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Abstract

Continuous Glucose Monitoring (CGM) has been demonstrated to be clinically valuable, reducing risks of
hypoglycemia and hyperglycemia, glycemic variability (GV), and improving patient quality of life for a wide
range of patient populations and clinical indications. Use of CGM can help reduce HbA1c and mean glucose.
One CGM device, with accuracy (%MARD) of approximately 10%, has recently been approved for self-
adjustment of insulin dosages (nonadjuvant use) and approved for reimbursement for therapeutic use in the
United States. CGM had previously been used off-label for that purpose. CGM has been demonstrated to
be clinically useful in both type 1 and type 2 diabetes for patients receiving a wide variety of treatment
regimens. CGM is beneficial for people using either multiple daily injections (MDI) or continuous subcu-
taneous insulin infusion (CSII). CGM is used both in retrospective (professional, masked) and real-time
(personal, unmasked) modes: both approaches can be beneficial. When CGM is used to suspend insulin
infusion when hypoglycemia is detected until glucose returns to a safe level (low-glucose suspend), there are
benefits beyond sensor-augmented pump (SAP), with greater reduction in the risk of hypoglycemia. Pre-
dictive low-glucose suspend provides greater benefits in this regard. Closed-loop control with insulin pro-
vides further improvement in quality of glycemic control. A hybrid closed-loop system has recently been
approved by the U.S. FDA. Closed-loop control using both insulin and glucagon can reduce risk of hypo-
glycemia even more. CGM facilitates rigorous evaluation of new forms of therapy, characterizing phar-
macodynamics, assessing frequency and severity of hypo- and hyperglycemia, and characterizing several
aspects of GV.

Keywords: Continuous glucose monitoring (CGM), Flash glucose monitoring, Multiple daily injections (MDI),
Continuous subcutaneous insulin infusion (CSII), Sensor-augmented pump (SAP), Automated insulin delivery
(AID), Closed-loop control (CLC), Hypoglycemia, Hyperglycemia, Time in range (TIR), Ambulatory glucose
profile (AGP), Glycemic variability (GV), Artificial pancreas (AP), Type 1 diabetes (T1DM), Type 2 diabetes
(T2DM).

Introduction

We shall review recent developments regarding con-
tinuous glucose monitoring (CGM) with focus on de-

monstrable clinical outcomes. Part I discusses several aspects
of use of CGM and related techniques for open-loop control
of glucose: type 1 diabetes, special populations (hypoglyce-
mia unawareness, pregnancy, hospitalized patients), use of

CGM combined with multiple daily injections (MDI) versus
continuous subcutaneous insulin infusion (CSII), flash glucose
monitoring in type 1 and type 2 diabetes, and use of CGM and
flash glucose monitoring in type 2 diabetes. Part II discusses
recent progress using several approaches to closed-loop con-
trol: threshold suspend, predictive threshold suspend, hyper-
glycemia–hypoglycemia minimizer, hybrid closed loop, and
full closed loop using insulin alone or insulin and glucagon.
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Part I: Open-Loop Control

Clinical application of modern-era continuous glucose
sensing began in 2000.1–4 CGM was widely heralded as a
great advance. However, early CGM sensors had limited
accuracy, limited duration of use, and limited usability. After
10 years of clinical experience, an evaluation by the Co-
chrane collaboration,5 based on 22 randomized controlled
trials (through 2011, including the JDRF-CGM studies6,7),
was extremely cautious5:

‘‘There is limited evidence [emphasis added] for the effec-
tiveness of real-time CGM use in children, adults and patients
with poorly controlled diabetes. The largest improvements in
glycemic control were seen for sensor-augmented insulin
pump therapy in patients with poorly controlled diabetes who
had not used an insulin pump before. The risk of severe hy-
poglycemia or ketoacidosis was not significantly increased
[sic.] for CGM users, but as these events occurred infrequent
these results have to be interpreted cautiously. There are in-
dications that higher compliance of wearing the CGM device
improves glycosylated hemoglobin HbA1c level (HbA1c) to a
larger extent.’’5

