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Abstract
We introduce a PDE-based node-to-element contact formulation as an alternative to classical, purely geometrical formulations.
It is challenging to devise solutions to nonsmooth contact problemwith continuous gap using finite element discretizations.We
herein achieve this objective by constructing an approximate distance function (ADF) to the boundaries of solid objects, and
in doing so, also obtain universal uniqueness of contact detection. Unilateral constraints are implemented using amixedmodel
combining the screened Poisson equation and a force element, which has the topology of a continuum element containing
an additional incident node. An ADF is obtained by solving the screened Poisson equation with constant essential boundary
conditions and a variable transformation. The ADF does not explicitly depend on the number of objects and a single solution
of the partial differential equation for this field uniquely defines the contact conditions for all incident points in the mesh.
Having an ADF field to any obstacle circumvents the multiple target surfaces and avoids the specific data structures present in
traditional contact-impact algorithms. We also relax the interpretation of the Lagrange multipliers as contact forces, and the
Courant–Beltrami function is used with a mixed formulation producing the required differentiable result. We demonstrate the
advantages of the new approach in two- and three-dimensional problems that are solved usingNewton iterations. Simultaneous
constraints for each incident point are considered.

Keywords Nonsmooth contact geometries · Contact algorithm · Finite strains · Eikonal equation · Approximate distance
function · Screened Poisson equation

1 Introduction

Considerable interest has recently emerged with the enforce-
ment of essential boundary conditions [1] and contact detec-
tion algorithms [2] using approximate distance functions
(ADFs). Realistic contact frameworks for finite-strain prob-
lems make use of three classes of algorithms that are often
coupled (see [3]):
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1. Techniques of unilateral constraint enforcement. Exam-
ples of these are direct elimination (also reduced-gradient
algorithms), penalty and barrier methods, and Lagrange
multiplier methods with the complementarity condition
[4]. Stresses from the underlying discretization are often
used to assist the normal condition with Nitsche’s method
[5].

2. Frictional effects (andmore generally, constitutive contact
laws) and cone-complementarity forms [6,7]. Solution
paradigms are augmented Lagrangian methods for fric-
tion [8], cone-projection techniques [9] and the so-called
yield-limited algorithm for friction [10].

3. Discretization methods. Of concern are distance cal-
culations, estimation of tangent velocities and general
discretization arrangements. In contemporary use are (see
[3]) node-to-edge/face, edge/face-to-/edge/face and mor-
tar discretizations.

In terms of contact enforcement and friction algorithms,
finite displacement contact problems are typically addressed
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with well-established contact algorithms, often derived from
solutions developed by groups working on variational
inequalities and nonsmooth analysis. However, in the area
of contact discretization and the related area of contact kine-
matics [11], there are still challenges to be addressed in
terms of ensuring the complete robustness of implicit codes.
One of the earliest papers on contact discretization was by
Chan and Tuba [12], who considered contact with a plane
and used symmetry to analyze cylinder-to-cylinder contact.
Francavilla and Zienkiewicz [13] later proposed an exten-
sion to node-to-node contact in small strains, allowing for
direct comparison with closed-form solutions. The exten-
sion to finite strains requires further development, and the
logical development was the node-to-segment approach, as
described in the work of Hallquist [14]. Although node-to-
segment algorithms are known to entail many defficiencies,
most of the drawbacks have been addressed. Jumps and dis-
continuities resulting from nodes sliding between edges can
be removed by smoothing and regularization [15]. Satisfac-
tion of patch-test, which is fundamental for convergence,
can be enforced by careful penalty weighing [16,17]. It is
well known that single-pass versions of the node-to-segment
method result in interference and double-pass can produce
mesh interlocking, see [18,19]. This shortcoming has eluded
any attempts of a solution and hasmotivated the development
of surface-to-surface algorithms. One of the first surface-to-
surface algorithms was introduced by Simo, Wriggers, and
Taylor [11]. Zavarise andWriggers [20] presented a complete
treatment of the 2D case and further developments were sup-
ported by parallel work in nonconforming meshes, see [21].
A review article onmortarmethods for contact problems [22]
where stabilization is discussed and an exhaustive detailing
of most geometric possibilities of contact was presented by
Farah,Wall andPopp [23]. That paper revealed the significant
effort that is required to obtain a robust contact algorithm. An
interesting alternative approach to contact discretization has
been proposed by Wriggers, Schröder, and Schwarz [24],
who use an intermediate mesh with a specialized anisotropic
hyperelastic law to represent contact interactions. In the con-
text of large, explicit codes, Kane et al. [25] introduced an
interference function, or gap, based on volumes of overlap-
ping, allowing non-smooth contact to be dealt in traditional
smooth-based algorithms.

