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Abstract

Additive manufacturing enables the nearly uncompromised production of optimized topologies. However, due to the

overhang limitation, some designs require a large number of supporting structures to enable manufacturing. Because these

supports are costly to build and difficult to remove, it is desirable to find alternative designs that do not require support. In

this work, a filter is presented that suppresses non-manufacturable regions within the topology optimization loop, resulting

in designs that can be manufactured without the need for supports. The filter is based on front propagation, can be evaluated

efficiently, and adjoint sensitivities are calculated with almost no additional computational cost. The filter can be applied

also to unstructured meshes and the permissible degree of overhang can be freely chosen. The method is demonstrated

on several compliance minimization problems in which its computational efficiency and flexibility are shown. The current

applications are in 2D, and the proposed method is readily extensible to 3D.

Keywords Topology optimization · Additive manufacturing · Overhang · Front propagation

1 Introduction

Topology optimized designs are often complex, contain-

ing many branches or small details. In most cases, the

geometrical complexity of these designs cannot be accom-

modated with conventional manufacturing methods such

as milling or casting. Additive manufacturing on the other

hand, enables the production of complex parts, by creating

a product layer upon layer. Although additive manufactur-

ing offers greater form freedom, it also has manufacturing

limitations, such as a minimum feature size, minimum slot

distance, and a limitation on the inclination of downward

facing surfaces, the overhang limitation (Thomas 2009).
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The present study concentrates on the overhang limitation.

Most additive manufacturing processes, such as selective

laser melting (SLM), fused deposition melting and stereo

lithography, exhibit an overhang limitation. This is caused

by the fact that each layer needs a certain amount

of mechanical support or thermal conduction from the

previously built layer, which limits the distance that a

layer can extend unsupported over the layer underneath.

Manufacturability is thus controlled by the angle between a

down-facing surface and the base plate, the overhang angle,

as defined in Fig. 1a. The minimum overhang angle, αoh,

is the smallest manufacturable overhang angle. For SLM,

this angle is mostly reported around 45◦ (Thomas 2009), but

varies for different process conditions (Wang et al. 2013;

Cloots et al. 2013). Overhanging regions of a design with

α < αoh can be built by adding support structures as

displayed in Fig. 1b. However, support structures increase

the build time, add material cost, and their removal can be

a difficult and costly task, especially for internal structures

that are difficult to access.

Consequently, developing topology optimization meth-

ods that incorporate a minimum overhang angle became an

active research topic. To the best of authors’ knowledge,

Brackett et al. (2011) were the first to investigate manufac-

turing constraints for additive manufacturing in a topology
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(a) (b)

Fig. 1 The overhang angle is defined as the angle α that a down-facing

surface of the combined printing layers makes with respect to the base

plate (a). Down-facing surfaces below the critical overhang angle need

to be supported by support pillars, indicated with gray dashed lines (b)

optimization context. They proposed a methodology to mea-

sure the overhang angle for evolutionary topology optimiza-

tion, but this method has not been implemented. The first

actual implementation was done by Gaynor et al. (2014),

detailed in Gaynor and Guest (2016). A wedge shaped fil-

ter in combination with Heaviside projection was used to

obtain self-supporting topologies. However, due to the non-

linearity introduced by the overhang filter in combination

with Heaviside projection, the number of iterations required

for convergence was high. Subsequently, Langelaar (2017)

presented an overhang restriction that evaluates the over-

hang angle on a structured mesh, where the amount of

material below each element is used as a measure for over-

hang. Self-supporting designs were obtained in 2D as well

as in 3D (Langelaar 2016). However, the filter is only appli-

cable to rectangular structured meshes, and αoh can only be

tuned by changing the element aspect ratio.

Both (Gaynor and Guest 2016) and (Langelaar 2016,

2017) evaluate the manufacturability in a global sense,

following the layer by layer fashion of the manufacturing

process. Other methods, that only constrain the overhang

angle locally, have also been presented. Both (Qian 2017)

and (Allaire et al. 2017a) proposed a geometrical overhang

constraint by constraining the angle between the normal

vector at the perimeter and the build direction. Qian (2017)

uses density-based topology optimization in combination

with a non-discreteness constraint to suppress intermediate

densities, while in Allaire et al. (2017a) level-set-based

topology optimization is used. Although both methods

reduce the overhang, unmanufacturable sawtooth patterns

are generated, due to the local nature of the methods.

Finally, Guo et al. (2017) introduced an overhang constraint

for moving morphable components and moving morphable

voids. Although a large number of iterations is required,

the resulting designs are overhang free. Unmanufacturable

sawtooth patterns are avoided by preventing voids to

overlap. Furthermore, the importance of build orientation is

shown by including orientation in the optimization.

Besides the direct implementation of a minimum over-

hang angle as a design rule, other approaches have been pro-

posed to limit the amount of support material required for

manufacturing. Mirzendehdel and Suresh (2016) presented

a constraint on the support structure volume. However,

when no support was allowed, the discontinuous identifica-

tion of overhanging surfaces seemed to result in a casting

constraint, eliminating also the allowable overhanging sur-

faces. Although feasible, the results will most likely be

sub-optimal. Finally, Allaire et al. (2017a, b) presented a

constraint on the compliance of the intermediate shapes of

a topology during the layer-by-layer manufacturing, which

should constrain the overhang naturally. This is reflected

in the results, where the amount of overhang is reduced.

Although physics-based constraints have great potential

by, e.g., predicting distortions during and after manufac-

turing, they tend to be computationally expensive, as the

compliance of partly build designs has to be evaluated or

approximated many times per iteration.

In order for a method to be of practical use in an industrial

setting, it should meet the following requirements. First of

all, the critical overhang angle should be adjustable, since

this value varies according to the specific process conditions

and the choice of material. Second, the overhang restriction

should be able to work on unstructured meshes. In practical

situations, the design domain is rarely rectangular and

can contain holes and curved surfaces, which cannot

be discritized with a structured mesh. Furthermore, the

overhang restriction should be computationally inexpensive;

its evaluation time and sensitivity analysis time should be

of the same order, or lower, as the objective evaluation

time, and should not add an excessive amount of iterations

required to converge to the optimum layout. Finally, the

overhang restriction should not contain parameters that need

to be tuned for every optimization problem.

This article presents a method to control the angle

of overhanging regions during topology optimization

which addresses all the above mentioned requirements.

Overhanging regions are identified by mimicking the

layer upon layer manufacturing process. Instead of adding

discrete layers, the printing history is modeled as a

continuous process with an advancing front. By employing

efficient algorithms developed to solve front propagation

problems in combination with adjoint sensitivities, the

additional computation cost remains small. This method

of overhang detection was first presented in van de Ven

et al. (2018), where the overhang limitation was included

as an additional constraint. In this paper, it is enforced

through a filter, improving the robustness of the method.