An independent review by Liebl et al.8 focusing on eight
major studies (also including the JDRF-CGM studies)
reached somewhat stronger, but still guarded, conclusions:

‘‘Randomized controlled studies have provided evidence that
hemoglobin HbA1c (HbA1c) results can be improved in pa-
tients with type 1 diabetes with elevated baselineHbA1c when
using CGM frequently enough and that the frequency and
duration of hypoglycemic events can be reduced in patients
with satisfactory baselineHbA1c.’’[emphasis added]8

Price and coworkers have pointed out a number of pitfalls in
meta-analyses.9 With the benefit of time and the large number
of studies that have followed, we can now be much more as-
sertive regarding the clinical benefits of CGM. The JDRF co-
operative studies6,7 reported in 2008 and 2010 represented a
breakthrough in terms of size, rigor, use of three different CGM
systems, multiple patient populations (children, adolescents,
adults), and evaluation of factors such as the extent of usage.
The JDRF study made several critically important observations
based on a large number of subjects and 6-month follow-up:

(1) In people with elevated HbA1c at baseline, intro-
duction of CGM usually resulted in significant and
sometimes substantive reductions in HbA1c.

(2) The magnitude of reduction in HbA1c is dependent on
the baseline HbA1c. If the HbA1c is close to the desired
or target HbA1c level, then further decline in HbA1c
was difficult to achieve. Improvements in HbA1c were
directly related to the level of usage of CGM.

(3) Improvement in HbA1c was demonstrated for sub-
jects in all age groups. Improvement was smaller for
adolescents compared with children (ages 8–14 years)
or adults (age >25 years). The relationships with age
were primarily attributable to the rate of utilization of
CGM in the various groups.

(4) For individuals experiencing a high risk of hypogly-
cemia, real-time CGM usually resulted in significant
clinically meaningful reductions in risk of hypogly-
cemia by 33% to 50%.)6,7

In addition to quantifying the changes in mean glucose,
and risks of hypo- and hyperglycemia, CGM enables the

patient and physician to visualize the typical patterns of
glucose throughout the day, including changes following
meals, exercise, medications, and in response to changes in
treatment regimen. One can also evaluate glycemic vari-
ability (GV) within and between days or between days of the
week. One can analyze the average or typical glucose patterns
by time of day for any specified day or for various periods of
time for one subject and for groups of subjects. For example,
Forlenza et al. characterized the average patterns of glucose
by time of day for six groups of subjects in the JDRF studies
(adults, adolescents, and children either with HbA1c levels
above or within target levels) (cf. Fig. 2 of Forlenza et al.)10

El-Laboudi et al.11 have recently reported a new more
detailed analysis of the data from the JDRF studies.6,7 They
studied more than two dozen criteria, including measures of
overall quality of glycemic control, hypoglycemia, hyper-
glycemia, and GV [Table 5 of El-Laboudi et al.11 and Sup-
plementary Table S1 to the present article (available online at
www.liebertpub.com/dia)]. Use of CGM resulted in a dra-
matic and significant reduction in both HbA1c and mean
glucose.7,9,11 There were highly significant improvements in
four measures of overall glycemic control (GRADE, M, J
index, and ADRR).11 There were highly significant im-
provements in five measures of hypoglycemia, (LBGI,
%GRADEhypoglycemia, and percentage of time glucose was
£2.8, £3.3, or £3.9 mM (£50, £60, or £70 mg/dL)).7,9,11

There were significant reductions in three measures of hy-
perglycemia (HBGI, %GRADEhyperglycemia, and the per-
centage of time with glucose >7.8 mM [> 140 mg/dL]).7,9,11

Six of eight measures of GV were markedly reduced after 26
weeks of use of CGM (P < 0.001), and GV was progressively
reduced as the number of days of CGM used per week in-
creased. Some of the changes (HbA1c, HBGI, LBGI, and
several measures of GV) were significant, not only at the
usual P-values (e.g., P < 0.05, 0.01, or 0.001) but also with
extraordinary P-values ranging from P* 10-4 to P* 10-6

(Table 5 of El-Laboudi et al.11 and Supplementary Table S1
to this article). Reduction in GV is important because GV is
highly correlated with the risk of hypoglycemia: for any
specified average blood glucose (and the corresponding
HbA1c), the percentage of glucose values below the thresh-
old defining hypoglycemia will decrease as GV is reduced, as
shown theoretically and empirically.12,13

Based on the findings accumulated through 2013, The
German Diabetes Association developed recommendations
for use of CGM in T1DM.8 The Endocrine Society,14,15

NICE,16 ISPAD,17 the American Association of Clinical
Endocrinologists/American College of Endocrinology,18 and
the American Diabetes Association19 have published rec-
ommendations regarding clinical indications for use of CGM.

