
Continuous Formal Verification

of Amazon s2n

Andrey Chudnov1, Nathan Collins1, Byron Cook3,4, Joey Dodds1,
Brian Huffman1, Colm MacCárthaigh3, Stephen Magill1(B), Eric Mertens1,

Eric Mullen2, Serdar Tasiran3, Aaron Tomb1, and Eddy Westbrook1

1 Galois, Inc., Portland, USA
stephen@galois.com

2 University of Washington, Seattle, USA
3 Amazon Web Services, Seattle, USA

4 University College London, London, UK

Abstract. We describe formal verification of s2n, the open source TLS
implementation used in numerous Amazon services. A key aspect of this
proof infrastructure is continuous checking, to ensure that properties
remain proven during the lifetime of the software. At each change to the
code, proofs are automatically re-established with little to no interac-
tion from the developers. We describe the proof itself and the technical
decisions that enabled integration into development.

1 Introduction

The Transport Layer Security (TLS) protocol is responsible for much of the
privacy and authentication we enjoy on the Internet today. It secures our phone
calls, our web browsing, and connections between resources in the cloud made
on our behalf. In this paper we describe an effort to prove the correctness of
s2n [3], the open source TLS implementation used by many Amazon and Amazon
Web Services (AWS) products (e.g. Amazon S3 [2]). Formal verification plays
an important role for s2n. First, many security-focused customers (e.g. financial
services, government, pharmaceutical) are moving workloads from their own data
centers to AWS. Formal verification provides customers from these industries
with concrete information about how security is established in Amazon Web
Services. Secondly, automatic and continuous formal verification facilitates rapid
and cost-efficient development by a distributed team of developers.

In order to realize the second goal, verification must continue to work with
low effort as developers change the code. While fundamental advances have been
made in recent years in the tractability of full verification, these techniques
generally either: (1) target a fixed version of the software, requiring significant re-
proof effort whenever the software changes or, (2) are designed around synthesis
of correct code from specifications. Neither of these approaches would work for
Amazon as s2n is under continuous development, and new versions of the code
would not automatically inherit correctness from proofs of previous versions.

c© The Author(s) 2018
H. Chockler and G. Weissenbacher (Eds.): CAV 2018, LNCS 10982, pp. 430–446, 2018.
https://doi.org/10.1007/978-3-319-96142-2_26

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-96142-2_26&domain=pdf

Continuous Formal Verification of Amazon s2n 431

To address the challenge of program proving in such a development environ-
ment, we built a proof and associated infrastructure for s2n’s implementations
of DRBG, HMAC, and the TLS handshake. The proof targets an existing imple-
mentation and is updated either automatically or with low effort as the code
changes. Furthermore, the proof connects with existing proofs of security prop-
erties, providing a high level of assurance.

Our proof is now deployed in the continuous integration environment for
s2n, and provides a distributed team of developers with repeated proofs of the
correctness of s2n even as they continue to modify the code. In this paper, we
describe how we structured the proof and its supporting infrastructure, so that
the lessons we learned will be useful to others who address similar challenges.

Figure 1 gives an overview of our proof for s2n’s implementation of the HMAC
algorithm and the tooling involved. At the left is the ultimate security property
of interest, which for HMAC is that if the key is not known, then HMAC is indis-
tinguishable from a random function (given some assumptions on the underlying
hash functions). This is a fixed security property for HMAC and almost never
changes (a change would correspond to some new way of thinking about security
in the cryptographic research community). The HMAC specification is also fairly
static, having been updated only once since its publication in 20021. Beringer
et al. [6] have published a mechanized formal proof that the high-level HMAC
specification establishes the cryptographic security property of interest.

As we move to the right through Fig. 1, we find increasingly low-level arti-
facts and the rate of change of these artifacts increases. The low-level HMAC
specification includes details of the API exposed by the implementation, and
the implementation itself includes details such as memory management and per-
formance optimizations. This paper focuses on verifying these components in a
manner that uses proof automation to decrease the manual effort required for
ongoing maintenance of these verification artifacts. At the same time, we ensure
that the automated proof occurring on the right-hand side of the figure is linked
to the stable, foundational security results present at the left.

In this way, we realize the assurance benefit of the foundational security
work of Beringer et al. while producing a proof that can be integrated into the
development workflow. The proof is applied as part of the continuous integration

system for s2n (which uses Travis CI) and runs every time a code change is
pushed or a pull request is issued. In one year of code changes only three manual
updates to the proof were required.

The s2n source code, proof scripts, and access to the underlying proof tools
can all be found in the s2n GitHub [3] repository. The collection of proof runs
is logged and appears on the s2n Travis CI page [4].

In addition to the HMAC proof, we also reused the approach shown in
the right-hand side of Fig. 1 to verify the deterministic random big generator
(DRBG) algorithm and the TLS Handshake protocol. In these cases we didn’t
link to foundational cryptographic security proofs, but nonetheless had specifi-
cations that provided important benefits to developers by allowing them to (1)

1 And this update did not change the functional behavior specified in the standard.

432 A. Chudnov et al.

check their code against an independent specification and (2) check that their
code continues to adhere to this specification as it changes. Our TLS Handshake
proof revealed a bug (which was promptly fixed) in the s2n implementation [10],
providing evidence for the first point. All of our proofs have continued to be used
in development since their introduction, supporting the second point.