The formulation of the filter based on front propagation

is dimension and mesh independent (Sethian 1996), which

allows for extension to 3D. For the sake of brevity and
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clarity of the discussion, the overhang restriction method

and examples will be presented in a 2D setting only.

The next section introduces the overhang detection

procedure, and the implementation thereof in topology

optimization is discussed in Section 3. The numerical

implementation is shown in Section 4, and numerical

examples are presented in Section 5. Finally, conclusions

are given in Section 6.

2 Overhang detection

In this section, the overhang detection procedure based on

front propagation, as presented in van de Ven et al. (2018), is

presented. The resulting procedure is subsequently used in

the topology optimization to eliminate overhanging regions.

2.1 Overhang detection through front propagation

Front propagation methods track an initial curve or surface

�0 as it evolves in space. This has a clear resemblance

with the additive manufacturing process, where with every

added layer, the boundary of the product advances. Instead

of tracking the propagating front explicitly, the arrival time

field of the propagation is calculated. The arrival time

of a spatial point represents the time at which the front

reaches that location. The front propagation can then be

reconstructed by observing isolines of the arrival time field.

How the front propagates, is ultimately determined by a

speed function, which dictates the propagation of the front

in each direction and location.

Consider the geometry given in Fig. 2, that is to be

printed on the base plate �0, which coincides with the initial

position of the front. When printed in the b-direction with

αoh = 45◦, the shaded region will be overhanging, meaning

that it will fail during printing. Although the complete

extended region on the top-right is overhanging, from here

on we will reserve the term overhang for regions that are

Fig. 2 An example part which, when manufactured from the baseplate

�0 with build direction b, will have an overhanging region (shaded).

The rate at which the layers can expand without failure defines the

minimum overhanging angle αoh

not manufacturable due to the overhang limitation. The

goal of the front propagation is to detect this region in a

cost effective, robust, manner. When the front, initially at

�0, is propagated with an isotropic speed function within

this geometry, it starts to curve around corners, as can be

seen in Fig. 3a. In order to obtain an arrival time field

that represents the printing sequence of individual layers,

the speed function is modified such that the front travels

faster in directions deviating from the build direction. This

increase in speed compensates for the larger distance to be

traveled in the hanging region, so that the front stays parallel

to base plate �0 instead of curving, as illustrated in Fig. 3b.

Finally, in order to detect overhang, the propagation

speed is decreased when the front travels in a direction

below αoh, as shown in Fig. 3c. The earliest possible arrival

time, i.e. the minimum arrival time, for a point is the arrival

time of a front that has traveled straight from the base plate

toward that point, which is equal to the distance toward the

base plate divided by the propagation speed:

Tmin(x) =
x · b

f (b)
, (1)

where b is a unit vector parallel to the build direction,

f (b) is the propagation speed in that direction, and a · b

(a) Arrival time field

(c) Arrival time field (d) Delay field

(b) Arrival time field

Fig. 3 Contour plots of the arrival time fields for a an isotropic

speed function, b an anisotropic speed function that gives equal arrival

times per layer, and c an anisotropic speed function that delays the

propagation in overhanging regions, and d for the delay field τ , from

which the overhanging region can be identified
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denotes the inner product between vectors a and b. In all

non-overhanging regions, the arrival times are equal to the

minimum arrival times, while in overhanging regions the

arrival times exceed the minimum arrival time. Therefore,

overhang is detected by observing the delay

τ(x) = T (x) − Tmin(x), (2)

where T (x) is the arrival time obtained through front

propagation. When the delay τ = 0, there is no overhang,

and when τ > 0 there is overhang (Fig. 3d). This

procedure can be used on arbitrary geometries to detect

overhanging regions as will be demonstrated in Section 5.

In the following section the speed function required for the

overhang detection will be proposed. This speed function is

then used in the governing equations to obtain the arrival

time field, as discussed thereafter in Section 2.3.

2.2 Anisotropic front propagation

As discussed in the previous section, the propagation speed

is decreased when the front travels in directions below

αoh. This is done by making the speed function direction

dependent. Consider a point x, whose arrival time is to

be calculated, as illustrated in Fig. 4. The arrival time is

updated from a given point x
′ on the front, where the arrival

times are known. Finding x
′, from where x is to be updated,

is covered in Section 2.3. The new arrival time can be

calculated with

T (x) = T (x′) +
‖x − x

′‖

f (a)
, (3)

where a = (x−x
′)/(‖x−x

′‖) is a unit vector pointing from

x
′ to x, and f (a) is the speed function, dependent on the

direction of the update. ‖...‖ is used throughout the paper to

denote the L2 norm. The update direction is defined as α =

π/2 − arccos(a · b). Let us first consider a speed function

that results in equal arrival times per layer as in Fig. 3b.

The time difference between two points should match the

distance between the points projected on the build direction,

divided by the propagation speed in the build direction f0:

T (x) − T (x′) =

(

x − x
′
)

· b

f0
. (4)

Fig. 4 The calculation of arrival time for a point x from a known point

x
′

f0 is a constant that simply scales the arrival time field and

is set to 1m/s. By combining (3) and (4), the speed function

becomes:

f1(a) =
f0‖x − x

′‖

(x − x′) · b
=

f0

a · b
. (5)

In order to obtain an arrival time field as shown in Fig. 3c,

the propagation is delayed in overhanging regions. This is

achieved by decreasing the speed function whenever the

update direction a is below the critical overhang angle, i.e.

when α < αoh or α > π − αoh, or equivalently a · b <

sin(αoh). The speed can be decreased in numerous ways,

and for numerical reasons detailed in Section 4, the speed

function for propagation in directions below αoh is chosen

as:

f2(a, αoh) =
f0

tan(αoh) ‖Pa‖
, (6)

where P = (I − b ⊗ b), and a⊗b denotes the outer product

between the vectors a and b. It can be shown that f2 < f1

when a · b < sin(αoh) and f1 = f2 when a · b = sin(αoh),

hence decreasing the speed for propagation below αoh.

So far, only upwards updates, where a · b ≥ 0, have

been considered. The speed function should also be defined

when the direction of propagation is downwards, i.e. when

a · b < 0. Downward propagation might happen in hanging

regions, which by definition are overhanging, as can be seen

in Fig. 5. The downward propagation speed can in principal

be chosen freely as long as it is greater than zero, since

there will always be a delay because the front has to cover

additional distance to reach hanging areas from within the

structure. For numerical convenience, the downward profile

is chosen identical to the upward propagation profile. The

speed function is then

f (a, αoh) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

|f1| a · b ≥ sin(αoh) or

a · b ≤ − sin(αoh)

f2 − sin(αoh) < a · b < sin(αoh).