Numerous studies have confirmed the major findings of the
JDRF-CGM studies for a wide range of patient populations
and indications, using a wide variety of CGM sensors.15,17,18

We shall now discuss several aspects of CGM related to
clinical outcomes, which have appeared subsequent to the
truly pioneering JDRF studies.6,7

Improved accuracy of CGM

There has been steady improvement in the accuracy of
glucose sensors.20–27 The best sensors now have an accuracy
of approximately –10% MARD. This has led to greater
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acceptance by patients and physicians and has enabled users
of CGM to reduce the number of measurements of capillary
blood glucose (CBG). Based on modeling studies, Kovatchev
et al.28 demonstrated that a 10% MARD should be sufficient
to permit self-adjustment of insulin dosage without the need
for a confirmatory CBG. Thus, CGM is ready for nonadjuvant
use—no longer just an adjuvant to self-monitoring of blood
glucose (SMBG).

Reduced need for calibration

The improvement in accuracy of CGM sensors has been
accompanied by a reduced need for frequent calibration29

—or any calibration30—by the user. Indeed, flash glucose
monitoring (discussed further below) uses factory calibra-
tion, which does not require calibration by the patient.30

Approval for nonadjuvant use

The CE (Conformité Européene) Mark and FDA approved
CGM for nonadjuvant use, i.e., adjustment of insulin dosage
without confirmatory CBG measurement.31–33 The initial
approval applied to only one specific model, the Dexcom G5
sensor. Hopefully, this will serve as an important precedent
that will also facilitate the approval of other CGM sensors
that offer similar levels of accuracy. Many CGM users had
already discovered that CGM provided sufficient informa-
tion, accuracy, and reliability to enable them to make insulin
dosage adjustments based on CGM alone.33,34

Effectiveness of CGM in conjunction with MDI
as well as with CSII

Most of the early studies with CGM were on people with
type 1 diabetes who were also using an insulin pump (CSII).
There have been questions as to whether similar bene-
fits would be seen in people using basal–bolus therapy with
multiple daily injections (MDI). The statement from
ISPAD17 and AACE/ACE18 hinted that there might be dif-
ferences in the extent of improvement in mean glucose and
risk of hypoglycemia for users of MDI and CSII.

There is now considerable evidence that the improvement
in quality of glycemic control is essentially equivalent in
users of MDI and CSII.35–42 The effectiveness of CGM for
people with T1 DM using MDI as well as CSII was clearly
demonstrated in recent randomized clinical trials, which used
flash glucose monitoring or flash glucose monitoring varia-
tion of CGM.40–42 Changes in mean glucose were identical
for users of MDI and CGM.40–42

CGM studies in special populations

Patients at high risk for hypoglycemia. One of the most
important applications of CGM is for the management of
patients with frequent severe hypoglycemia, often associated
with hypoglycemia unawareness. A recent clinical trial
evaluated the effectiveness of CGM for this patient popula-
tion. Van Beers et al.37 used a crossover randomized study
and demonstrated a dramatic increase in % of time in the
target range that was identical for users of MDI or CSII (cf
Figs. 2 and 4 of van Beers et al.37) with concomitant marked
reduction in frequency of hypoglycemia, as ascertained using
three different thresholds (£3.9, £3.5 and £2.8 mM or £70,
£ 63, or £50 mg/dL) (Fig. 3 of van Beers et al.37). Despite a

twofold or greater reduction in the % of glucose values falling
below 2.8 mM, there was surprisingly little or no change in
the small, but definite, fraction (*5% of all hypoglycemic
episodes) that was designated as severe hypoglycemia, as
defined by coma, seizure, or hospital admission. (cf. Fig. 3 of
van Beers et al.37).