This Paper
Work of Beringer et al.

Indistinguishability
from random

Security Property

Coq HMAC

High-Level

Changes Infrequently

Monolithic API

High-Level

s2n C code

Implementation

Changes Frequently

Increasing Automation

Proved In Coq Proved In Coq Combination of Coq (Manual)
and Cryptol (Automatic)

Proved with SAW
(mostly automatic)

Incremental
API

Low-Level

Fig. 1. An overview of the structure of our HMAC proof.

Related Work. Projects such as Everest [8,12], Cao [5], and Jasmin [1], gener-
ate verified cryptographic implementations from higher level specifications, e.g.

F* models. While progress in this space continues to be promising—HACL* has
recently achieved performance on primitives that surpasses handwritten C [25]—
we have found in our experiments that the generated TLS code does not yet meet
the performance, power, and space constraints required by the broad range of
AWS products that use s2n.

Static analysis for hand-written cryptographic implementations has been pre-
viously reported in the context of Frama-C/PolarSSL [23], focusing on scaling
memory safety verification to a large body of code. Additionally, unsound but
effective bug hunting techniques such as fuzzing have been applied to TLS imple-
mentations in the past [11,18]. The work we report on goes further by proving
behavioral correctness properties of the implementation that are beyond the
capabilities of these techniques. In this we were helped because the implemen-
tation of s2n is small (less than 10k LOC), and most iteration is bounded.

The goal of our work is to verify deep properties of an existing and actively
developed open source TLS implementation that has been developed for both
high performance and low power as required by a diverse range of AWS prod-
ucts. Our approach was guided by lessons learned in several previous attempts
to prove the correctness of s2n that either (1) required too much developer
interaction during the modification of the code [17], or (2) where pushbutton
symbolic model checking tools did not scale. Similarly, proofs developed using
tools from the Verified Software Toolchain (VST) [6] are valuable for establishing
the correctness and security of specifications, but are not sufficiently resilient to
code changes, making them challenging to integrate into an ongoing develop-
ment process. Their use of a layered proof structure, however, provided us with
a specification that we could use to leverage their security proof in our work.

Continuous Formal Verification of Amazon s2n 433

O’Hearn details the industry impact of continuous reasoning about code
in [19], and describes additional instances of integration of formal methods with
developer workflows.

2 Proof of HMAC

In this section, we walk through our HMAC proof in detail, highlighting how
the proof is decomposed, the guarantees provided, the tools used, and how this
approach supports integration of verification into the development work-flow.
While HMAC serves as an example, we have also performed a similar proof of
the DRBG and TLS Handshake implementations. We do not discuss DRBG
further, as there are no proof details that differ significantly from HMAC. We
describe our TLS verification in Sect. 3.

2.1 High-Level HMAC Specification

The keyed-Hash Message Authentication Code algorithm (HMAC) is used for
authenticated integrity in TLS 1.2. Authenticated integrity guarantees that the
data originated from the sender and was not changed or duplicated in transit.
HMAC is used as the foundation of the TLS Pseudorandom Function (PRF),
from which the data transmission and data authentication shared keys are
derived. This ensures that both the sender and recipient have exchanged the
correct secrets before a TLS connection can proceed to the data transmission
phase.

HMAC is also used by some TLS cipher suites to authenticate the integrity
of TLS records in the data transmission phase. This ensures, for example, that
a third party watching the TLS connection between a user and a webmail client
is unable to change or repeat the contents of an email body during transmission.
It is also used by the HMAC-based Extract-and-Expand Key Derivation Func-
tion (HKDF) which is implemented within s2n as a utility function for general
purpose key derivation and is central to the design of the TLS1.3 PRF.

FIPS 198-1 [24] defines the HMAC algorithm as

HMAC(K,message) = H((K ⊕ opad)‖H((K ⊕ ipad)‖message))

where H is any hash function, ⊕ is bitwise xor, and ‖ is concatenation. opad and
ipad are constants defined by the specification. We will refer to this definition
as the monolithic specification.

Following Fig. 1, we use the Cryptol specification language [14] to express
HMAC in a form suitable for mechanized verification, first in a monolithic form,
and then in an incremental form. We prove high-level properties with Coq [22]
and tie these to the code using the Software Analysis Workbench (SAW) [16].
We first describe the proof of high-level properties before going into specifics
regarding the tools in Sect. 2.4.

434 A. Chudnov et al.

2.2 Security Properties of HMAC

The Cryptol version of the Monolithic HMAC specification follows.

hmac k message = H((k ^ opad) # H((k ^ ipad) # message))

where H is any hash function, ^ is bitwise xor, and # is concatenation.
The high-level Cryptol specification and the FIPS document look nearly iden-

tical, but what assurance do we have that either description of the algorithm
is cryptographically secure? We can provide this assurance by showing that the
Cryptol specification establishes one of the security properties that HMAC is
intended to provide—namely, that HMAC is indistinguishable from a function
returning random bits.