(7)

Fig. 5 When geometries containing hanging sections, downward

propagation is required. These areas are by definition overhanging
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Fig. 6 Polar plot of the speed function f for αoh = 45◦, and its

components f1 and f2. The tangential axis represents propagation

direction, and the radial axis represents propagation speed

This can be rewritten as

f (a, αoh) =
f0

max (tan(αoh) ‖Pa‖ , |b · a|)
. (8)

This gives a speed function with a rectangular shape when

displayed in polar coordinates, as can be seen in Fig. 6,

suitable for overhang detection. The effect of the minimum

overhang angle on the speed function is displayed in Fig. 7:

lower minimum overhang angles widen the speed function,

increasing the anisotropy.

2.3 Governing equations

Using (3) and (8), the arrival time at a point x can be

calculated given a point x
′ with a known arrival time. In

order to obtain the arrival time field, each point should be

updated from the direction that results in the earliest arrival

time (i.e., the direction from which the front reaches the

point first). Therefore, (3) is minimized for all directions a ∈

S1, S1 = {a ∈ R
n | ‖a‖ = 1}, where n is the dimensionality

of the problem. By doing so and linearizing around x, the

front propagation problem can be described as a boundary

Fig. 7 Polar plot of the speed function for αoh equals 45◦, 35◦, and

25◦. The tangential axis represents propagation direction, and the

radial axis represents propagation speed

value problem governed by the Hamilton-Jacobi-Bellman

equation, which is solved for T :

min
a∈S1

{(∇T (x) · a)f (x, a)} = 1, x ∈ �,

T (x) = 0, x ∈ ∂�0,
(9)

where � is the interior of the domain and ∂�0 is the (partial)

boundary of the domain at which the front is initiated. At

the initial boundary, the arrival times are set to zero, and

from there, arrival times can be progressively calculated

throughout the domain, by which the front is advanced.

Effectively, the front is advanced by calculating for every

location the fastest path to the known front.

Instead of calculating the fastest path toward the front,

another perspective is to expand the front and calculate the

time it takes to reach each location. The front is expanded

by the speed function F (x, n), dependent on the normal

direction of the front, which is determined by the gradient of

the arrival times: n = ∇T/‖∇T ‖. The norm of the gradient

∇T determines how fast the arrival time changes spatially,

and has to be equal to the reciprocal of the speed function.

This gives the governing equation

‖∇T ‖ =
1

F (x, n)
, x ∈ �,

T (x) = 0, x ∈ ∂�0.

(10)

Note that the speed function F is generally not equal to

the speed function f . For a detailed relation the reader is

referred to Vladimirsky (2001), but F can interpreted as the

speed of the front in the normal direction (semi-Lagrangian

perspective) while f is the speed for an individual particle

(Eulerian perspective), which do not coincide when the

speed function is anisotropic.

Solving either (9) or (10) yields the same result, but for

(10) a root finding problem needs to be solved locally, while

for (9) this is a minimization problem. One or the other

might be easier to solve depending on the speed functions

f and F . For the speed function given in (8), the local

minimization problem can be solved efficiently as will be

shown in Section 4. Therefore, this study will focus on

solving the front propagation with the Hamilton-Jacobi-

Bellman equation.

2.4 Interpretation of the delay field

With the speed function given in (8), the resulting delay

field has a physical interpretation. The delay at a point x is

proportional to the distance to the closest non-overhanging,

or manufacturable, point in the layer in which x is printed,

i.e. in the direction orthogonal to b. f ∗ is a speed that relates

the delay to this distance:

τ(x) = f ∗doh(x), (11)
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where doh is the distance from x to the closest manufac-

turable point in the same layer. For manufacturable points,

the distance to the closest manufacturable point, i.e. to itself,

doh = 0, and the delay of manufacturable points is zero.

Now consider a point x that is updated from a

manufacturable point x
′, as depicted in Fig. 8. The delay

τ(x) is calculated with (1)–(3), and should be proportional

to doh:

T (x′) +
‖x − x

′‖

f (a)
− Tmin(x) = f ∗doh (12)

Assuming that x
′ is manufacturable gives T (x′) =

Tmin(x
′) = x

′ · b/f0 (1). Furthermore, Tmin(x) = x · b/f0.

Simple trigonometry gives

doh =
∥

∥P(x − x
′)
∥

∥ − da (13)

=
∥

∥P(x − x
′)
∥

∥ −
b · (x − x

′)

tan(αoh)
(14)

Then, by combining (12) and (13) the following expression

for the speed function is obtained:

f (a) =
‖x − x

′‖

f ∗ ‖P(x − x′)‖ − f ∗ b·(x−x′)
tan(αoh)

+ b·(x−x′)
f0

. (15)

By choosing f ∗ = tan(αoh)/f0, this reduces to

f (a) =
f0

tan(αoh)‖Pa‖
, (16)

which is equal to the speed function for overhanging regions

(6). The delay of a point x is thus proportional to the distance

of x to the closest manufacturable point in the layer in which

x is printed.

3 Integration in topology optimization

With the overhang detection procedure outlined in the pre-

vious section, an overhang filter for topology optimization

is formulated. In van de Ven et al. (2018), this overhang

Fig. 8 Given a non-overhang point x
′, the material in the next layer

above x
′ is printable if the horizontal distance to x

′ is not larger than da .

Overhang is measured by the distance to the closest manufacturable

point in the same layer, indicated by doh

detection procedure was used in an explicit overhang con-

straint. However, this required the introduction of several

additional parameters and constraint aggregation, resulting

in some constraint violations. Therefore in this work, αoh

will be enforced implicitly through a filter, as has been done

for the overhang constraints in Gaynor and Guest (2016)

and Langelaar (2017). The filter will be integrated in a den-

sity based topology optimization (Bendsoe and Sigmund

2003). A schematic of the optimization flowchart is given

in Fig. 9a. First, the design variables ρ are filtered (Bruns

and Tortorelli 2001) to control length scale and to prevent

checkerboarding (Sigmund and Petersson 1998):

ρ∗
j =

∑

i

ωijρi/
∑

i

ωij , (17)

ωij = max(r − ‖xi − xj‖, 0), (18)

where ρ∗
j is the filtered density at position xj and r is the

filter radius. The filtered densities ρ∗ define the geometry

on which the overhang is detected with front propagation.

This results in the printable densities ξ , which are used

for the objective and constraint evaluation. Finally, the

sensitivities are calculated and the design variables updated.

3.1 The overhang filter

The overhang filter, as indicated in Fig. 9b, comprises of

three steps. First, the filtered densities ρ∗ are pre-processed.

Then, the front propagation is performed which gives the

arrival time field T . Lastly, the arrival times are post-

processed to obtain the printable densities ξ (Fig. 9b). These

three steps are discussed in detail in the following sections.