If one postulates that the major effect of CGM in terms of
reducing the frequency of hypoglycemia is due to a reduction
in GV, then one could predict theoretically that the odds ratio
for reduction of hypoglycemia will increase progressively as
the threshold defining hypoglycemia is lowered, that is,
greater effectiveness using a threshold of 40 mg/dL compared
with a threshold of 70 mg/dL. This effect has been seen in
most studies involving CGM. Thus, it was unexpected that
the frequency of severe hypoglycemia was not reduced by use
of CGM.37 This suggests that severe hypoglycemia mani-
fested by coma, seizure, or hospital admission may be gov-
erned by factors in addition to the duration of blood glucose
levels below the usual thresholds.

Pregnancy. There have been numerous studies of CGM
in pregnancy.43–48 Use of CGM during pregnancy has been
reported to improve quality of glycemic control, but does not
reduce the risk of macrosomia.46,47 Additional randomized
trials have been initiated.48

Hospitalized patients. Usage of CGM in the hospitalized
patient and in the ICU remains a work in progress.49,50 There
has been considerable interest in the use of CGM in the
hospitalized patient to assist with glycemic control in patients
continuing the therapies they used as an outpatient, for con-
trol of insulin infusions, and for use in the intensive care unit.
The continuing improvement in the accuracy, robustness, and
usability of CGM sensors offers considerable promise for an
increasing role for the hospitalized patient. Thabit et al. have
recently reported significant improvement in glycemic con-
trol in a randomized parallel-arm study of 40 inpatients with
type 2 diabetes when using closed-loop control without pre-
meal boluses: percentage of time in the target range was
improved from 38.1% in the control group to 59.8%, a
change of 21.8% [95% CI 10.4–33.1]; P = 0.0004.51 CGM by
itself cannot be expected to be effective if the patient, nursing
staff, and physician are unable to respond to the data gener-
ated; in contrast, incorporation of CGM into a conservative
closed-loop system may be more feasible in the hospital.51

Flash glucose monitoring

Flash glucose monitoring is sometimes regarded as a
separate entity from CGM. Alternatively, flash glucose
monitoring can be regarded as a special case or subset of
CGM. Rather than updating a display of glucose continu-
ously at 5-min intervals, glucose values are reported only
when the user scans the sensor by passing a reader or a cell
phone close to the sensor. Flash glucose monitoring forfeits
the abilities to display a continuous real-time graph of glu-
cose versus time, rate of change of glucose, alarms, remote
monitoring, and suitability for use in closed-loop systems.
Flash glucose monitoring can still generate retrospective
graphical displays of glucose versus date and time of day.
Current flash glucose monitoring systems have good accu-
racy, factory calibration, a 2-week sensor lifetime, small size,
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light weight, excellent usability, good user acceptance, low
cost, and an improved method for sensor insertion.

The IMPACT study evaluated flash glucose monitoring in
people with type 1 diabetes42; the REPLACE study evaluated
flash glucose monitoring in people with type 2 diabetes.52

Participants using flash glucose monitoring stopped using
CBG almost entirely. People with T1DM obtained flash
glucose monitoring glucose sensor measurements about 15
times per day initially, with further slow decline in frequency
of scanning thereafter. Using flash glucose monitoring in type
1 diabetes for 6 months, the average time spent in hypogly-
cemia was reduced by 38%, dropping by 1.30 h/day from
3.38 h/day at baseline to 2.03 h/day at 6 months compared with
negligible changes in the control group. There were minimal
changes in HbA1c in either group. However, there was marked
improvement in quality of glycemic control as reflected in
BGRI, LBGI, and time in target range. There was a reduction
in the number, duration, and magnitude (area below a spec-
ified threshold or AUC) for hypoglycemia.42 There was also a
reduction in the number, duration, and area under the curve
for hyperglycemia defined by a threshold of >13.3 mM
(>240 mg/dL) (Supplementary Table S1 Bolinder et al.42)
and a reduction in GV measured as SD, %CV, CONGA1,
CONGA2, CONGA4, and CONGA6 (all P < 0.0001), and in
MAGE (P < 0.001) (cf. Supplementary Table S2 of Bolinder
et al.42).