Indistinguishability from random is a property of cryptographic output that
says that there is no effective strategy by which an attacker that is viewing the
output of the cryptographic function and a true random output can distinguish
the two, where an “effective” strategy is one that has a non-negligible chance
of success given bounded computing resources. If the output of a cryptographic
function is indistinguishable from random, that implies that no information can
be learned about the inputs of that function by examining the outputs.

We prove that our Cryptol HMAC specification has this indistinguishability
property using an operational semantics of Cryptol we developed in Coq. The
semantics enable us to reuse portions of the proof by Beringer et. al [6], which
uses the Coq Foundational Cryptography Framework (FCF) library [20] to estab-
lish the security of the HMAC construction. We construct a Coq proof showing
that our Cryptol specification is equivalent (when interpreted using the formal
operational semantics) to the specification considered in the Beringer et. al work.
The Cryptol specification is a stepping stone to automated verification of the
s2n implementations, so when combined with the verification work we describe
subsequently, we eventually establish that the implementation of HMAC in s2n
also has the desired security property. The Coq code directly relating to HMAC
is all on the s2n GitHub page. These proofs are not run as part of continuous
integration, rather, they are only rerun in the unlikely event that the monolithic
specification changes.

2.3 Low-Level Specification

The formal specification of HMAC presented in the FIPS standard operates on
a single complete message. However, network communication often requires the
incremental processing of messages. Thus all modern implementations of HMAC
provide an incremental interface with the following abstract types:

init : Key -> State

update : Message -> State -> State

digest : State -> MAC

The init function creates a state from a key, the update function updates
that state incrementally with chunks of the message, and the digest function
finalizes the state, producing the MAC.

Continuous Formal Verification of Amazon s2n 435

The one-line monolithic specification is related to these incremental functions
as follows. If we can partition a message m into m = m1‖m2‖ . . . ‖mn then (in
pseudo code/logic notation)

HMAC(k,m) = digest(update(mn(. . . (update m1(init k)))) (1)

In other words, any MAC generated by partitioning a message and incrementally
sending it in order through these functions should be equal to a MAC generated
by the complete message HMAC interface used in the specification.

We prove that the incremental interface to HMAC is equivalent to the non-
incremental version using a combination of manual proof in Coq and auto-
mated proof in Cryptol. Note that this equivalence property can be stated in
an implementation-independent manner and proved outside of a program veri-
fication context. This is the approach we take—independently proving that the
incremental and monolithic message interfaces compute the same HMAC, and
then separately showing that s2n correctly implements the incremental interface.

Our Coq proof proceeds via induction over the number of partitions with
the following lemmas establishing the relationship between the monolithic and
iterative implementations. These lemmas are introduced as axioms in the Coq
proof, but subsequently checked using SAW.

update_empty : forall s, HMAC_update empty_string s = s.

equiv_one : forall m k,

HMAC_digest (HMAC_update m (HMAC_init k)) = HMAC k m.

update_concat : forall m1 m2 s,

HMAC_update (concat m1 m2) s = HMAC_update m2 (HMAC_update m1 s).

The first lemma states that processing an empty message does not change
the state. The second lemma states that applying the incremental interface to a
single message is equivalent to applying the monolithic interface. These lemmas
constitute the base cases for an inductive proof of equation (1) above. The last
lemma states that calling update twice (first with m1 and then with m2) results
in the same state as calling update once with m1 concatenated with m2. This
constitutes the inductive step in the proof of (1).

The update_empty lemma can be proved by analyzing the code with symbolic
values provided for the state s, as the state is of fixed size. The equiv_one and

update_concat lemmas require reasoning about unbounded data. SAW has lim-
ited support for such proofs. In particular, it has support for equational rewriting
of terms in its intermediate language, but not for induction. In the case of the

update_concat lemma, a few simple builtin rewrite rules are sufficient to estab-
lish the statement for all message sizes. For equiv_one , a proof of the statement
for all message sizes would require induction. Since SAW does not support induc-
tion, we prove that this statement holds for a finite number of key and message
sizes. In theory we could still obtain a complete proof by checking all message
sizes up to 16k bytes (the maximum size message permitted by the TLS stan-
dard). This may be tractable in a one-off proof, but for our continuously-applied

436 A. Chudnov et al.

proofs we instead consider a smaller set of samples, chosen to cover all branches
in the code. This yields a result that is short of full proof, but still provides much
higher state space coverage than testing methods.

Given the three lemmas above, we then use Coq to prove the following the-
orem by induction on the list of partitions, ms.

HMAC key (fold_right concat empty_string ms) =

HMAC_digest (fold_left (fun (st: state) msg =>

HMAC_update msg st)

ms

(HMAC_init key)).

The theorem establishes the equivalence of the incremental and monolithic
interfaces for any decomposition of a message into any number of fragments of
any size.

2.4 Implementation Verification

The incremental Cryptol specification is low-level enough that we were able to
connect it to the s2n HMAC implementation using automated proof techniques.
As this is the aspect of the verification effort that is critical for integration into
an active development environment, we go into some detail, first discussing the
tools that were used and then describing the structure of the proof.