(a) (b)

Fig. 9 Implementation of the overhang filter. The overhang filter (b)

is added after the density filter, and all subsequent steps are performed

on the printable densities ξ (a)
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3.1.1 Pre-processing and front propagation

In density based topology optimization, the topology is

defined by a pseudo-density field that determines the

amount of material at every location. In order to capture

this topology in the front propagation, the propagation speed

is scaled by the local filtered density ρ∗. Furthermore, a

lower bound for the scaling, vvoid, is introduced to prevent

infinite arrival times in void regions. For simplicity, a linear

interpolation is used, which gives the speed scaling field

φ(x) = vvoid + (1 − vvoid)ρ
∗(x), (19)

where typically vvoid = 0.1 is used. The speed function (8)

is, again for simplicity, linearly scaled by this field giving

fs(φ(x), a, αoh) = φ(x)f (a, αoh). (20)

The front propagation is performed with this scaled speed

function.

3.1.2 Post-processing

After the front propagation is conducted, the delay field (2)

can be constructed, given by

τ(x) = T (x) −
x · b

f (b)
= T (x) −

x · b

f0
. (21)

The delay is zero for manufacturable regions and larger than

zero for overhanging regions. In order to compare printable

densities with the original densities, a dimensionless field is

required that is 1 for manufacturable regions and between

0 and 1 for overhanging regions. Therefore, the following

function is used to map the arrival time delay to printability:

ξ(x) = 2−k τ(x), (22)

where k[s−1] controls how rapidly printability decreases

with an increasing delay. It is defined as follows:

k = f0/β. (23)

Because of the negative power of 2 in (22), β[m] can be

interpreted as the typical length after which the printable

density of an overhanging part is halved. The relation

between ξ and τ for different values of k is displayed in

Fig. 10. By increasing k, sharper edges and finer details

Fig. 10 The relation between the delay field τ and the printable

densities ξ for different values of k

are obtained, lower values of k can result in smoother

convergence. β is typically chosen as h/4, where h is the

typical element length.

3.1.3 Initial condition for the front propagation

The arrival times are initialized at the base plate for the

preferred building direction. Although the boundary on the

base plate is manufacturable, as it is completely supported

by the base plate, the arrival times are not initialized at 0,

but with a slight offset T0 proportional to the density:

T (x) = (1 − ρ∗(x))T0, x ∈ ∂�0. (24)

Without this offset, the delay τ on the bottom layer will be 0,

regardless of the density value. The printable densities ξ on

the base plate will then be 1 (22), resulting in a permanent

layer of material on the base plate. With this offset, the

initial arrival times are dependent on the local densities, and

when the densities are 0, the delay τ = T0. T0 is chosen such

that a sufficiently small printable density is obtained when

the local density is zero. For example, T0 = 8/k, results in

an acceptable ξ = 0.0039 when ρ∗ = 0 (22).

4 Numerical implementation

Efficient evaluation of the front propagation problem and

its sensitivities is of paramount importance for its feasi-

bility as an overhang filter. Fortunately, the directionality

of the front propagation problem allows for a fast calcu-

lation of the arrival time field: because the arrival time

at one location can only influence locations with a higher

arrival time, the arrival times can be calculated using single-

pass methods. These methods start at the boundary, and

propagate the front by calculating arrival times in ascend-

ing order from the boundary. In principal, the arrival time

at every location only needs to be evaluated once, hence

the name single-pass. For the evaluation of an arrival

time only a local problem is solved, resulting in a close

to linear scaling of the algorithm with a computational

complexity of O(N log N). For isotropic speed functions,

the Fast Marching Method has been developed (Sethian

1996), which is commonly used in, among others, the

level-set method (Sethian and Wiegmann 2000), but also in

other optimization settings (e.g. van Keulen et al. 2008).

The Fast Marching Method has been expanded into the

Ordered Upwind Method (OUM) (Sethian and Vladimirsky

2003) for anisotropic speed functions. Furthermore, iter-

ative methods have been developed, called fast-sweeping

methods, and mixtures of marching and sweeping methods.

Additionally, parallelized methods are available. However,

since the performance of the OUM is sufficient and its
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implementation is straightforward, no alternatives have been

considered.

4.1 Ordered upwindmethod

For the sake of completeness, the OUM will be briefly

explained, following Sethian and Vladimirsky (2003). From

here on we consider a 2D setting with triangular elements.

Consider a discretized domain with N nodes. Node i is

located at xi , and field quantities at node i are denoted with

a subscript, e.g. ρi . In the OUM, each node is labeled as

being either Far, Considered or Accepted. Initially, all the

nodes are labeled Far, except for the initial boundary nodes

which are labeled Accepted. Each iteration can be divided

into three steps:

1. Move all the nodes that are in Far and adjacent to an

Accepted node to Considered.

2. Evaluate the arrival times of the nodes in Considered,

using the Accepted nodes.

3. Move the node in Considered with the earliest arrival

time to Accepted.

This process is repeated until all the nodes are in

Accepted. In Step 2, the arrival times of Considered nodes

are calculated using the current front. The current front is

defined in 2D as the set of line segments xj xk , for which

xj and xk are adjacent to each other, in Accepted, but also

adjacent to one or more Considered nodes. Nodes that fulfill

these three requirements are said to be in the AcceptedFront

(AF). In order to calculate the arrival time of a Considered

node xi , the current front is scanned to see for which

location on the front the travel time to the node in question is

the shortest, as displayed in Fig. 11. Only a small part of the

current front, which is close enough to xi to possibly provide

the earliest arrival time, needs to be considered. This is the

so-called near front (NF) of xi :

NF(xi) = {xj xk ∈ AF | ∃x̃ on xj xk

s.t.‖x̃ − xi‖ ≤ hG2/G1 }, (25)

Fig. 11 The arrival time of node xi in a triangular mesh is updated

from the AF. On each line segment on the AF, the point c that gives the

fastest arrival time is determined, and the lowest arrival time resulting

from the points c is accepted

where h is the typical mesh diameter, and G1 and G2

are the lower and upper bound of the speed function fs ,

respectively. G2/G1 is a measure for the anisotropy of the

speed function. The arrival time at xi is updated from the

segment of NF(xi) that gives the lowest arrival time:

Ti = min
xj xk∈NF(x)

Vxj xk
(xi), (26)

where Vxj xk
(xi) is the upwind approximation of Ti when

calculated from line segment xj xk . Vxj xk
(xi) can be

evaluated from either the semi-Lagrangian (9) or the

Eulerian (10) perspective. As stated in Section 2.3, the semi-

Lagrangian perspective is used in this work, but similar

results can be achieved using the Eulerian perspective.

