqMkk

�

��� iidi ssignsdiag �

 

Therefore, if 0~
�q� , the equations (31) and (32) are still 

kept in the form of reaching condition (17), which means 
that the finite-time convergent property is still held if we 
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choose the gains 1k  and 2k  as (29) and (30). Meanwhile, 
the gains guarantee the system trajectory will finite-time 
converge to the regions 

� �21,min ∆∆∆ �        (33) 

�
�
�

�
�
�

�

�
	


�

11

1

1
))((

ηk
ωDqMs∆      (34) 

 
�
�

�
�

�

�
�

�
�

�

��
	



��
�




�

�
��

� �

1

22

1

2
))((

ηk
ωDqMs∆    (35) 

where � � ni∆∆∆ i
T

n ,,1,0,,,1 �� ���∆ . 21, ∆∆  

is the results from the chosen gains 1k  and 2k  

respectively. With the chosen 1k  and 2k , the finite-time 
convergent property is always held as (31) and (32), so 
the system will convergence to the smaller one as (33). 
    Remark 6. In the region (33), the neighborhood 1∆  is a 
result for linear control with power one such as inside the 
conventional boundary layer, and 2∆  is a result for TSM 
control with the fractional power ρ . If we choose 

21 kk �  big enough and 21 ηη �  such that 

2,1,1)())((1
����

� iii ηkωDqM , 2∆  can be 

reduced greatly with 12 ∆∆ �� . This means TSM 
control has stronger robustness and disturbance rejection 
ability. 
Here we face the similar problem as section 3, that is 

0~
�q�  might hinder the reachability of TSM outside the 

region (33). Certainly, we can also prove that it is 
impossible with the similar way as follows. 
    Indeed, the closed-looped system of robotic 

manipulator (22) under the control law (24) with 0~
�q�  

can be written in the form of 

)()()(~ 1
021 FτqMskskq ρ

�����
�

dsig��   (36) 
which can be understood as the following two forms 

ρ

ρ

sksk

sks
FτqM

kq

)(

)(
))((~

2
'
1

2
1

'
0

1

sig

sig
s

diag di

���

��
�

�

�

�
�

�

�
��
�

�
��
�

� �
�����

(37) 

ρ

ρ

sksk

s
FτqM

kskq

)(

)(
)(

))((~

'
21

11

'
01

21 1

sig

sig
ssigns

diag d

���

�
�

�

�

�
�

�

�

�
�

�

�

�
�

�

� �
����

�

��

(38) 
    Similar analysis as section 3 can easily conclude that the 
region (33) can also be reached in finite time. After the 

system enters the region (33), the system dynamics can be 
described as 

� � ∆φφqβqs
γ

���� ,~~ �sig    (39) 

where � �Tn�� ,,1 ��φ . Different from the finite-time 

convergence to TSM 0�s  in section 3, where the system 
converges to the origin along TSM in finite time, 
here TSM s  only converges to a bounded neighborhood 
of 0�s  in finite time. In order to further explore the 
system dynamics in the neighborhood ∆ , we change the 
dynamics (39) to this form 

� �

� � 0~~

~
)~(~

~

����

�
�
�

�

�

�
�
�

�

	

�
�
�

�

�

�
�
�

�

	


�

γ

γ

qβq

qβq

�

�

��

sig

sig
qsignq

diag
ii

i
i�

�

  (40) 

If 311
~,,~ 1 ηβ ��

�
��

�
��

n

nn q∆q∆diag
��

��� and 

nidiag in ,,1,0),,,( 33313 �� ��� ���η , the 
equation (40) is still kept in the form of TSM, which also 
means the system will converge to the region in finite time. 

� �� �
�
�
�

�
�
�

��	
� γ

q ∆ηβq∆
1

1
3~

~�
�     (41) 

Furthermore, we can have 

� � � �� �� �∆Iηββφqβq∆
γ

q ������
�1

3~
~~ �sig   

 (42) 

5 Simulations 
    Consider a two-link robotic manipulator moving in a 
plane of the form (11) with 

�
�

�
�
�

�
���

�

�
�
�

� �
�

222

21 0
)(,0,

0
0

)(
qm

g
m

mm
qGCqM

where 8.181 �m  and 2.132 �m (Hong et al., 2002). In 
this example, the robotic manipulator starts at the initial 

position � �T330 �q  and initial velocity � �T000 �q� . 
The control objective is to drive the manipulator joints to 

track desired trajectory � �Ttt 2sin)5.1sin(6.0�dq  
in finite time. 
    If we choose the TSM as (13), the conventional 
discontinuous finite-time TSM control, TSM control with 
the conventional boundary layer and the continuous finite-
time TSM control proposed in this paper for this example 
can be respectively designed as 