Tools. We use the Software Analysis Workbench (SAW) to orchestrate this step
of the proof. SAW is effective both for manipulating the kinds of functional terms
that arise from Cryptol, and for constructing functional models from imperative
programs. It can be used to show equivalence of distinct software implemen-
tations (e.g. an implementation in C and one in Java) or equivalence of an
implementation and an executable specification.

SAW uses bounded symbolic execution to translate Cryptol, Java, and C pro-
grams into logical expressions, and proves properties about the logical expres-
sions using a combination of rewriting, SAT, and SMT. The result of the bounded
symbolic execution of the input programs is a pure functional term representing
the function’s entire semantics. These extracted semantics are then related to
the Cryptol specifications by way of precondition and postcondition assertions
on the program state.

The top-level theorems we prove have some variables that are universally
quantified (e.g. the key used in HMAC) and others that are parameters we
instantiate to a constant (e.g. the size of the key). We achieve coverage for
the latter by running the proof for several parameter instantiations. In some
cases this is sufficient to cover all cases (e.g. the standard allows only a small
finite number of key sizes). In others, the space of possible instantiations is
large enough that fully covering it would yield runtimes too long to fit into the
developer workflow (for example, messages can be up to 16k long). In such cases,
we consider a smaller set of samples, chosen to cover all branches in the code.

Continuous Formal Verification of Amazon s2n 437

This yields a result that is short of full proof, but still provides much higher
state space coverage than testing methods.

Internally SAW reasons about C programs by first translating them to LLVM.
For the remainder of the paper we will talk about the C code, although from
a soundness perspective the C code must be compiled through LLVM for the
proofs to apply to the compiled code.

Proof Structure. The functions in the low-level Cryptol specification described
above share the incremental format of the C program, and also consume argu-
ments and operate on state that matches the usage of arguments and state in the
C code. However, the Cryptol specification does not capture the layout of state
in memory. This separates concerns and allows us to reason about equivalence of
the monolithic and incremental interfaces in a more tractable purely functional
setting, while performing the implementation proof in a context in which the
specification and implementation are already structurally quite similar.

As an example of this structural similarity, the C function has type:

int s2n_hmac_update(struct s2n_hmac_state *state,

const void *in, uint32_t size);

We define a corresponding Cryptol specification with type:

hmac_update : {Size} (32 >= width Size) =>

HMAC_state -> [Size][8] -> HMAC_state

These type signatures look a bit different, but they represent the same thing.
In Cryptol, we list Size first, because it is a type, not a value. This means
that we do not need to independently check that the input buffer (in Cryptol
represented by the type [Size][8]) matches the size input—the Cryptol type
system guarantees it. The type system also sets the constraint that the size
doesn’t exceed 232, a constraint set by the C type of Size.

We use SAW’s SAWScript language to describe the expected memory layout
of the C program, and to map the inputs and outputs of the Cryptol function
to the inputs and outputs of the C program. The following code presents the
SAWScript for the hmac_update_spec function.

1 let hmac_update_spec msg_size cfg = do {

2 (msg_val, msg_pointer) <- ptr_to_fresh_array msg_size i8;

3 (initial_state, state_pointer) <- setup_hmac_state cfg

4 hmac_invariants initial_state cfg;

5

6 execute_func [state_pointer, message_pointer, msg_size];

7

8 let final_state =

9 {{ hmac_update_c_state initial_state msg_val }};

10 check_hmac_state state_pointer final_state;

11 hmac_invariants final_state cfg;

12 check_return zero;

13 };

438 A. Chudnov et al.

This SAWScript code represents a Hoare triple, with the precondition and
post condition separated by the body (the execute_func command), which per-
forms the symbolic execution of the LLVM code using the provided arguments.
Lines 2 and 3 are effectively universal quantification over the triple, setting up
the values and pointers that match the type needed by the C function. The
values msg_val and initial_state are referenced in both the C code and the
Cryptol specification, whereas the pointers exist only on the C side.

Lines 8–10 capture that the final state resulting from executing the C function
should be equivalent to the state produced by evaluating the Cryptol specifica-
tion. Specifically, Lines 8 and 9 capture the output of the Cryptol specification
(double curly braces denote Cryptol expressions within SAWScript) and Line 10
asserts that this state matches the C state present in memory at state_pointer.
This is what ultimately establishes equivalence of the implementation and spec-
ification.

The proof is aided by maintaining a collection of state invariants, which are
assumed to hold in Line 4 and are re-established in Line 11. These are manual
invariants, but they occur as function specifications rather than appearing inter-
nal to loops. They only require modification in the event that the meaning of
the HMAC state changes.

The msg_size parameter indicates how large of a message this particular
proof should cover. Because SAW performs a bounded unrolling of the program
under analysis, each proof must cover one fixed size for each unbounded data
structure or iterative construct. However, by parameterizing the proof, it can
easily be repeated for multiple sizes. Furthermore, as described in Sect. 2.3, we
also prove in Coq that calling update twice with messages m1 and m2 is equiv-
alent to calling it once with m1 concatenated with m2. As a consequence, the
fixed size proofs we perform of update can be composed to guarantee that the
update function is correct even over longer messages.

The cfg parameter contains configuration values for each of the six hashes
that can be used with HMAC. The configuration values of interest to HMAC
are the input and output sizes of the hash block function.