Following Sethian and Vladimirsky (2003), Vxj xk
(xi) is

approximated with:

Vxj ,xk
(xi) = min

ζ∈[0,1]

{

χ(ζ )

fs(φi, aζ , αoh)

+ζTj + (1 − ζ )Tk

}

, (27)

where χ(ζ ) =
∥

∥xi − cζ

∥

∥, and aζ =
(

xi − cζ

)

/χ(ζ ).

cζ = ζxj + (1 − ζ )xk , which is a point on the segment

xj xk determined by ζ . For example, in order to calculate

Ti for a Considered point xi , as displayed in Fig. 11, the

lowest possible arrival time for each segment on the AF is

determined by solving (27). Then, the update that gives the

earliest arrival time is accepted (26). Due to the anisotropy

of the speed function, this is often not the closest point

and the update might even cross several elements (as is,

for example, the case for the update from c2 and c3 in

Fig. 11). Nonetheless, the speed function fs is assumed

to be constant, as its only spatially varying argument, the

speed scaling field φ, is only evaluated at the target location

xi (27). No instabilities have been observed related to

this approximation, but one could make a more precise

approximation by interpolating φ over the update path.

However, (27) will become more difficult to solve, and the

sensitivities will be less local as the arrival time will then

depend on the densities of all the nodes from the elements

that are crossed.

Although (27) is evaluated for every segment in the near

front, the eventual arrival time Ti will only depend on the

earliest upwind approximation Vxj ,xk
(xi). Therefore, Ti is

only a function of the arrival times that appear in Vxj ,xk
(xi),

and the speed scaling field at xi , φi . For brevity, (26) is

written as

Ti = V (Tj , Tk, φi)
def
== Vi . (28)

The minimization problem given in (27) needs to be

solved multiple times for every node that is updated. There-

fore, solving it efficiently is crucial for a computationally

fast overhang filter. The second and third term of (27) are
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linear with ζ . With the speed function given in (20), the first

term of (27) can be rewritten as

χ(ζ )

fs(φi, aζ , αoh)

= χ(ζ )
max

(

tan(αoh)‖Paζ ‖, |b · aζ |
)

φi

, (29)

=
max

(

tan(αoh)‖P(x − cζ )‖, |b · (x − cζ )|
)

φi

, (30)

with only cζ linearly dependent on ζ . In two dimensions,

the arguments of the maximum function are piecewise linear

functions of ζ . The other terms in (27) are also linear

functions of ζ . Consequently, (27) is piecewise linear in ζ ,

and the minimum will be either at the edges of the domain

(ζ = 0 or ζ = 1), or at the intersection points of two

piecewise linear sections. This will only occur when the two

arguments of the maximum function are equal:

tan(αoh)‖P(x − cζ )‖ = |b · (x − cζ )| (31)

In two dimensions, this gives two possible intersection

points:

ζ1 =
− tan(αoh)‖P(xk − x)‖ − b · (xk − x)

tan(αoh)‖P(xj − xk)‖ + b · (xj − xk)
(32)

ζ2 =
− tan(αoh)‖P(xk − x)‖ + b · (xk − x)

tan(αoh)‖P(xj − xk)‖ − b · (xj − xk)
(33)

Therefore, the minimum in (27) is efficiently obtained

by simply evaluating the minimization problem at

ζ = (0, 1, ζ1, ζ2), and accepting the minimum value that

lies on the interval (i.e. 0 ≤ ζ ≤ 1).

Summarizing, in each iteration of the algorithm, the node

with the lowest arrival time is added to the set of Accepted

nodes, and its neighboring nodes’ arrival times are updated.

The arrival time of a node is updated by scanning the front

within a certain radius of that node for the shortest arrival

time (26). The minimum arrival time on a segment is found

by solving (27), which can be done by probing the line

segment at four locations. In 3D, the front is represented

by a surface, and the arrival time of a node is updated

from a surface instead of a line. The minimization problem

presented in (26) is therefore more complex, and will be

elaborated in a separate paper.

4.2 Sensitivities

The sensitivities are derived from the descritized equations

as outlined in (25)–(32). By doing so, the computational

effort for the sensitivities becomes negligible; only one

loop over all the nodes is required as will become clear in

Section 4.3. The sensitivities are given for a general function

g which is a function of the printable densities ξ . This

could be either the objective or a constraint function. The

sensitivities with respect to the arrival times follow directly

from the chain rule:

∂g

∂Ti

=
∂g

∂ξi

∂ξi

∂τi

∂τi

∂Ti

=
∂g

∂ξi

(−k ln (2)ξi) . (34)

In order to obtain the derivatives of the arrival times T with

respect to the velocity field φ, the state (28) is added to g

for every node, multiplied by an adjoint field λ:

g∗ = g +

N
∑

j=1

λj

(

Tj − Vj

)

. (35)

Deriving with respect to the velocity field gives

dg∗

dφi

=

N
∑

j=1

[

∂g

∂Tj

dTj

dφi

]

+

N
∑

j=1

[

λj

(

dTj

dφi

−
dVj

dφi

)]

. (36)

The summation can be combined and the term dVj/dφi

expanded:

dg∗

dφi

=

N
∑

j=1

[

∂g

∂Tj

dTj

dφi

+ λj

dTj

dφi

− λj

(

∂Vj

∂φi

+

N
∑

k=1

[

∂Vj

∂Tk

dTk

dφi

]

)]

.

(37)

Since the last term consists of two nested summations, both

from 1 to N , the indices k and j can be swapped:

dg∗

dφi

=

N
∑

j=1

[

∂g

∂Tj

dTj

dφi

+ λj

dTj

dφi

− λj

∂Vj

∂φi

−

N
∑

k=1

[

λk

∂Vk

∂Tj

dTj

dφi

]

]

. (38)

Now all the terms containing dTj/dφi can be combined:

dg∗

dφi

=

N
∑

j=1

[

−λj

∂Vj

∂φi

+

(

∂g

∂Tj

+ λj −

N
∑

k=1

[

λk

∂Vk

∂Tj

]

)

dTj

dφi

]

. (39)

By choosing the adjoint such that the terms between

brackets becomes zero, dTj/dφi does not need to be

evaluated. Therefore, the following condition has to be

satisfied:

∂g

∂Tj

+ λj −

N
∑

k=1

[

λk

∂Vk

∂Tj

]

= 0. (40)

Finally, the sensitivities become

dg∗

dφi

= −

N
∑

j=1

λj

∂Vj

∂φi

. (41)
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However, ∂Vj/∂φi is only nonzero when j = i, which

simplifies the sensitivities to

dg∗

dφi

= −λi

∂Vi

∂φi

. (42)

The sensitivities with respect to the densities follow from

the chain rule:

dg∗

dρi

=
dg∗

dφj

∂φj

∂ρ∗
j

dρ∗
j

dρi

, (43)

where, from (19), ∂φj/∂ρ
∗
j = (1 − vvoid), and dρ∗

j /dρi is

the derivative of the density filter. Note that for the nodes

on ∂�0, the derivatives are slightly different due to the

initialization (24):

dg∗

dρi

= λjT0

dρ∗
j

dρi

, xi ∈ ∂�0. (44)