In addition to these general developments, there have been
specialized algorithms for rods, beams, and other structures.
Litewka et al. [26] as well as Neto et al. [27,28], have pro-
duced efficient algorithms for beam contact. For large-scale
analysis of beams, cables and ropes, Meier et al. [29] have
shown how beam specialization can be very efficient when a
large number of entities is involved.

Recently, interest has emerged on using approximate dis-
tance functions [2,30–32] as alternatives to algorithms that
heavily rely on computational geometry. These algorithms

resolve the non-uniqueness of the projection, but still require
geometric computations. In [30], Wolff and Bucher pro-
posed a local construction to obtain distances inside any
object, but still require geometric calculations, especially for
the integration scheme along surfaces. Liu et al. [31] have
combined finite elements with distance potential discrete ele-
ment method (DEM) in 2D within an explicit integration
framework. A geometric-based distance function is con-
structed and contact forces stem from this construction. In
[32], the analysis of thin rods is performed using classi-
cal contact but closed-form contact detection is achieved
by a signed-distance function defined on a voxel-type grid.
In [2], a pre-established set of shapes is considered, and a
function is defined for each particle in a DEM (discrete ele-
ment method) setting with a projection that follows. In the
context of computer graphics and computational geometry,
Macklin et al. [33] introduced an element-wise local opti-
mization algorithm todetermine the closest-distancebetween
the signed-distance-function isosurface and face elements.
Although close to what is proposed here, no solution to a
partial differential equation (PDE) is proposed and signifi-
cant geometric calculations are still required.

In this paper, we adopt a different method, which aims to
be more general and less geometric-based. This is possible
due to the equivalence between the solution of the Eikonal
equation and the distance function [34]. It is worth noting
that very efficient linear algorithms are available to solve
regularized Eikonal equations, as discussed by Crane et al.
[35]. The work in [35] provides a viable solution for contact
detection in computational mechanics. Applications extend
beyond contact mechanics and they provide a solution for
the long-standing issue of imposing essential boundary con-
ditions in meshfree methods [1].

We solve a partial differential equation (PDE) that pro-
duces an ADF (approximate distance function) that con-
verges to the distance function as a length parameter tends
to zero. The relation between the screened Poisson equa-
tion (also identified as Helmholtz-like equation), which is
adopted in computational damage and fracture [36,37] and
the Eikonal equation is well understood [38]. Regulariza-
tions of the Eikonal equation such as the geodesics-in-heat
[35] and the screened Poisson equation are discussed by
Belyaev and Fayolle [39]. We take advantage of the latter for
computational contact mechanics. Specifically, the proposed
algorithm solves well-known shortcomings of geometric-
based contact enforcement:

1. Geometric calculations are reduced to the detection of a
target element for each incident node.

2. The gap function g(x) is continuous, since the solution of
the screened Poisson equation is a continuous function.

3. The contact force direction is unique and obtained as the
gradient of g(x).
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4. Since the Courant–Beltrami penalty function is adopted,
contact force is continuous in the normal direction.

Concerning the importance of solving the uniqueness prob-
lem, Konyukhov and Schweizerhof [40] have shown that
considerable computational geometry must be in place to
ensure uniqueness and existence of node-to-line projection.
Another important computational effort was presented by
Farah et al. [23] to geometrically address all cases in 3D
with mortar interpolation. Extensions to higher dimensions
require even more intricate housekeeping. When compared
with the geometrical approach to the distance function [2,32],
the algorithm is much simpler at the cost of a solution of an
additional PDE. Distance functions can be generated by level
set solutions of the transport equation [41].

