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Abstract - A new continuous finite-time control scheme
for trajectory-tracking problem of robotic manipulatorsis
proposed using terminal diding mode (TSM). The finite-
time convergence property of TSV is applied in both the
reaching phase and the dliding phase of the dliding mode
control system. As a result, the closed-loop system is
globally finite-time stable and the trajectory-tracking
objective is achieved in finite time. The resulting control
law is continuous therefore chattering-free. Furthermore,
it overcomes the common singularity problem in TSM.
Theoretical analysis shows that the proposed control
strategy has stronger robustness and disturbance-
attenuation ability compared with the conventional
boundary-layer method. Smulation results are given to
illustrate the effectiveness of the proposed algorithm.

Keywords. finite-time stability, termina sliding mode,
fractional power, trgjectory tracking

1 Introduction

Trajectory tracking control of robot manipulators is of
practical significance, and as the most fundamental task in
robot control, has been extensively studied in recent
years, Conventionally, most of the existing results are
achieved by computed torque control or inverse-dynamics
control®, which is a specia application of feedback
linearization of nonlinear systems, leading to a linear time-
invariant closed-loop system with asymptotic stability,
which means that the system trajectories converge to the
equilibrium as time goes to infinity. Some kinds of
continuous nonsmooth feedback controllers have been
developed for the finite-time stabilization problem of
dynamical systems, which means that with the proposed
feedback control laws, the closed-loop systems are finite-
time convergent to the desired states besides being
Lyapunov stable, such as finite-time control for the double
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integrator system™ and homogeneous finite-time control
using homogeneity with negative relative degree!*®.

Asamatter of fact, akind of non-Lipschitz diding mode
- TSM also has finite-time convergent property®” and has
been applied to control robotic manipulators for finite-time
stability!®*?. Sliding mode control is a kind of robust
nonlinear feedback control technique. The basic control
strategy can be designed in two steps. the choice of a
sliding manifold such that the corresponding zero
dynamics exhibits the desired behavior; the determination
of a control law, which is often discontinuous, capable of
forcing system trgjectory to reach the manifold in a finite
time and remain on it, featuring the so-called sliding mode,
in spite of possible matched disturbances and parameter
uncertainties with the known upper and lower bounds. The
standard dliding mode is a linear one with asymptotical
stability. TSM is based on the properties of terminal
attractor™, which is a class of nonlinear differential
equations with finite-time solution. Its main advantage
consists in the ability to significantly reduce the transient
time to finite time.

Although the finite-time-stabilizing problem of dynamic
system has been studied by quite a few people from
different perspectives, among the controllers there is a
common point, that is the smooth parts of the controllers
are constructed by the terms with fractional powers, which
are referred as fractional power control™®. Different from
homogeneous finite-time control which is constructed with
only positive fractional powers, the negative fractional
powers emerging in the TSM control may arise the
singularity problem around the origin, and some
restrictions decided by the strict diding modes have been
added to the parameters of TSM to avoid the difficulty!®
Y However, exact sliding mode is hardly guaranteed in
practice, and even in simulation. Recently, a discontinuous
non-singular TSM control scheme only with the items of
positive fractional power has been developed while
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maintaining the major advantages of the traditional TSM
control such as stabilizing the system in finite time'*2.

As pointed out above, diding mode contral is usually
discontinuous on the diding manifold for robustness. Due
to dscontinuities, sliding mode control systems encounter
a drawback of chattering, which is undesirable in practice,
since it involves high control activities and further may
excite undesirable high frequency dynamics. One
conventional way to counter the chattering phenomenon is
adding a boundary layer around the sliding manifold and
use continuous control inside the boundary'?. Thanks to
the finite-time convergent property of TSM, we will use it
to design a kind of continuous reaching law to achieve
finite-time convergence of the state on the dliding
manifold. Combining the continuous reaching law and the
non-singular TSM, we develop a new kind of continuous
finite-time controller for trgjectory tracking of robotic
manipulators. The resulting control can be viewed as a
trade-off between discontinuous feedback and linear
feedback. If the parameters are carefully selected, it may
enjoy the benefits from these two classes of controllers
such as robustness and chattering-elimination. Compared
with conventional boundary layer method, the proposed
approach has better robustness property and disturbance-
attenuation ability.