4.3 Evaluating the adjoint

Equation (40) can be rearranged to obtain a recursive

expression for the adjoint variables:

λj =

N
∑

k=1

[

λk

∂Vk

∂Tj

]

−
∂g

∂Tj

. (45)

The second term on the right-hand side can be evaluated

directly with (34). For the first term on the right-hand side,

the adjoint variables λk of the nodes k whose arrival time

has a dependence on the node j in consideration, i.e. when

∂Vk/∂Tj �= 0, must be known. By evaluating the adjoint in

the opposite order as in which the arrival times have been

calculated during the front propagation, it is guaranteed that

the adjoint variables are evaluated before they appear in

the first right-hand side term for another adjoint variable:

clearly, ∂Vk/∂Tj �= 0 only when Tk is based on, and

thus calculated after, Tj (note that the partial derivative

∂Vk/∂Tk = 0). However, a variable number of arrival times

Tk can depend on arrival time Tj . Therefore it is more

convenient to index on which arrival times Tj depends,

since every arrival time depends on exactly two other arrival

times (28), except for the nodes on ∂�0, whose arrival times

depend only on the local density (24).

Thus, during the front propagation, the order in which

arrival times are accepted is stored in an array o, and the

indices of the two nodes on which the accepted arrival

times depend are registered in arrays c1 and c2. The adjoint

variable can then be evaluated in a single loop, as outlined in

Algorithm 1. Note that ∂V/∂T is a sparse matrix with two

entries per row and ∂V/∂φ has only entries on its diagonal.

5 Results

In this section, the newly developed overhang filter is

demonstrated on a given geometry, and on three cases where

the compliance is minimized. The optimization problem

reads as follows:

min
ρ

f
T

u

s.t. K(ξ)u = f,

V (ξ)/Vlim − 1 ≤ 0,

0 ≤ ρ ≤ 1.

(46)

Here f and u denote the load and displacement vector,

respectively. K(ξ) is the element stiffness matrix evaluated

on the printable density field ξ . V (ξ) is the total volume,

also evaluated on the printable densities, and Vlim denotes

the maximum permitted volume. The sensitivities of the

objective and constraint w.r.t. the printable densities can be

found in e.g. Bendsoe and Sigmund (2003).

The first test case that is presented is the cantilever

problem, which is well known and therefore allows for

a clear interpretation of the results. The second case is a

tensile test case, which has a sharp contrast between the

objective and obtaining an overhang-free design. Finally,

the capability to detect overhang on an unstructured mesh is

demonstrated on the optimization of a crane hook. On the

test cases, the filter is tested for several overhang angles,

filter sizes and volume fractions. Finally, the computational

cost is evaluated.

Unless stated otherwise, the following parameters are

used in the upcoming examples. The Young’s modulus

E is set to 1 and 1· 10−6 Nm−2 for material and void,

respectively, and the Poisson ratio ν = 0.3. The applied

force F = 1N. RAMP penalization is used with q = 10

(Stolpe and Svanberg 2001). The optimizations are run

for 100 iterations with the Method of Moving Asymptotes

(MMA) optimizer (Svanberg 1987), in order to test different
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cases with roughly the same computational time, as this is

often limiting factor in a practical environment. Standard

increase and decrease parameters of respectively 1.2 and

0.7 are used. The Portable and Extendable Toolkit for

Scientific Computing (PETSc) (Balay et al. 1997, 2016) is

used to parallelize the FEM assembly and solve (not the

front propagation), in combination with the Multifrontal

Massively Parallel sparse direct Solver MUMPS (Amestoy

et al. 2001, 2006). All the presented examples can be run on

a single desktop, therefore, the implementation of PETSc is

mainly intended for future 3D cases.

(a) Density field.

(b) Arrival time field. Iso-lines in blue.

(c) Delay field. Iso-lines in blue.

(d) Printable density field.

Fig. 12 The process of obtaining the printable densities (d) for a given

topology (a), by performing a front propagation (b) and evaluating the

delay field (c)

5.1 Overhang detection

Consider a typical material distribution one might encounter

during a topology optimization on an unstructured mesh, as

given in Fig. 12a. The overhang filter is applied as follows.

First, front propagation with αoh = 40◦ is performed on the

given geometry, resulting in the arrival time field as shown

in Fig. 12b. Due to the numerical implementation of the

front propagation, there is slight rounding of the corners

of the arrival time field iso-contour lines. The rounding

causes a small overestimation of the critical overhang angle,

and can be reduced with mesh refinement. However, this

is generally not necessary as the error is small, for this

particular case in the order of 2◦. From the arrival time

field the delay field is calculated, as shown in Fig. 12c. In

this field the non-overhanging area with τ = 0 (no delay)

is already clearly visible. The printable densities are then

evaluated with (22), resulting in the material distribution

given in Fig. 12d. Compared to the original density field, the

overhanging regions are removed, and the top-right member

that is close to printable has intermediate densities. During

the optimization, penalization of intermediate densities will

limit the emergence of intermediate density values in the

optimized topologies.

5.2 Cantilever test case

The overhang filter is first applied to the cantilever case,

where compliance is minimized on a rectangular domain,

as illustrated in Fig. 13. The domain length a = 1.0m,

and the domain is fully clamped on the left side and a

vertical point force acts on the right side. The domain is

discretized with a structured triangular mesh, comprised of

30 000 elements, with an average element edge length of

4.6mm. Furthermore, a density filter is applied with a filter

radius of 20mm, and the volume is constrained at 50% of the

design domain. The optimal design without overhang filter

is depicted in Fig. 14a. Its final objective, Cref = 70.087J, is

used as a reference for the overhang-free designs. Although

this design is printable when rotated 90◦ counter-clockwise,

the overhang filter is applied to make the designs printable

Fig. 13 The cantilever test case, mechanically supported on the left

side and with build direction b
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(a) Without overhang filter.

C = Cref = 70.087J.

(c) Without overhang filter and continuation.

C = 1.09Cref.

(b) With overhang filter. C = 1.12Cref.

Fig. 14 Optimized designs for the cantilever case

when the build direction coincides with the y-axis, with

αoh = 45◦. The overhang filter parameters are chosen as

k = 500, T0 = 0.02 and vvoid = 0.1. With overhang filter, a

discrete, overhang-free design is obtained, as can be seen in

Fig. 14b. The initially overhanging members are supported,

and most down-facing edges make a 45◦ angle with the

base plate, lying exactly on the limit. The objective of the

printable design is 12% higher than the conventional design,

due to the added manufacturability filter. It can be observed

that the edges of the filtered design are crisper than in the

original design, which is controlled by the value of k. Lower

values of k will decrease the crispness.