Given the specification of the C function above, we can now verify that the
implementation satisfies the specification:

verify m "s2n_hmac_update"

hash_ovs true (hmac_update_spec msg_size cfg) yices_hash_unint;

The "s2n_hmac_update" argument specifies the C function that we are veri-
fying. hash_ovs is a list, defined elsewhere, that contains all of the overrides that
the verification will use. An override is a specification that will be used in place
of a particular implementation function and corresponds to what other tools call
stubs or models. In this case, we’ve overridden all of the C hash functions, stat-
ing assumptions regarding their use of memory and their equivalence to Cryptol
implementations of the same hash functions. When the verifier comes across a
call to one of these hash functions in the C code, it will instead use the provided
specification. The result is that our proof assumes correct implementation of the

hash functions.

Continuous Formal Verification of Amazon s2n 439

The fact that the structure of the low-level Cryptol specification matches
the structure of the C code, coupled with SAW’s use of SMT as the primary
mechanism for discharging verification conditions, enables a proof that contin-
ues to work through a variety of code changes. In particular, changes to the
code in function bodies often requires no corresponding specification or proof
script change. Similarly, changes that add fields or change aspects of in-memory
data structures that are not referenced by the specification do not require proof
updates. Changes in the API (e.g. function arguments) do require proof script
changes, but these are typically minor. Fixing a broken proof typically involves
adding a new state field to the SAW script, updating the Cryptol specification to
use that field correctly, and then passing the value of that field into the Cryptol
program in the post-condition. If the Cryptol specification is incorrect, SAW will
generate counterexamples that can be used to trace through the code and the
spec together in order to discover the mismatch.

2.5 Integrating the Proof into Development

Integration with the s2n CI system mostly took place within the Travis config-
uration file for s2n. At the time of integration, targets for the build, integration
testing, and fuzzing on both Linux and OSX already existed. We updated the
Travis system with Bash scripts that automatically download and install the
appropriate builds of SAW, Z3, and Yices into the Travis system. These files are
in the s2n repository and can be reused by anyone under the Apache 2.0 license.

A Travis CI build can occur on any number of virtual machines, and each
virtual machine is given an hour to complete. We run our HMAC proofs on
configurations for six different hashes. For each of these configurations we check
at three key-sizes in order to test the relevant cases in the implementation (small
keys get padded, exact keys remain unchanged, and large keys are hashed). For
each of those key-sizes we check six different message sizes. These proofs run in
an average of ten minutes. We discovered that it’s best to stay well clear of the
60 min limit imposed by Travis in order to avoid false-negatives due to variations
in execution time.

The proof runs alongside the tests that are present in the s2n repository on
every build, and if the proof fails a flag is raised just as if a test case were to fail.

3 Proof of TLS Handshake

In addition to the HMAC and DRBG proofs, we have proved correctness of the
TLS state machine implemented in s2n. Specifically, we have proved that (1) it
implements a subset of TLS 1.2 as defined in IETF RFCs 5246 [21], 5077 [15] and
6066 [13] and (2) the socket corking API, which optimizes how data is split into
packets, is used correctly. Formally, we proved that the implementation refines

a specification (conversely, the specification simulates the implementation). We
obtained this Cryptol specification, called the RFC specification by examining
the RFCs and hand-compiling them into a Cryptol file complete with relevant

440 A. Chudnov et al.

excerpts from the RFCs. We assume that the TLS handshake as specified in the
RFCs is secure, and do not formalize nor verify any cryptographic properties
of the specification. In the future, we would like to take a similar approach to
that described in Sect. 2.2 to link our refinement proof with a specification-level
security proof for TLS, such as that from miTLS [9].

The s2n state machine is designed to ensure correctness and security, pre-
venting join-of-state-machines vulnerabilities like SMACK [7]. In addition, s2n
allows increased throughput via the use of TCP socket corking, which combines
several TLS records into one TCP frame where appropriate.

The states and transitions of the s2n state machine are encoded explicitly
as linearized arrays, as opposed to being intertwined with message parsing and
other logic. This is an elegant decomposition of the problem that makes most of
the assumptions explicit and enables the use of common logic for message and
error handling as well as protocol tracking.

Even with the carefully designed state machine implementation, formal spec-
ification and verification helped uncover a bug [10].

Structure of the TLS Handshake State Machine Correctness Proof.

The automated proof of correctness of the TLS state machine has two parts
(Fig. 2). First we establish an equivalence between the two functions2 that drive
the TLS handshake state machine in s2n and their respective specifications in
Cryptol. Again we utilize low-level specifications that closely mirror the shape
of the C functions. Our end goal, however, is correctness with respect to the
standards, encoded in the RFC specification in Cryptol. The library implements
only a subset of the standards, thus we can only prove a simulation relation and
not equivalence. Namely, we show that every sequence of messages generated by
the low-level specification starting from a valid initial state can be generated by
the RFC specification starting from a related state. The dashed line in Fig. 2
shows at which points the states match at the implementation and specification
levels.

CLIENT HELLO SERVER HELLO APPLICATION DATA

RFC spec

Low-lvl spec

C Code

handshakeTransition

advance message

conn set handshake type

s2n advance message

s2n conn set handshake type

Fig. 2. Structure of the TLS handshake correctness proof

2 s2n conn set handshake type and s2n advance message.