2 Basic concepts

Definition 2. Consider a free system
x=f(x), f(0=0, xeR" D
f:D—>R" is continuous on an open

neighborhood D of the origin, the equilibrium point
X = 0 of the system is (locally) finite-time stable if it is
Lyapunov stable and finitetime convergent in a
neighborhood U < D . Here, the finite-time convergence

where

means. for any initial condition X, € U/{0} , there is
settling-time function T(X,):U/{0} — (0,0) such
that every solution X(t, X,) of the system (1) is defined
with X(t, X,) € U/ Q} for t €[0,T(x,)) and satisfies

Iim)x(t,xo) =0 and X(t,X,) =0, if t>T(X,).

t>T (X

Moreover, if U = D = R", the origin is globally finite-
time stable.
Definition 2. Consider a controlled system

x=f(xX)+g(X)u, xeR", ueR™ (2
with g(x) # 0. It is finite-time stabilizable if there is a
feedback law U(X) such that X = 0O is a (locally) finite-

time stable equilibrium of the closed-loop system.
Lemma 1. Consider the nonlinear system described in

(1), suppose there is a ok (continuoudly differentiable)
function V (X) defined in a neighborhood D < R" of

the origin, and there are real numbers £ >0 and
O<y <1,suchthat V(X) >0 on D and

V(x)+ BV’ (x)<0 @)
(along the trajectory) on D . Then the origin of the system
isfinite-time stable. Moreover, the settling time, depending

ontheinitial state X(0) = X,, isgiven by

1 .,
T(Xo)ﬁmv (Xo) 4

for X, in some open neighborhood of the origin. If

U =R" and V (X) isaso radialy unbounded, the origin
isglobally finite-time stable.
Definition 3. The TSM and fast TSM can be described
by the following first-order nonlinear differential equations
X+ BX sign(x) = 0 x—ax— B|X" sign(x) = 0(5)
where Xe Ry, >0, O<y<1.

Remark 1. The expression (5) is alittle different from
the previously reported TSM and fast TSM¢*2.

S=X+ XY =0, s=X+ax+ X" =0 (6
where ¢, >0, p>(Qq>0are integers, p is odd.
This is because of the fact that for X < O, the fractional
power (/P may lead to the item X¥” ¢ R, which

means X ¢ R contradicting with the system we are
considering. The equation (5) should be the exact
expression of TSM in spite that we have been suggesting
only rea solution for (6) is considered because this
suggestion has been involved in (5).

Remark 2. We can easily express the so-called non-
singular TSM™ in the new form TSM®*2,

s=x+pX"sgn(x) =0, B>0l<y<2 (7

Theorem 1. The equilibrium point X=0 of the
continuous non-Lipschitz differential equations (5) is
globaly finitetime stable, i.e., for any given initia

condition X(0) = X, , the system state converges to
X = 0 infinitetime

1

T(%) = m|xo|l_7
__ 1 0‘|X0|l_y +p
T(X,) = o0-7) n F; (8)

respectively and stay there forever.

Theorem 1 can be easily proved with the definition 1 of
finite-time stability. Furthermore, another extended
Lyapunov function description of finite-time stability of
Lemma 1 can be described with the form of fast TSM as

V(X)+aV(X)+ V7 (x)<0 (9)
and the settling time can be given by
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-y
T(x)<—t @& ) +B
al-y) B
It is evident that the inequalities (9) and (10) means
exponential stability plus finite-time stability means faster
finite-time stability.

3 Finite-time controller design

In the absence of friction, the dynamics of a serial n-link
rigid robotic manipulator can be written as

M(@G+C(a.q)q+G(a) =7 (10
where (0,0, € R" denote the vectors of joint angular

position, velocity and acceleration respectively. T € R" is
the vector of applied joint torque, M (q) € R™" is the

positive definite inertia matrix, C(q,{)ge R" is the

vector of centripetal and Coriolis torques, G(q) € R" is

the vector of gravitational torques.
The trgjectory tracking control of robot manipulators

can be formulated as follows: Let ¢, € R" be a given
twice differentiable desired trgjectory, and define the
tracking error as = ¢ — Q, - The control objective is to
find a feedback control law u(Q,() such that the

manipulator output q tracks the desired trajectory d, , the

tracking error converges to zero in finite time.
The following notions are introduced for simplicity and
used in the analyss and design of TSM controller.

sig(x)’ =[x/ sign(x,), " sign(x, )]T eR"
X! :[xl”,---,xny" eR" (12)
X =) %[ e R"
where X € R".Then the TSM can be defined as
s=G+psigldf =0 (13)
with s=[s,--,s,]' eR", g=diag(B,, .5,

andl<y, <2, i=12--,n.