Compared to the constraint implementation presented in

van de Ven et al. (2018), the cusps at the topside of the

small holes depicted in Fig. 14b are crisper, with almost no

overhang present when the filter approach is implemented.

With the constraint implementation, overhang was not

completely eliminated in small holes (van de Ven et al.

2018). The cost per iteration of both methods is roughly

Fig. 15 Convergence behavior for the cantilever case with and without

continuation. The snapshots are taken at iteration 10, 25, 50 and

100, from the optimization without continuation. Note that without

continuation, the optimization starts from a completely filled design,

hence the high performance in the first few iterations when the volume

constraint is not yet satisfied

equal, since front propagation and the corresponding

sensitivity calculation are identical in both approaches.

5.3 Initial configuration, convergence
and continuation

The optimization with overhang filter converges smoothly,

and after 50 iterations the design hardly changes, as can

be seen in Fig. 15. The objective is autonomously low at

the start as an initial density field of ρ = 1 is imposed,

implying a completely filled domain and resulting in a

violation of the volume constraint. After 10 iterations, when

the volume constraint is satisfied, the objective decreases

monotonically. The choice of a completely filled initial

configuration is necessary to allow the optimizer to place

material freely throughout the complete domain in the first

few iterations. If the optimization starts with a density

distribution in accordance with the volume constraint, i.e.

ρ = 0.5, most of the domain is detected as overhanging

and therefore does not contribute to the overall stiffness.

Consequently, the design grows from the base-plate in

the build direction, with slower convergence behavior and

results in a far-from-optimal local minimum, as can be seen

in Fig. 16.

Fig. 16 Design obtained with overhang filter using a conventional

initial design. To obtain good results, starting with a fully solid design

is recommended. C = 1.69Cref
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(a)

(b)

(c)

Fig. 17 Resulting designs for the cantilever case with various minimum overhang angles optimized a without continuation, b with continuation

over 25 iterations, and c with continuation over 100 iterations

However, also with the completely filled initial config-

uration, like every nonconvex topology optimization prob-

lem, the optimization with overhang filter is susceptible

to converge to inferior local optima. As can be seen in

Fig. 14b, not all the material contributes to the stiffness of

the structure: the supporting leg on the bottom right has no

mechanical function as the bottom of the domain is mechan-

ically unconstrained. Although it is expected that enforcing

printability decreases the overall performance, it seems that

this member could have been placed under a 45◦ angle

to add support as well as stiffness, instead of only sup-

port. From the optimization history it becomes clear that

this member is formed early in the optimization to allow

material around the point where the force acts, and is not

repositioned later on.

A common method to avoid inferior local optima is

to apply continuation. In order to activate the overhang

constraint in a gradual manner, the physical densities ξc are

linearly interpolated between the filtered densities ρ∗ and

the printable densities ξ :

ξc = ηξ + (1 − η)ρ∗, (47)

where the objective and constraint evaluations are now

performed on the physical densities ξc, and η ∈ [0, 1] is

the continuation parameter. In the remaining examples in

this paper, when continuation is applied, η is continuously

increased from 0 to 1 over the first 25 iterations of the

optimization.

The resulting design with continuation is displayed in

Fig. 14c, and its convergence behavior is plotted in Fig. 15.

When continuation is used, the initial configuration can

be chosen as a uniform density distribution of ρ =

0.5, resulting in a higher initial objective as compared to

the optimization without continuation but satisfying the

volume constraint. In the first 25 iterations the objective

decreases, but not monotonically due to the ramp up of the

continuation parameter η. Generally, when continuation is

used an improvement is observed in the final objective, as

compared to the value of the final objective attained without

continuation.

5.4 Variable overhang angle

The novel overhang detection method based on front

propagation can filter out overhangs with any value of

αoh. However, for very large angles (αoh > 60◦), the

optimization does not converge well as it becomes harder

to find topologies that meet such a stringent manufacturing

constraint. Since such high overhang angles are usually

printable with modern printers, a parameter study for 10◦ ≤

αoh ≤ 60◦ is performed. For every angle three calculations

are performed: without continuation, with continuation as

described in Section 5.3, and with extra long continuation

where η is continuously increased from 0 to 1 over the

course of 100 iterations and the optimization is run for 400

iterations. The results are shown in Fig. 17, and the final

objective values are plotted in Fig. 18.

Fig. 18 The final objective and volume constraint values as a function

of the minimum overhang angle. The objective increases with the

overhang angle, as more material has to be used for supporting

purposes. Furthermore, it can be seen that continuation does not always

lead to a lower objective. The volume constraint is overall satisfied
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Fig. 19 The influence of density filter radius on the resulting topology. Smaller filter radii allow thin supports, reducing the cost of the overhang

filter on the objective. For r = 3mm, a zigzagging support can be observed (encircled in red)

As expected, lower overhang angles result in designs

similar to designs obtained without activating the overhang

filter as shown in Fig. 14a. For higher overhang angles, more

material is required for support, and the objective increases.

Furthermore, as observed in the previous sections, the

optimizations without continuation contain a higher fraction

of material that does not contribute to the stiffness, but is

only in place to satisfy the overhang limitation. Except for

αoh = 60◦, the extra long continuation does not seems to

contribute to better designs. This can also be seen in the final

objective values, which are plotted in Fig. 18. Interestingly,

although the designs with continuation look visually more

appealing than the designs without continuation, their

overall objective values are only slightly lower for several

overhang angles.

5.5 Filter size

The final parameter to be investigated on the cantilever case,

is the density filter radius. For this parametric study, the

optimizations are performed on a finer mesh comprised of

180 000 elements, in order to accommodate smaller radii.

0 10 20 30 40

Filter size [mm]

0.9

1

1.1

1.2

C
/C

re
f

Fig. 20 The final objective as a function of filter radius. Lower radii

allow for thinner supports, and consequently result in lower objective

values

The average edge length is 1.9mm, and the filter is varied

from 3mm to 40mm. The resulting designs are displayed

in Fig. 19. It is clear that the filter radius has an effect on

the feature size, as smaller features appear for smaller radii.

For these smaller radii, supporting structures hardly cost

any volume. Therefore, the main structure can resemble the

original design closely, resulting in a lower objective value,

as can be seen in Fig. 20, where the final objective values

are plotted. Although oscillatory boundaries develop under

the main structural beams for small density filter radii, the

presence of these detailed features is not a manifestation of

the sawtooth patterns observed when the overhang is only

locally evaluated (Allaire et al. 2017a; Qian 2017): in our

results the cusps of any sawtooth are at all times sufficiently

supported, and thus manufacturable.

Exact control over the length scale is lost, since members

can be positioned such that they are partially overhanging,

resulting in thinner members in the overhang filtered design.

In order to impose an exact minimum feature size, one

should apply an additional filter after the overhang filter.