The remainder of this paper is organized as follows. In
Sect. 2, the approximate distance function is introduced as
the solution of a regularization of the Eikonal equation. In
Sect. 3, details concerning the discretization are introduced.
The overall algorithm, including the important step-control,
is presented in Sect. 4. Verification and validation examples
are shown in Sect. 5 in both 2D and 3D. Finally, in Sect. 6,
we present the advantages and shortcomings of the present
algorithm, as well as suggestions for further improvements.

2 Approximate distance function (ADF)

Let � ⊂ R
d be a deformed configuration of a given body in

d-dimensional space and �0 the corresponding undeformed
configuration. The boundaries of these configurations are �

and�0, respectively. Let us consider deformed coordinates of
an arbitrary point x ∈ � and a specific point, called incident,
with coordinates x I . For reasons that will become clear, we
also consider a potential function φ (x I ), which is the solu-
tionof a scalar PDE.Weare concernedwith an approximation
of the signed-distance function. The so-called gap function
is now introduced as a differentiable function g [φ (x I )] such
that [3]:

g [φ (x I )]

⎧
⎪⎨

⎪⎩

< 0 x I ∈ �

= 0 x I ∈ �

> 0 x I /∈ � ∪ �

. (1)

If a unique normal n (x I ) exists for x I ∈ �, we can
decompose the gradient of g [φ (x I )] into parallel (‖) and
orthogonal (⊥) terms: ∇g [φ (x I )] = {∇g [φ (x I )]}‖ +
{∇g [φ (x I )]}⊥, with {∇g [φ (x I )]}⊥ � n (x I ). Since g
[φ (x I )] = 0 for x I ∈ � we have ∇g [φ (x I )] � n (x I )

on those points. In the frictionless case, the normal contact
force component is identified as fc and contact conditions
correspond to the following complementarity conditions [4]:

g [φ (x I )] fc = 0,

fc ≥ 0,

g [φ (x I )] ≥ 0, (2)

or equivalently, 〈gg [φ (x I )] + fc〉 − fc = 0 where 〈x〉 =
(x+|x |)/2. The vector form of the contact force is given by
f c = fc∇g [φ (x I )]. Assuming that a function g [φ (x I )],
and its first and second derivatives are available from the
solution of a PDE, we approximately satisfy conditions (2)
by defining the contact force as follows:

f c = fc∇g [φ (x I )]

= κ min {0, g [φ (x I )]}2 ∇g [φ (x I )] (κ > 0), (3)

where κ is a penalty parameter for the Courant–Beltrami
function [42,43]. The Jacobian of this force is given by:

J = κ min {0, g [φ (x I )]}2 ∇ ⊗ ∇g [φ (x I )]

+2κ min {0, g [φ (x I )]} ∇g [φ (x I )] ⊗ ∇g [φ (x I )] .

(4)

Varadhan [44] established that the solution of the screened
Poisson equation:

cL∇2φ(x) − φ(x) = 0 in � (5a)

φ(x) = 1 on � (5b)

produces an ADF given by −cL log [φ (x)]. This property
has been recently studied by Guler et al. [38] and Belyaev et
al. [34,39]. The exact distance is obtained as a limit:

d (x) = − lim
cL→0

cL log [φ (x)] . (6)

which is the solution of the Eikonal equation. Proof of this
limit is provided in Varadhan [44]. We transform the ADF to
a signed-ADF, by introducing the sign of outer (+) or inner
(−) consisting of

g (x) = ±cL log [φ (x)] . (7)

Note that if the plus sign is adopted in (7), then inner points
will result in a negative gap g(x). The gradient of g(x) results
in

∇g (x) = ± cL
φ (x)

∇φ (x) (8)

and the Hessian of g(x) is obtained in a straightforwardman-
ner:
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∇ ⊗ ∇ [g (x)]

= ± cL
φ (x)

{

∇ ⊗ ∇ [φ (x)] − 1

φ (x)
∇φ (x) ⊗ ∇φ (x)

}

.

(9)

Note that cL is a square of a characteristic length, i.e. cL = l2c ,
which is here taken as a solution parameter.

Using a test field δφ(x), the weak form of (5) is written
as
∫

�

cL∇φ (x) · ∇δφ (x) dV +
∫

�

φ (x) δφ (x) dV

=
∫

�

cLδφ ∇φ (x) · n (x) dA, (10)

where dA and dV are differential area and volume ele-
ments, respectively. Since an essential boundary condition
is imposed on � such that φ (x) = 1 for x ∈ �, it follows
that δφ(x) = 0 on� and the right-hand-side of (10) vanishes.