5= i|5'+/fdiag(71|al|yrl,--n7n d, y"_l) 14
(M(@)*(r - C(a,6)q - G()) - d )

The conventional TSM control can be designed as a
discontinuous control law according to a discontinuous
reaching law such as

§= —ksign(s) (15)
where  k = diag(k,,--+,k, ).k >0,i=1---,n and
sign(s) = [sgn(sl),---,sgn(sn)] . A discontinuous
TSM control can be designed as

= C(a,0)4+G(0)-M (@) ksign(s) -, + 57 |

(16)
which is similar with the reference [12].

Retaining the property of finite-time reaching of TSM
but eliminating discontinuities, we propose a kind of
continuous fast-T SM-type reaching condition as

$=-k;s—k,sig(s)” 17
The inverse dynamics controller is designed as

7 =C(q,0)g+G(a)-M(a)

(k s+k,sig(s)’ —ty +4~ _l| |H) o

Then Replacing the control 7 in (14) with (18) yields
s:—/fdiag(nal“‘l.--',yn d, ‘1)(k1s+kzs:g(s)")
(19)

Thus, if C~] # 0, the equation (19) satisfies the reaching
condition (17), and the system will reach TSM s=0 in
finite time. Here we note that submanifold a =0 might

hinder reachability of TSM when S# 0 but $=0 .
Indeed, the closed-looped system of robotic manipulator

(11) under the control law (18) with a = 0 can be written
in the form of

q = —k;s-k,sg(9)” (20)
Therefore, if a:O and s=0, a>0 when s<0,

a<0 when s>0, and a:OonIy when s=0. It
means that with respect to a small time interval o, at the
next instant (= (& # 0 in the reaching phase where

s# 0. Therefore we can conclude that TSM still can be
reached in finite time and then stay in it thereafter. Once
TSM is reached, the system will move along the TSM till
converge to the equilibrium point a = 0 stably in finite
time.

Remark 3. The control law (18) is continuous therefore
chattering-free and does not involve any negative-
fractional power therefore singularity-free.

Remark 4. Please note even for the certain system as
(1), the conventional TSM control design ill need the
discontinuous control as (16) to guarantee the finite-time
reaching to TSM. Here we achieve the same objective with
the continuous control. The commonly used boundary-
layer method can only guarantee the finite-time reaching to
the boundary layer, inside which the control is linear, only
asymptotical convergence can be obtained.

Remark 5. With fast finite-time convergence property

of fast TSM, a in (20) can be kept in a big value no

matter how far or near to the TSM. This property can
further avoid system state stuck in the neighbourhood of
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a = 0 in the reaching phase. Furthermore, The nonlinear

-1
|7 of the reaching condition (19) can increase

item |61|
the convergent rate to TSM around the neighbourhood of

g, =0 because the fractiona power O<y, —1<1

|7i_l

makes |ﬁ, amplify q when ai < 1. For example, if

s ~ |71
we choose ¢ =0.00001, y =12, ‘qi‘y =01.
This property can accelerate the system to escape from the

neighbourhood of ai =0 in the reaching phase. On the

other hand, it can keep system state in TSM more strongly
around the equilibrium point in the diding phase.

4 Robustness analysis

Generaly, in practical robot systems, the perturbations
in system parameters and external disturbances are
inevitable. In this case, the parameter matrices in the
model (1) can be divided as bounded external disturbance.

M (a) = M, (a) +JM (a)
C.9) =Co(a.q)+oC(a.q)  (21)
G(q) = G, () + G()
where M (), C,(0,d) and G,(q) are the nominal
parts and are assumed to be known exactly, dM (Q) ,

0C(qg,q) and 6G(Qq) represent the perturbations in the

system matrixes. Then, the dynamical model of robotic
manipulator can be rewritten as

M, (@)d+Co(a,9)a+G(a) + F (0.9,6) = 7 + 7,

(22)
F(0,9,8) = oM (q)d+0C(a,4)q+0G(q) e R" is
the lumped system uncertainties and is assumed to be
bounded by positive known function @ = [a)l,---,a)n ]T ,
ie, |F(q,q,q')| <, and |1'd| <D,z e R" is the

bounded external disturbance.