Because a linear weighted average filter would reintroduce

overhang in sharp corners, a dilate filter could be used

Sigmund (2007).

Fig. 21 The tensile test case case, mechanically supported on the left

side and with build direction b
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(a)

(b)

Fig. 22 Results for the tensile test case for various volume fractions

and for a a 20mm filter radius, and b a 7.5mm filter radius. For small

volume fractions, dependent on the filter radius, not enough material is

available to support the design, and the optimizations fail to converge

to a black and white design

5.6 Tensile test case

An extreme test for the overhang filter is the tensile test

case. The case is similar to the cantilever case except that the

force acts in the horizontal direction and is applied closer

to the top side, as displayed in Fig. 21. Without overhang

filter, the optimal design is a beam connecting the force

to the fixed side. For the purpose of testing our algorithm,

we disregard the possibility to translate the beam to the

base plate. The bottom side of this beam will be completely

overhanging, and therefore supports need to be generated to

connect the base plate to the beam. These supports will have

no mechanical function, and thus completely counteract the

objective with volume constraint. Therefore, it is a good test

to see if the overhang filter is able to generate fully dense

supports, that have no function other than supporting the

design.

The tensile test case is optimized for several volume

fractions, ranging from 10% to 50%, and for a 20mm and a

7.5mm filter radius, as displayed in Fig. 22, without the use

of continuation. It can be seen that for volume fractions of

Fig. 23 The crane hook case with unstructured mesh. The domain is

clamped at the shaded region on the top, and a distributed load is

applied as indicated by the red arrows, representing a hoist load. The

overhang filter is applied with build direction b

30% and higher, fully dense supports are created for both

filter sizes. With decreasing volume fraction, the material

available to increase the stiffness diminishes. Consequently,

for 20%, the larger filter size is unable to converge to a black

and white design, and for 10%, neither converges to a black

and white design.

Furthermore, it can be seen that there are some supports

that “zigzag” downwards, instead of a more volume efficient

straight line. This behavior can also be seen in Fig. 19, for

r = 3mm. However, the influence on the objective is usually

minute, as this is mostly observed for thinner supports.

5.7 Crane hook case

For the final case, the compliance of a crane hook is

minimized in order to demonstrate the overhang filter on a

domain that is not easily meshed with a structured mesh,

as is often the case in industrial practice. The domain

and boundary conditions are displayed in Fig. 23. The

domain is mechanically clamped at the top and a vertical

distributed load of 1N/m is applied on the inside of the hook.

The compliance is minimized subject to a 40% volume

constraint. The domain is meshed with 4000 elements with

an average edge length of 46mm, and a density filter with

a 75mm radius is applied and continuation on the overhang

filter is used. Without overhang filter, the resulting design

Fig. 24 The optimized design for the crane hook without overhang

constraint
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(a) (b)

Fig. 25 Overhang free designs for the crane hook case on a the mesh

as displayed in Fig. 23, and b a 4x finer mesh

resembles a typical hook, as displayed in Fig. 24. When

the overhang filter with αoh = 45◦ is applied, the design

changes as can be seen in Fig. 25a. A clear, overhang

free, design is obtained. Due to the relatively coarse mesh,

the final design contains some rough edges. With mesh

refinement, this disappears as can be seen in Fig. 25b, where

the domain is meshed with 16 000 elements.

5.8 Computational efficiency

Since the computational complexity of the OUM used

by the overhang filter is of O(N log N) worst case, it is

expected that the computational cost is small as compared

to the objective and sensitivity evaluation for a compliance

problem. The scaling of the computational cost of the

compliance evaluation (excluding the time spent on the

overhang filter), the overhang filter, and the full sensitivity

analysis related to the overhang filter, with respect to

element number is plotted in Fig. 26. A power function is

fitted to the measured CPU times, which are given for a

single core computation on a 3.4Ghz Xeon E3-1240 V2.

Fig. 26 Average computational cost of the overhang filter and

corresponding sensitivities w.r.t. the compliance evaluation (excluding

the overhang filter) for a single core calculation. The errorbars indicate

± the standard deviation of the CPU times

Compared to the compliance evaluation, which is primarily

dominated by solving the system of linear equations, the

overhang filter is significantly faster, and scales close to

linear with the number of DOFs. Furthermore, it can be

seen that the sensitivity calculation for the overhang filter is

negligible in terms of computational cost.

Note that although the overhang filter sensitivity analysis

only requires a single loop over all the nodes, it does

not scale linearly. Because there are only few calculations

in each iteration, the sensitivity calculation is memory

bandwidth bound instead of compute-bound. In every

iteration, non-contiguous entries of several arrays are

accessed (see Algorithm 1), making it difficult for the

compiler to load the correct part of the array to cache.

Careful ordering of the arrays and prefetching are therefore

important to control the scaling of the sensitivity analysis.

6 Conclusions

In this work a novel overhang filter based on front

propagation is presented. Front propagation proves capable

of detecting overhanging regions in a density-based

topology by the use of an anisotropic speed function.

By delaying the propagation in overhanging directions, a

delay field can be constructed where overhanging regions

have positive delay time while printable regions have 0

delay. This overhang detection procedure is incorporated

as a filter into the topology optimization loop, and

adjoint sensitivities are derived consistently. As such, the

optimization algorithm can correct for unsupported regions

by either removing or supporting them.

The Ordered Upwind Method is used to perform the front

propagation, as it is computationally efficient and handles

propagation with anisotropic speed functions. Furthermore,

adjoint sensitivities are evaluated with a single loop over

the elements, at low computational cost. The presented

numerical results show various aspects of the overhang

filter. It is shown that the overhang filter works for

an arbitrary minimum overhang angle, that fully dense

supports are generated when the volume constraint permits,

and that the filter can handle unstructured meshes. In order

to avoid inferior local optima, continuation is used. It is also

observed that the supports that are generated are not always

the shortest possible supports but sometimes “zigzag”. This

is most likely related to the path of the sensitivities in the

front propagation, and is a topic of further research.

Overall, the overhang filter performs well for the

demonstrated 2D examples, and the front propagation is

extensible to 3D as its formulation is mostly dimension

independent. Although the specifics of the front propagation

(Section 4.1) require adaptation for 3D, the Ordered Upwind

Method will have the same computational complexity and
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hence the same scaling as the 2D algorithm evaluated in

Section 5.8 (c.f. Fig. 26). In a practical setting, the complete

removal of overhanging regions might not be necessary, but

only in inaccessible locations. This also remains a topic of

further research.

Finally, this paper introduces a new way to use

front propagation algorithms within topology optimization.

Because of the computational efficiency of the front

propagation, it is an attractive algorithm to include in

additional constraints or filters, if they can be modeled by

a propagating front. Further research will focus on the use

of front propagation to model more aspects of the printing

process, and to include these into topology optimization.
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