Continuous Formal Verification of Amazon s2n 441

RFC-Based Specification of the TLS Handshake. The high-level hand-
shake protocol specification that captures the TLS state machine is implemented
in Cryptol and accounts for the protocol, message type and direction, as well
as conditions for branching in terms of abstract connection parameters, but not
message contents.

We represent the set of states as unsigned 5-bit integers (Listing 1). The state
transition relation is represented by a Cryptol function handshakeTransition
(Listing 2) which, given abstract connection parameters (Listing 3) and the
current state returns the next state. If there is no valid next state, the state
machine stutters. The parameters determine the transition to take in each state
and represent configurations of the end-points as well as contents of the HELLO

message sent by the other party. We kept the latter separate from the message
specifications in order to avoid reasoning about message structure and parsing.
We can still relate the abstract parameters to the implementation because they
are captured in the connection state. Finally, the message function (Listing 4)
gives the message type, protocol and direction for every state.

type State = [5]

(helloRequestSent : State) = 0

(clientHelloSent : State) = 1

(serverHelloSent : State) = 2

// ...

(serverCertificateStatusSent : State) = 23

Listing 1: Specification of TLS handshake protocol states

handshakeTransition : Parameters -> State -> State

handshakeTransition params old =

snd (find fst (True, old) [(old == from /\ p, to)

| (from, p, to) <- valid_transitions]) where

valid_transitions =

[(helloRequestSent, True, clientHelloSent)

,(clientHelloSent, True, serverHelloSent)

,(serverHelloSent, params.keyExchange != DH_anon

/\ ~params.sessionTicket, serverCertificateSent)

// ...

,(serverCertificateStatusSent, ~(keyExchangeNonEphemeral params)

, serverKeyExchangeSent)

]

Listing 2: Specification of the TLS handshake state transition function. Valid
transitions are encoded as triples (start, transition condition, end).

442 A. Chudnov et al.

type KeyExchange = [3]

(DH_anon : KeyExchange) = 0

// ...

(DH_RSA : KeyExchange) = 5

type Parameters =

{keyExchange : KeyExchange // Negotiated key exchange algorithm

,sessionTicket : Bit // The client had a session ticket

,renewSessionTicket : Bit // Server decides to renew a session ticket

,sendCertificateStatus : Bit // Server decides to send the certificate

// status message

,requestClientCert : Bit // Server requests a cert from the client

,includeSessionTicket : Bit} // Server includes a session ticket

// extension in SERVER_HELLO

Listing 3: Abstract connection parameters

message : State -> Message

message = lookupDefault messages (mkMessage noSender data error)

where messages =

[(helloRequestSent, mkMessage server handshake helloRequest)

,(clientHelloSent, mkMessage client handshake clientHello)

,(serverHelloSent, mkMessage server handshake serverHello)

// ...

,(serverChangeCipherSpecSent,

mkMessage server changeCipherSpec changeCipherSpecMessage)

,(serverFinishedSent, mkMessage server handshake finished)

,(applicationDataTransmission, mkMessage both data applicationData)

]

Listing 4: Expected message sent/received in each handshake state

Socket Corking. Socket corking is a mechanism for reducing packet fragmenta-
tion and increasing throughput by making sure full TCP frames are sent when-
ever possible. It is implemented in Linux and FreeBSD using the TCP CORK and
TCP NOPUSH flags respectively. When the flag is set, the socket is considered
corked, and the operating system will only send complete (filled up to the buffer
length) TCP frames. When the flag is unset, the current buffer, as well as all
future writes, are sent immediately.

Writing to an uncorked socket is possible, but undesirable as it might result
in partial packets being sent, potentially reducing throughput. On the other
hand, forgetting to uncork a socket after the last write can have more serious
consequences. According to the documentation, Linux limits the duration of
corking to 200 ms, while FreeBSD has no limit. Hence, leaving a socket corked in
FreeBSD might result in the data not being sent. We have verified that sockets
are not corked or uncorked twice in a row. In addition, the structure of the
message handling implementation in s2n helps us informally establish a stronger
corking safety property. Because explicit handshake message sequences include

Continuous Formal Verification of Amazon s2n 443

the direction the message is sent, we can establish that the socket is (un)corked
appropriately when the message direction changes. In future work we plan to
expand the scope of our proof to allow us to formally establish full corking
safety.

4 Operationalizing the Proof

We have integrated the checking of our proof into the build system of s2n, as
well as the Continuous Integration (CI) system used to check the validity of code
as it is added to the s2n repository on GitHub. For the green “build passed”
badge displayed on the s2n GitHub page to appear, all code updates now must
successfully verify with our proof scripts. Not only do the these checks run on
committed code, they are also automatically run on all pull requests to the
project. This allows the maintainers of s2n to quickly determine the correctness
of submitted changes when they touch the code that we have proved. In this
section we discuss aspects of our tooling that were important enablers of this
integration.