3 Discretization

In an interference condition, each interfering node,with coor-
dinates xN , will fall within a given continuum element. The
parent-domain coordinates ξ for the incident node x I also
depends on element nodal coordinates. Parent-domain coor-
dinates are given by:

ξ I = argmin
ξ

[‖x (ξ) − x I ‖
]
, (11a)

and it is straightforward to show that for a triangle,

ξI1 = xI2 (x11 − x31) + x12x31 − x11x32 + xI1 (x32 − x12)

x11 (x22 − x32) + x12 (x31 − x21) + x21x32 − x22x31
, (11b)

ξI2 = xI2 (x21 − x11) + x12x21 − x11x22 + xI1 (x12 − x22)

x11 (x22 − x32) + x12 (x31 − x21) + x21x32 − x22x31
, (11c)

with similar expressions for a tetrahedron [45]. The contin-
uum element interpolation is as follows:

x (ξ) =
d+1∑

K=1

NK (ξ) xK = N (ξ) · xN , (12)

where NK (ξ)with K = 1, . . . , d+1 are the shape functions
of a triangular or tetrahedral element. Therefore, (11a) can
be written as:

ξ I = argmin
ξ

[‖N (ξ) · xN − x I ‖
] = aN (xC ) (13)

In (13), we group the continuum node coordinates and
the incident node coordinates in a single array xC =

{
xN x I

}T
with cardinality #xC = d (d + 2). We adopt the

notation xN for the coordinates of the continuum element.
For triangular and tetrahedral discretizations, ξ I is a function
of xN and x I :

ξ I = aN

({
xN

x I

})

= aN (xC ) . (14)

The first and second derivatives of aN with respect to xC
make use of the following notation:

AN (xC ) = daN (xC )

dxC
(d × [d (d + 2)]) , (15)

AN (xC ) = dAN (xC )

dxC

(
d × [d (d + 2)]2

)
. (16)

Source code for these functions is available in Github [45].
A mixed formulation is adopted with equal-order interpola-
tion for the displacement u and the function φ. For a set of
nodal displacements uN and nodal potential values φN :

u (xC ) = Nu (xC ) · uN , (17a)

φ (xC ) = Nφ (xC ) · φN , (17b)

where in three dimensions

Nu (xC ) =
⎡

⎣
· · · NK [aN (xC )] 0 0 · · ·
· · · 0 NK [aN (xC )] 0 · · ·
· · · 0 0 NK [aN (xC )] · · ·

⎤

⎦ ,

(17c)

Nφ (xC ) = [ · · · NK [aN (xC )] · · · ]T , (17d)

where ξ I = aN (xC ). First and second derivatives of
NK [aN (xC )] are determined from the chain rule:

dNK

dxC
= dNK

dξ I
· AN (xC ) , (18)

d2NK

dx2C
= AT

N (xC ) · d
2NK

dξ2I
· AN (xC ) + dNK

dξ I
· AN (xC ) .

(19)

For the test function of the incident point, we have

δφ (xC ) = Nφ (xC ) · δφN + φN · dNφ (xC )

dxC
· δxC . (20)

For linear continuum elements, the second variation of
φ (ξ) is given by the following rule:

dδφ (xC ) = δφN · dNφ (xC )

dxC
· dxC + dφN · dNφ (xC )

dxC
· δxC

+ φN · d
2Nφ (xC )

dx2C
: (δxC ⊗ dxC ) (21)
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Fig. 1 Relevant quantities for the definition of a contact discretization
for element e

Since the gradient of φ makes use of the continuum part
of the formulation, we obtain:

∇φ (ξ) = φN · dNφ (ξ)

dξ
· j−1

︸ ︷︷ ︸
dNφ/dx

,

∇δφ (ξ) = δφN · dNφ (ξ)

dξ
· j−1 (22)

where j is the Jacobianmatrix in the deformed configuration.
The element residual and stiffness are obtained from these
quantities and available in Github [45]. Use is made of the
Acegen [46] add-on to Mathematica [47] to obtain the
source code for the final expressions.