�
�
��

�
� ���	

�

��

γ
qγβqskqMqGτ

211 ~)()()( ��� dsign  

 (43) 
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��
�

�
��
�

�
���

�

�
�
�

�
�	

�

��

γ
qγβq

ε
skqMqGτ

211 ~)()( ��� dsat  

 (44) 

�
�
��

�
� ���

�	

�

��

γρ qγβqsksk

qMqGτ
211

21
~)(

)()(

��� dsig
  (45) 

    The simulation results for the controller (43) with the 
parameters as )10,10(diag�k , )5.0,5.0(diag�β  

and T]5.15.1[�γ are shown in figure 1. The intensive 
chattering emerges in the control signal after the system 
enters the sliding phase in spite that the perfect tracking is 
acquired in finite time. In order to eliminate the chattering, 
we adopt the controller (44) with the boundary layer where 

)1,1(diag�ε , and the simulation results in figure 2 
show the chattering is really eliminated but approaching to 
the TSM is asymptotic. 
    For the controller (45), we choose )10,10(1 diag�k , 

)30,30(2 diag�k , )5.0,5.0(diag�β , the paramters 
T]5.15.1[�γ  and T]2.02.0[�ρ . The simulation 

results shown in the figure 3 demonstrate the merits of 
both the controllers (43) and (44): perfect tracking, i.e., 

tracking errors q~  and q�~ reach TSM 0�s  in finite-time 

and then converge to 0~
�q  and 0~

�q�  along 0�s  in 
finite time, and chattering-free. Furthermore, the respective 
shortcomings, i.e., the chattering and asymptotical 
approaching to TSM, disappeared. Meanwhile, the control 
law is singularity-free. 
    In order to exhibit the robustness and disturbance-
attenuation property of the proposed algorithm, we assume 
that the control objective is to attain the tracking accuracy 

as � �T001.0,001.0~
�q  and � �T001.0,01.0~

�q�  in 

finite time in spite of the uncertainties and disturbances in  
(25) as 

� �TT
d tt 33)]sin(3)sin(3[)()( 1

0 ���
� FτqM (46) 

    If )5.0,5.0(diag�β  and )1.0,1.0(3 diag�η  in 

(41), according to the required tracking accuracy of q~ , the 

neighborhood � �T00044.0,00044.0�∆  of TSM is 
needed to be reached in a finite time. Furthermore, 

according to the required tracking accuracy of q�~ , ∆  and 

(41), we are required to choose � �T48.1,48.1�γ . In 
order to assure the required neighborhood ∆ , according to 
the equations (33), (34) and (35), we can choose the 
designed parameters as 
 )16,16(21 diag�� kk , )1,1(21 diag�� ηη  and 

T]2.02.0[�ρ , then we achieve the target as 

� �2.01 �� s∆ , � �00032.02 �� s∆ , 2∆∆ �  (47) 

    Here it is clearly demonstrated that with the same 
control gain for the same uncertainties and disturbances, 
the fractional-power control has better robustness and 
disturbance-attenuation ability than the linear one. The 
simulation results with the chosen parameters as above are 
shown in figure 4. Here the region ∆  in (47) is reached at 

st 385.0� , and then in the small neighborhood of TSM 
0�s , the control objectives for the angular position 

tracking q~  and the angular velocity tracking q�~  are 
achieved at st 56.2�  and st 6.2�  respectively. 

6 Conclusions 
    We have developed singularity-free continuous TSM 
controllers for trajectory tracking of robotic manipulators 
with finite-time convergence. The new form of TSM can 
be used not only to design sliding mode for finite-time 
convergence to the equilibrium, but also to design 
continuous TSM control law to drive system states to 
reach TSM in finite time. By properly choosing the 
fractional powers, the proposed TSM controllers can 
enjoy stronger robustness property and chattering 
attenuation with finite time stability. The effectiveness of 
the developed algorithms is validated by simulation 
results. One of challenging works is to generate the results 
to the general n-order uncertain nonlinear systems.  
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a) The joint 1 

b) The joint 2 

Fig.1 The discontinuous finite-time TSM control 

a) The joint 1 
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b) The joint 2 

Fig. 2 TSM control with the boundary layer

a) The joint 1 

b) The joint 2 

Fig.3 The continuous finite-time TSM control

a) The joint 1 

b) The joint 2 

Fig.4 The continuous finite-time TSM control  
with uncertainties 
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