Proof Robustness. For this integration to work, our proofs must be robust in the
face of code change. Evolving projects like s2n should not be slowed down by
the need to update proofs every time the code changes. Too many proof updates
can lead to significantly slowed development or, in the extreme case, to proofs
being disabled or ignored in the CI environment. The automated nature of our
proofs mean that they generally need to be changed only in the event of interface
modifications—either to function declarations or state definitions.

Of these two, state changes are the most common, and can be quite complex
considering that there are usually large possibly nested C structs involved (for
example, the s2n_connection struct has around 50 fields, some of which are
structs themselves). To avoid the developer pain that would arise if such struct
updates caused the proof the break, we have structured the verification so that
proof scripts do not require updates when the modified portions of the state do
not affect the computation being proved. Recall that our proofs are focused on
functional correctness. Thus in order to affect the proof, a new or modified field
must influence the computation. Many struct changes target non-security-critical
portions of the code (e.g. to track additional data for logging) and so do not meet
this criterion. For such fields we prove that they are handled in a memory safe
manner and that they do not affect the computation being performed by the
code the proof script targets.

In the future, we intend to add the option to perform a “strict” version of
this state handling logic to SAW, which would ensure that newly added fields are
not modified at all by the portion of the code being proved. Such a check would
ensure that the computation being analyzed computes the specified function and

nothing else and would highlight cases in which new fields introduce undesirable
data flows (e.g. incorrectly storing sensitive data). However even such an option
would not replace whole program data flow analysis, which we recommend in
cases where there is concern about potential incorrect data handling.

444 A. Chudnov et al.

Negative Test Cases. Each of our proofs also includes a series of negative test
cases as evidence that the tools are functioning properly. These test cases patch
the code with a variety of mistakes that might actually occur and then run the
same proof scripts using the same build tools to check that the tool detects the
introduced error.

Examples of the negative test cases we use include an incorrect modification
to a side-channel mitigation, running our TLS proofs on a version of the code
with an extra call to cork and uncork, a version modified to allow early CCS, as
well as a version with the incomplete handshake bug that we discovered in the
process of developing the proof. Such tests are critical, both to display the value
of the proofs, by providing them with realistic bugs to catch, and as a defense
against possible bugs in the tool that may be introduced as it is updated.

Proof Metrics. We also report real-time proof metrics. Our proof scripts print
out JSON encoded statistics into the Travis logs. From there, we have developed
an in-browser tool that scrapes the Travis logs for the project, compiling the
relevant statistics into easily consumable charts and tables. The primary metrics
we track are: (1) the number of lines of code that are analyzed by the proof (which
increases as we develop proofs for more components of s2n), and (2) the number
of times the verified code has been changed and re-analyzed (which tracks the
ongoing value of the proof). This allows developers to easily track the impact of
the proofs over time.

Since deployment of the proof to the CI system in November of 2016 our
proofs have been re-played 956 times. This number does not account for proof re-
plays performed in forks of the repository. We have had to update the proof three
times. In all cases the proof update was complete before the code review process
finished. Not all of these runs involved modification to the code that our proofs
were about, however each of the runs increased the confidence of the maintainers
in the relevant code changes, and each run reestablishes the correctness of the
code to the public, who may not be aware of what code changed at each commit.

HMAC and DRBG each took roughly 3 months of engineering effort. The
TLS handshake verification took longer at 8 months, though some of that time
involved developing tool extensions to support reasoning about protocols. At
the start of each project, the proof-writers were familiar with the proof tools but
not with the algorithms or the s2n implementations of them. The effort amounts
listed above include understanding the C code, writing the specifications in Cryp-
tol, developing the code-spec proofs using SAW, the CI implementation work,
and the process of merging the proof artifacts into the upstream code-base.

5 Conclusion

In this case study we have described the development and operation in practice of
a continuously checked proof ensuring key properties of the TLS implementation
used by many Amazon and AWS services. Based on several previous attempts
to prove the correctness of s2n that either required too much developer inter-
action during modifications or where symbolic reasoning tools did not scale, we

Continuous Formal Verification of Amazon s2n 445

developed a proof structure that nearly eliminates the need for developers to
understand or modify the proof following modifications to the code.

References

1. Almeida, J.B., Barbosa, M., Barthe, G., Blot, A., Grégoire, B., Laporte, V.,
Oliveira, T., Pacheco, H., Schmidt, B., Strub, P.: Jasmin: high-assurance and high-
speed cryptography. In: Thuraisingham, B.M., Evans, D., Malkin, T., Xu, D. (eds.),
Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communi-
cations Security, CCS 2017, Dallas, TX, USA, 30 October– 03 November 2017, pp.
1807–1823. ACM (2017)

2. Amazon.com, Inc., Amazon Simple Storage Service (s3). https://aws.amazon.com/
s3/

3. Amazon.com, Inc. s2n. https://github.com/awslabs/s2n. Accessed Dec 2017
4. awslabs/s2n - Travis CI. https://travis-ci.org/awslabs/s2n
5. Barbosa, M., Castro, D., Silva, P.F.: Compiling CAO: from cryptographic specifi-

cations to C implementations. In: Abadi, M., Kremer, S. (eds.) POST 2014. LNCS,
vol. 8414, pp. 240–244. Springer, Heidelberg (2014). https://doi.org/10.1007/978-
3-642-54792-8 13