4 Algorithm and step control

All nodes are considered candidates and all elements are tar-
gets. A simple bucket-sort strategy is adopted to reduce the
computational cost. In addition,

Step control is required to avoid the changeof target during
Newton-Raphson iteration. The screened Poisson equation
is solved for all bodies in the analyses. Figure1 shows the
simple mesh overlapping under consideration. The resulting
algorithm is straightforward. Main characteristics are:

• All nodes are candidate incident nodes.
• All elements are generalized targets.

The modifications required for a classical nonlinear Finite
Element software (in our case SimPlas [48]) to include
this contact algorithm are modest. Algorithm 1 presents the
main tasks. In this Algorithm, blue boxes denote the contact
detection task, which here is limited to:

1. Detect nearest neighbor (in terms of distance) elements
for each node. A bucket ordering is adopted.

2. Find if the node is interior to any of the neighbor elements
by use of the shape functions for triangles and tetrahedra.
This is performed in closed form.

3. If changes occurred in the targets, update the connectiv-
ity table and the sparse matrix addressing. Gustavson’s
algorithm [49] is adopted to perform the updating in the
assembling process.

In terms of detection, the following algorithm is adopted:

1. Find all exterior faces, as faces sharing only one tetrahe-
dron.

2. Find all exterior nodes, as nodes belonging to exterior
faces.

3. Insert all continuumelements and all exterior nodes in two
bucket lists.Deformed coordinates of nodes and deformed
coordinates of element centroids are considered.

4. Cycle through all exterior nodes

(a) Determine the element bucket from the node coordi-
nates

(b) Cycle through all elements (e) in the 33 = 27 buckets
surrounding the node
i. If the distance from the node to the element cen-

troid is greater than twice the edge size, go to the
next element

ii. Calculates the projection on the element (ξ I ) and
the corresponding shape functions N

(
ξ I

)
.

iii. If 0 ≤ NK
(
ξ I

) ≤ 1 then e is the target element.
If the target element has changed, then flag the
solver for connectivity update.

Since the algorithm assumes a fixed connectivity table
during Newton iterations, a verification is required after each
converged iteration to check if targets have changed since
last determined. If this occurs, a new iteration sequence with
revised targets is performed.
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Algorithm 1 Staggered contact algorithm based on the
approximate distance function. λ is the load/displacement
factor.

Load/Displacement loop

λ ← λ + Δλ, istep ← istep + 1

Determine φ(x) in a single step

Find target elements for every node

Newton iteration for x(X)

Convergence success ?
No, Δλ ← Δλ/2

Yes

Find target elements for every node

Change in targets ?
Yes

No

Accept increment, update state

and λ ← λ − Δλ

istep = 0

istep == nstep ?No

Yes

End loop

with g(x) = l2c log[φ(x)]

The only modification required to a classical FEM code
is the solution of the screened-Poisson equation, the green
box in Algorithm 1. The cost of this solution is negligible
when compared with the nonlinear solution process since
the equation is linear and scalar. It is equivalent to the cost of
a steady-state heat conduction solution. Note that this corre-
sponds to a staggered algorithm.

5 Numerical tests

Numerical examples are solved with our in-house software,
SimPlas [48], using the new node-to-element contact ele-

ment. Only triangles and tetrahedra are assessed at this time,
which provide an exact solution for ξ I . Mathematica [47]
with the add-on Acegen [46] is employed to obtain the spe-
cific source code. All runs are quasi-static and make use of a
Neo-Hookean model. If C is the right Cauchy-Green tensor,
then

S = 2dψ(C)/dC

where ψ (C) = μ
2 (C : I − 3) − μ log

(√
det C

)
+ χ

2 log2
(√

det C
)
with μ = E

2(1+ν)
and χ = Eν

(1+ν)(1−2ν)
being con-

stitutive properties.

Patch test satisfaction

We employ a corrected penalty so that the contact patch test
is satisfied in most cases. This is an important subject for
convergence of computational contact solutions and has been
addressed here with a similar solution to the one discussed
by Zavarise and co-workers [16,17].

We remark that this is not a general solution and in some
cases, our formulation may fail to pass the patch test. Fig-
ure2 shows the effect of using a penalty weighted by the
edge projection, see [16]. However, this is not an universal
solution.