Actually, the proposed algorithm is also robust with
respect to the bounded system uncertainties and external
disturbance. In this case, the derivative (14) becomes

5=+ paiag( rfa|" - rfa] ")

(Mo (@) ™(z + 74 —~Co(a,G)&— Go(a) ~ F) &y )

(23)

With the similar controller as (18) and the nominal system
functions, we have

7=C(9,9)q+G,(q) - M,(a)
(kls+kzsig(8)" G+ p7y7[q

’...’yn

z-yj (24)

Applying (24) to (23) yields
R . =~ n-1 o 7n-1
S= _ﬂdlag(71|q1| a, ) 25)
(k,s+k,S9(9)” ~Mo(0) *(r4 — F))

Furthermore, we can change (25) into the following two
forms

. . ~ 71
S= _ﬂdlag(71|q1 q )

[(kl - diag( M (q)gd -F )Ds+ kzsig(s)”J

(26)

’...’7/n

|71—1

’...’}/n

7n—1
i)

k,s+ kz—diag[Mfl" g%d _F)] sig(s)”
s, sign(s,)

|71—1

S:_ﬂdiag(71|al 9 Y n

27)
M@ = [Mey (@, Moy @] Mg (@) € R
M, () isapositive definite inertia matrix, so we have
Mg (@)(7y -F) <My (@)(D+o) (28

Therefore, if we choose

k, = diag(%} +n, (29
k, = diag[%} vy, (30)

with g, = diag (7,73 ) 11, = diag(17,,,++,77,,)
MMy >0,1=1---,n, The equations (25) and (26)
can be respectively rewritten as

5= —ﬂdiag(y1|al|yl_l,---,7n d, y”_l) an
(kis+k,sig(s)”)

L CACA R B
(k,s+k,sig(s)”)

where kll =k, - diag(M rl)i (a)(zy—-F )/51)2 iy,
k; =k, —diag(Mg, (@)(z, —F)/(s]” sign(s))
21,

Therefore, if a # 0, the equations (31) and (32) are till

kept in the form of reaching condition (17), which means
that the finite-time convergent property is still held if we
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choose the gains K, and K, as (29) and (30). Meanwhile,

the gains guarantee the system trgjectory will finite-time
converge to the regions

A=min{4,,4,} (33)
M *(q)(D
- fe @0l g,

_ M ~(g)(D + o) ,
4= |S| S( K, —m, J )

where A=[4,,---,4.]", 4, >0,i=1---,n. 4,4,
is the results from the chosen gains K; and K,

respectively. With the chosen K, and K, the finite-time
convergent property is always held as (31) and (32), so
the system will convergence to the smaller one as (33).
Remark 6. In the region (33), the neighborhood A4, isa
result for linear control with power one such as inside the
conventional boundary layer, and 4, is a result for TSM
control with the fractional power p . If we choose

k, =K, big enough and #m, =7, such that
M (a)(D +®)/(k; —1;) <1,i=12, 4, can be

reduced greatly with 4, << A4, . This means TSM
control has stronger robustness and disturbance rejection
ability.

Here we face the similar problem as section 3, that is
C~] = 0 might hinder the reachability of TSM outside the

region (33). Certainly, we can aso prove that it is
impossible with the similar way as follows.
Indeed, the closed-looped system of

manipulator (22) under the control law (24) with C~] =0
can be written in the form of

a = _kls_ kZSig(S)” +M O(Q)_I(Td - F) (36)

which can be understood as the following two forms
G = —[kl - diag( My (Q);Td -F )DS_ k,sig(s)”

=—-k,s-k,sig(s)”

robotic

(37
q = -k,s-| k, — diag M 0153)_(1‘1 -F) sig(s)”
s, sign(s,)
=-k,s-k,sig(s)”
(39

Similar analysis as section 3 can easily conclude that the
region (33) can also be reached in finite time. After the

system enters the region (33), the system dynamics can be
described as

s=G+psioaf =, <4 @
where @ = [Q)l,---,(pn]T . Different from the finite-time

convergenceto TSM S= 0 in section 3, where the system
converges to the origin aong TSM in finite time,
here TSM s only converges to a bounded neighborhood
of s=0 in finite time. In order to further explore the

system dynamics in the neighborhood A, we change the
dynamics (39) to thisform

— A\ sig(q

G| sign(@) (40)
=+ psigld) =0

It f= diag(Al/‘al‘yl ,---,An/ a, 7”)+n3 and

ns =diag(ms,-+75,),m5 >0,i=1---,n , the
equation (40) is still kept in the form of TSM, which aso
means the system will converge to the region in finite time.