6. Beringer, L., Petcher, A., Katherine, Q.Y., Appel, A.W.: Verified correctness and
security of OpenSSL HMAC. In: USENIX Security Symposium, pp. 207–221 (2015)

7. Beurdouche, B., Bhargavan, K., Delignat-Lavaud, A., Fournet, C., Kohlweiss, M.,
Pironti, A., Strub, P.-Y., Zinzindohoue, J.K.: A messy state of the union: taming
the composite state machines of TLS. In: 2015 IEEE Symposium on Security and
Privacy (SP), pp. 535–552. IEEE (2015)

8. Bhargavan, K., Fournet, C., Kohlweiss, M., Pironti, A., Strub, P.: Implementing
TLS with verified cryptographic security, pp. 445–459. IEEE, May 2013

9. Bhargavan, K., Fournet, C., Kohlweiss, M., Pironti, A., Strub, P.-Y., Zanella-
Bèguelin, S.: Proving the TLS handshake secure (as it is). Cryptology ePrint
Archive, Report 2014/182 (2014). https://eprint.iacr.org/2014/182

10. Chudnov, A.: Missing branches in the handshake state machine, July 2017. https://
github.com/awslabs/s2n/pull/551

11. de Ruiter, J., Poll, E.: Protocol state fuzzing of TLS implementations. In: 24th
USENIX Security Symposium (USENIX Security 15), pp. 193–206. USENIX Asso-
ciation, Washington, D.C. (2015)

12. Delignat-Lavaud, A., Fournet, C., Kohlweiss, M., Protzenko, J., Rastogi, A.,
Swamy, N., Zanella-Béguelin, S., Bhargavan, K., Pan, J., Zinzindohoué, J.K.:
Implementing and proving the TLS 1.3 record layer. In: 2017 IEEE Symposium on
Security and Privacy (SP), pp. 463–482. IEEE (2017)

13. Eastlake III, D.: Transport Layer Security (TLS) Extensions: Extension Defini-
tions. RFC 6066, January 2011

14. Erkök, L., Matthews, J.: Pragmatic equivalence and safety checking in Cryptol, p.
73. ACM Press (2008)

15. Eronen, P., Tschofenig, H., Zhou, H., Salowey, J.A.: Transport Layer Security
(TLS) Session Resumption without Server-Side State. RFC 5077, January 2008

16. Galois, Inc.: The software analysis workbench. https://saw.galois.com/index.html
17. Gorelli, M.: Deductive verification of the s2n HMAC code. Master’s thesis, Uni-

verstity of Oxford (2016)

https://aws.amazon.com/s3/
https://aws.amazon.com/s3/
https://github.com/awslabs/s2n
https://travis-ci.org/awslabs/s2n
https://doi.org/10.1007/978-3-642-54792-8_13
https://doi.org/10.1007/978-3-642-54792-8_13
https://eprint.iacr.org/2014/182
https://github.com/awslabs/s2n/pull/551
https://github.com/awslabs/s2n/pull/551
https://saw.galois.com/index.html

446 A. Chudnov et al.

18. Kaloper-Meršinjak, D., Mehnert, H., Madhavapeddy, A., Sewell, P.: Not-quite-so-
broken TLS: lessons in re-engineering a security protocol specification and imple-
mentation. In: 24th USENIX Security Symposium (USENIX Security 2015), pp.
223–238. USENIX Association, Washington, D.C. (2015)

19. O’Hearn, P.: Continuous reasoning: scaling the impact of formal methods. In: Logic
in Computer Science (LICS). (2018)

20. Petcher, A., Morrisett, G.: The foundational cryptography framework.
arXiv:1410.3735 [cs], October 2014. arXiv:1410.3735

21. Rescorla, E., Dierks, T.: The Transport Layer Security (TLS) Protocol Version 1.2.
RFC 5246, August 2008

22. The Coq Development Team. The Coq proof assistant, version 8.7.1, December
2017

23. Trustinsoft. PolarSSL verification kit. https://trust-in-soft.com/polarssl-
verification-kit/

24. Turner, J.M.: The keyed-Hash Message Authentication Code (HMAC). Federal
Information Processing Standards Publication (2008)

25. Zinzindohoué, J.-K., Bhargavan, K., Protzenko, J., Beurdouche, B.: HACL*: a ver-
ified modern cryptographic library. In: ACM Conference on Computer and Com-
munications Security (CCS) (2017)

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the chapter’s
Creative Commons license, unless indicated otherwise in a credit line to the material. If
material is not included in the chapter’s Creative Commons license and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder.

http://arxiv.org/abs/1410.3735
http://arxiv.org/abs/1410.3735
https://trust-in-soft.com/polarssl-verification-kit/
https://trust-in-soft.com/polarssl-verification-kit/
http://creativecommons.org/licenses/by/4.0/

	Continuous Formal Verification of Amazon s2n
	1 Introduction
	2 Proof of HMAC
	2.1 High-Level HMAC Specification
	2.2 Security Properties of HMAC
	2.3 Low-Level Specification
	2.4 Implementation Verification
	2.5 Integrating the Proof into Development

	3 Proof of TLS Handshake
	4 Operationalizing the Proof
	5 Conclusion
	References