5.1 Two-dimensional compression

We begin with a quasi-static two-dimensional test, as shown
in Fig. 3, using three-node triangles. This test consists of a
compression of four polygons (identified as part 3) in Fig. 3
by a deformable rectangular punch (part 1 in the same Fig-
ure). The ‘U’ (part 2) is considered rigid but still participates
in the approximate distance function (ADF) calculation. To
avoid an underdetermined system, a small damping term is
used, specifically 40 units with L−2MT−1 ISQ dimensions.
Algorithm 1 is adopted with a pseudo-time increment of
�t = 0.003 for t ∈ [0, 1].

For h = 0.020, h = 0.015 and h = 0.010, Fig. 4 shows a
sequence of deformed meshes and the contour plot of φ(x).
The robustness of the algorithm is excellent, at the cost of
some interference for coarse meshes. To further inspect the
interference, the contour lines for g(x) are shown in Fig. 5.
We note that coarser meshes produce smoothed-out vertex
representation, which causes the interference displayed in
Fig. 4. Note that g(x) is determined from φ(x).

Using the gradient of φ (x), the contact direction is
obtained for h = 0.02 as shown in Fig. 6.We can observe that
for the star-shaped figure, vertices are poorly represented,
since small gradients are present due to uniformity of φ (x)

in these regions. The effect of mesh refinement is clear, with
finer meshes producing a sharper growth of reaction when
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Fig. 2 Patch test satisfaction by using a corrected penalty

Fig. 3 Two-dimensional
verification problem. Consistent
units are used
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Fig. 4 Two-dimensional compression: sequence of deformed meshes and contour plot of φ(x)

all four objects are in contact with each other. In contrast, the
effect of the characteristic length lc is not noticeable.

In terms of the effect of lc on the fields φ(x) and g(x),
Fig. 7 shows that information, although φ(x) is strongly
affected by the length parameter, g(x) shows very similar
spatial distributions although different peaks. Effects of h and
lc in the displacement/reaction behavior is shown in Fig. 8.

The mesh size h has a marked effect on the results up to
h = 0.0125, the effect of lc is much weaker.

5.2 Three-dimensional compression

In three dimensions, the algorithm is in essence the same.
Compared with geometric-based algorithms, it significantly
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0.000e+00

h = 0.200 h = 0.150

h = 0.125 h = 0.100

g(x)

g(x) g(x)

g(x)

Fig. 5 Gap (g(x)) contour lines for the four meshes using lc = 0.3 consistent units

reduces the coding for the treatment of particular cases (node-
to-vertex, node-to-edge in both convex and non-convex
arrangements). The determination of coordinates for each
incident node is now performed on each tetrahedra, but
the remaining tasks remain unaltered. We test the geometry
shown in Fig. 9 with the following objectives:

• Assess the extension to the 3D case. Geometrical nons-
moothness is introduced with a cone and a wedge.

• Quantify interference as a function of lc and κ as well as
the strain energy evolution.

Deformed configurations and contour plots of φ (x) for this
problem are presented in Fig. 9, and the corresponding CAD
files are available on Github [45]. A cylinder, a cone and
a wedge are compressed between two blocks. Dimensions
of the upper and lower blocks are 10 × 12 × 2 consistent
units (the upper block is deformable whereas the lower block
is rigid) and initial distance between blocks is 8 consistent
units. Length and diameter of the cylinder are 7.15 and 2.86
(consistent units), respectively. The cone has a height of 3.27
consistent units and a radius of 1.87. Finally, the wedge has a
width of 3.2, a radius of 3.2 and a swept angle of 30 degrees.

A compressible Neo-Hookean law is adopted with the fol-
lowing properties:

• Blocks: E = 5 × 104 and ν = 0.3.
• Cylinder, cone and wedge: E = 1 × 105 and ν = 0.3.