4; = {‘ﬁ‘ < ((ﬂ - 713)_14');} (41)
Furthermore, we can have

g = [ <piola) | 101 = (805 —n.) 1 )
(42)

q-+| p—diag

5 Simulations

Consider a two-link robotic manipulator moving in a
plane of the form (11) with

m+m, O 0
M(Q)=[ ,C=0,G(g)=¢g
0 m2 m2q2

where m, =18.8 and m, =13.2(Hong et a., 2002). In
this example, the robotic manipulator starts at the initial
position g, =[33]" and initia velocity g, = [00]" .
The control objective is to drive the manipulator joints to
track desired trajectory q, :[O.GSin(l.St) sinZt]T
in finite time.

If we choose the TSM as (13), the conventional
discontinuous finite-time TSM control, TSM control with
the conventional boundary layer and the continuous finite-

time TSM control proposed in this paper for this example
can be respectively designed as

t=G(q)-M (q)(ksign(S) —lg +p7 _1‘6‘2_7)
(43)
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r=G(@)-M (q)[ksat(fj -4, +/rly-l|q*|2‘yJ

(44)
7 =G(q)-M(q)

. .. 1 _q|~|?
(kls"‘sz‘g(S)p -Gy + 8 1?’ 1|Q| 7)

The simulation results for the controller (43) with the

parameters as kK = diag(10,10) , g = diag(0.5,0.5)

and y =[1.51.5]" are shown in figure 1. The intensive

chattering emerges in the control signal after the system
enters the diding phase in spite that the perfect tracking is
acquired in finite time. In order to eliminate the chattering,
we adopt the controller (44) with the boundary layer where

e=diag(ll) , and the smulation results in figure 2

show the chattering is really eliminated but approaching to
the TSM is asymptotic.

For the controller (45), we choose k; = diag(10, 10),
k, = diag(30,30), # = diag(0.5,0.5), the paramters

y=[1.51.5]" and p=[0.20.2]" . The simulation

results shown in the figure 3 demonstrate the merits of
both the controllers (43) and (44): perfect tracking, i.e.,

(45)

tracking errors  and  reach TSM S= 0 in finite-time

and then converge to § =0 and 4 =0 aong S=0 in
finite time, and chattering-free. Furthermore, the respective
shortcomings, i.e, the chattering and asymptotica
approaching to TSM, disappeared. Meanwhile, the control
law is singularity-free.

In order to exhibit the robustness and disturbance-
attenuation property of the proposed agorithm, we assume
that the control objective is to attain the tracking accuracy

as [§ <[0.001,0.002]" and []<[0.01, 0.001]" in
finite time in spite of the uncertainties and disturbances in
(25) as
M, (q) *(r, — F) =[3sin(t) 3sin(t)]" <[33] (46)
If p=diag(0.50.5) and n, =diag(0.10.1) in
(41), according to the required tracking accuracy of a , the
neighborhood A < [0.00044, 0.00044]T of TSM is
needed to be reached in a finite time. Furthermore,
according to the required tracking accuracy of ﬁ , 4 and
(41), we are required to choose y < [1.48, 1.448]T . In

order to assure the required neighborhood A, according to
the equations (33), (34) and (35), we can choose the
designed parameters as

k, =k, =diag(16,16) , n, =5, =diag(,1) and
p =[0.20.2]", then we achieve the target as

4,={9<02}, A, = {§<0.00032}, 4= 4, (47)

Here it is clearly demonstrated that with the same
control gain for the same uncertainties and disturbances,
the fractional-power control has better robustness and
disturbance-attenuation ability than the linear one. The
simulation results with the chosen parameters as above are
shown in figure 4. Here the region A in (47) isreached at
t = 0.385s, and then in the small neighborhood of TSM

s=10, the control objectives for the angular position
tracking C~1 and the angular velocity tracking ﬁ are
achieved at t = 2.56S and t = 2.6S respectively.

6 Conclusions

We have developed singularity-free continuous TSM
controllers for trgjectory tracking of robotic manipulators
with finite-time convergence. The new form of TSM can
be used not only to design diding mode for finite-time
convergence to the equilibrium, but aso to design
continuous TSM control law to drive system states to
reach TSM in finite time. By properly choosing the
fractional powers, the proposed TSM controllers can
enjoy stronger robustness property and chattering
attenuation with finite time stability. The effectiveness of
the developed algorithms is validated by simulation
results. One of challenging works is to generate the results
to the general n-order uncertain nonlinear systems.

References

[1] H. Sage, M. De Mathelin and E. Ostertag, Robust
control of robot manipulators. a survey, International
Journal of control, Vol.72, No. 16, pp 1498-1522, 1999.

[2] J.J. Slotine and W. Li, Applied nonlinear contral,
Prentice Hall, 1991.