The analysis of gapviolation,vmax = supx∈� [−min (0, g)]
as a function of pseudotime t ∈ [0, 1] is especially important
for assessing the robustness of the algorithm with respect to
parameters lc and κ . For the interval lc ∈ [0.05, 0.4], the
effect of lc is not significant, as can be observed in Fig. 10.
Some spikes are noticeable around t = 0.275 for lc = 0.100
when the wedge penetrates the cone. Since κ is constant, all
objects are compressed towards end of the simulation, which
the gap violation. In terms of κ , effects are the same as in
classical geometric-based contact. In terms of strain energy,
higher values of lc result in lower values of strain energy. This
is to be expected, since smaller gradient values are obtained
and the contact force herein is proportional to the product
of the gradient and the penalty parameter. Convergence for
the strain energy as a function of h is presented in Fig. 11. It
is noticeable that lc has a marked effect near the end of the
compression, since it affects the contact force.
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Fig. 6 Directions obtained as ∇φ (ξ) for h = 0.020, 0.015 and 0.010

5.3 Two-dimensional ironing benchmark

This problem was proposed by Yang et al. [50] in the context
of surface-to-surface mortar discretizations. Figure12 shows
the relevant geometric and constitutive data, according to
[50] and [51]. We compare the present approach with the
results of these two studies in Fig. 13. Differences exist in
the magnitude of forces, and we infer that this is due to the
continuum finite element technology. We use finite strain
triangular elements with a compressible neo-Hookean law

[52]. The effect of lc is observed in Fig. 13. As before, only
a slight effect is noted in the reaction forces. We use the one-
pass version of our algorithm, where the square indenter has
the master nodes and targets are all elements in the rectangle.
Note that, since the cited work includes friction, we use here
a simple model based on regularized tangential law with a
friction coefficient, μ f = 0.3.

5.4 Three-dimensional ironing benchmark

We now perform a test of a cubic indenter on a soft block.
This problem was proposed by Puso and Laursen [18,19] to
assess a mortar formulation based on averaged normals. The
frictionless version is adopted [19], but we choose the most
demanding case: ν = 0.499 and the cubic indenter. Relevant
data is presented in Fig. 14. The rigid 1 × 1 × 1 block is
located at 1 unit from the edge and is first moved down 1.4
units. After this, itmoves longitudinally 4 units inside the soft
block. The soft block is analyzed with two distinct meshes:
4×6×20 divisions and 8×12×40 divisions. Use is made of
one plane of symmetry. A comparison with the vertical force
in [19] is performed (see also [18] for a clarification con-
cerning the force components). We allow some interference
to avoid locking with tetrahedra. In [19], Puso and Laursen
employed mixed hexahedra, which are more flexible than
the crossed-tetrahedra we adopt here. Figure 15 shows the
comparison between the proposed approach and the mortar
method by Puso and Laursen [19]. Oscillations are caused by
the normal jumps in gradient of φ(x) due to the classical C0
finite-element discretization (between elements). Although
the oscillations can be observed, the present approach is sim-
pler than the one in Puso and Laursen.

6 Conclusions

We introduced a discretization and gap definition for a con-
tact algorithm based on the solution of the screened Poisson
equation. After a log-transformation, this is equivalent to
the solution of a regularized Eikonal equation and therefore
provides a distance to any obstacle or set of obstacles. This
approximate distance function is smooth and is differentiated
to obtain the contact force. This is combined with a Courant–
Beltrami penalty to ensure a differentiable force along the
normal direction. These two features are combined with a
step-control algorithm that ensures a stable target-element
identification. The algorithm avoids most of the geometrical
calculations and housekeeping, and is able to solve problems
with nonsmooth geometry. Very robust behavior is observed
and two difficult ironing benchmarks (2D and 3D) are solved
with success. Concerning the selection of the length-scale
parameter lc, which produces an exact solution for lc = 0, we
found that it should be the smallest value that is compatible
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Fig. 7 Effect of lc in the form of φ(x) and g(x)

with the solution of the screened Poisson equation. Too small
of a lc will produce poor results for φ (x). Newton–Raphson
convergence was found to be stable, as well as nearly inde-
pendent of lc. In terms of further developments, aC2 meshless

discretization is important to reduce the oscillations caused
by normal jumps and we plan to adopt the cone projection
method developed in [7] for frictional problems.
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Fig. 12 Ironing benchmark in 2D: relevant data and deformed mesh snapshots
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Fig. 14 3D ironing: cube over
soft block. Relevant data and
results
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Fig. 15 3D ironing: cube over
soft block. Vertical reactions
compared with results in Puso
and Laursen [19]
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