[3] V. Hamo, Finite time controllers, SIAM Journal of
Control and Optimization, Vol. 24, No. 4, pp. 760-770,
1986.

[4] Y. Hong, J. Huang, and Y. Xu, On an output finite-
time sabilization problem, IEEE Transactions on
Automatic Control, Vaol. 46, No. 2, pp. 305-309, 2001.

[5] Y. Hong, Y. Xu and J. Huang, Finite-time control
for robot manipulators, Systems & Control Letters, Vol.
46, No. 4, pp. 243-253, 2002.

[6] X. Yu and Z. Man, Multi-input uncertain linear
systems with terminal sliding-mode control, Automatica,
Vol. 34, No. 3, pp. 389-392, 1998.

[71 X. Yu and Z. Man, Fast terminal dliding-mode
control design for nonlinear dynamical systems, |IEEE

1438


Phil Dauwalder
1438


Transactions on Circuits and Systems |: Fundamental
Theory and Applications, Vol. 49, No. 2, pp. 261-264,
2002.

[8] Y. Tang, Terminal dliding mode control for rigid
robots, Automatica, Vol.34, No. 1, pp. 51-56, 1998.

[9] O. Barambones and V. Etxebarria, Robust diding
composite adaptive control for mechanical manipulators
with finite error convergence time, International Journal
of Systems Science, Vol. 32, No. 9, pp. 1101-1108, 2001.

[10] O. Barambones and V. Etxebarria, Energy-based
approach to dliding composite adaptive control for rigid
robots with finite error convergence time, International
Journal of Control, Vol. 75, No. 5, pp. 352-359, 2002.

[11] V. Para-Vega and G. Hirzinger, Chattering-free
dliding mode control for a class of nonlinear mechanical
systems, International Journal of Robust and Nonlinear
Control, Vol. 11, No. 12, pp. 1161-1178, 2001.

[12] Y. Feng, X. Yu and Z. Man, Non-singular terminal
dliding mode control of rigid manipulators, Automatica,
Vol. 38, No. 12, pp. 2159-2167, 2002.

[13] M. Zak, Termina attractors in neural networks,
Neural Networks, Vol. 2, pp. 259-274, 1989.

1439

TSM

Angular Velocity Error

Angular Velocity Error

Angular Velocity Error

25

15

Angular Position Error

05

-05

0 2 3 4 5 0 1 2 3 4 5
time (s) time (s)
15
10
5
o
3
g o0
5
S
-5
-10
-15
9 3 4 5 0
time (s) time (s)
3
_ 25
g
o2
s
= 15
2
]
a1
&
> 05
2
<
0
-05
[ 2 3 4 5 0 1 2 3 4 5
time (s) time (s)
15
10
5
g o0
g
2 -5
-10
-15
-20
[ 2 3 4 5 0 1 3 4 5

time (s)

b) Thejoint 2

time (s)

Fig.1 The discontinuous finite-time TSM control

25

15

Angular Position Error

05

time (s)

-0.5
0

time (s)

Torque
&

-10

time (s)

-15
0

a) Thejoint 1

1

2 3 4 5
time (s)


Phil Dauwalder
1439


2 3
. 25
15 5
& 2
1 g 1s
B E
05 5 !
5 05
0 <
0
-0.5 -0.5
0 1 2 3 4 5 0 2 3 5
time (5) time (s)
1 5
g o 0
&
£ g
52 -
ES
<3 10
” -15
0 5 0 5
time (s) time (s)
b) Thejoint 2
Fig. 2 TSM control with the boundary layer
3 3
25 § 25
A 2
B
15 =4
3 815
Foa <
=
05 ER
g
0 <os
-0.5 o
0 1 2 3 4 5 0 2 3 5
time (5) time (s)
0 20
-05
5 0
£ Fﬁf\
2 -20
4% -15 %
2 5
3 2 a0
8 -25
H -60
-3
-35 -80
1 5 5
time (s) time (s)
a) Thejoint 1
2 3
15 525
2 2
o 2
3 815
" os <
’ <1
2
0 <os
-05 )
1 2 3 4 5 0 2 3 5
time (s) time (s)
0 10
_ 05 0
s
G -1 -10
z
é -15 “z" -20
> 2 -30
E]
3 -25 -40
g
<
-3 -50
-35 -60
1 2 4 5 3
time (s) time (s)

Fig.3 The continuous finite-time TSM control

b) Thejoint 2

1440

Fig.4 The continuous finite-time TSM control
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