Flash glucose monitoring users showed improvement in
subjective factors such as satisfaction with treatment mea-
sured by the Diabetes Treatment Satisfaction Questionnaire
(DTSQ) (P < 0.001) (cf. Supplementary Fig. S5 of Bolinder
et al.42) and participants were aware of reduced hypoglyce-
mia. There were no significant changes in the Diabetes Dis-
tress Survey, nor in the Fear of Hypoglycemia Survey (cf.
Supplementary Fig. S5 of Bolinder et al.42).

Use of flash glucose monitoring in people with type 2 dia-
betes showed similar results52 with reductions in the risk of
hypoglycemia of 55%, 68%, and 75% using thresholds of £3.9,
£ 3.1, and £2.5 mM (£70, £55, and £45 mg/dL), respectively
(P < 0.001 for all three thresholds). Only minimal changes
were observed in mean glucose and HbA1c. Flash glucose
monitoring participants reduced usage of CBG by 90% from a
baseline of 3.8 CBG readings per day. Sensor scanning fre-
quency averaged 8.3/day (median 6.9/day). Treatment satis-
faction by the DTSQ and Diabetes Quality of Life (DQoL)
measure improved52 (P < 0.001 and P < 0.05, respectively).

Applicability of CGM and flash glucose monitoring
to type 2 diabetes

CGM and flash glucose monitoring are applicable to man-
agement of people with type 2 diabetes.52,53 People with type 2
diabetes who require basal–bolus insulin therapy may be re-
garded as nearly equivalent to people with type 1 diabetes.
People with frequent severe hypoglycemia with hypoglycemia
unawareness are also candidates for CGM, just as their coun-
terparts with type 1 diabetes. CGM may be used in continuous
real-time mode (personal mode) or for short periods in a
masked mode, sometimes called professional mode. Vigersky
and Shrivastav recently reviewed the status of both the personal
and professional modes.53

Mazze et al.54 and Hill et al.55 characterized CGM findings
in normal subjects. These studies provide the necessary ref-

erence data for evaluation of CGM in people with obesity,
prediabetes, and type 2 diabetes. Vigersky and others have
also conducted studies of CGM in people with prediabetes
and with morbid obesity.56,57 They reported an increase in
GV in people with obesity. GV increases progressively as
people develop impaired fasting glucose, impaired glucose
tolerance, and finally overt type 2 diabetes.58–61

After development of type 2 diabetes, with progressive
loss of beta cell function, there is usually periodic advance-
ment in the intensity of therapy, from mono-, to dual-, to
triple-therapy, and finally to injectables (insulin, GLP-1RA
agents, or both). Accordingly, the form of therapy can be used
as a surrogate for the duration and severity of diabetes.
Kohnert et al. compared the extent of GV in patients with
type 2 diabetes receiving different classes of therapy and with
patients with type 1 diabetes.62 Augstein et al.63 also exam-
ined quality of glycemic control (heavily influenced by GV)
in relation to form of therapy. These studies showed a pro-
gressive increase in GV with duration and severity of T2DM.

Professional CGM versus personal CGM

When professional (masked, short-term) CGM was intro-
duced, it was suggested that periodic brief 3–6-day periods of
observation might provide physicians with sufficient infor-
mation to adjust therapy and advise the patient regarding
medications, diet, and lifestyle. The rationale for the short
term, 3–6 days, may have included several pragmatic con-
siderations such as the approved duration of use for CGM
sensors at that point in time, cost, potential reimbursement for
CGM as a diagnostic test, convenience for the patient (short
term, no alarms), and workflow issues for the healthcare
provider. Three to 6 days of data can sometimes be sufficient
to identify major problems that were not readily apparent
from HbA1c or from a small number of SMBG measure-
ments, for example, hyper- or hypoglycemia, inconsistencies
between mean glucose by CGM, mean glucose by SMBG and
HbA1c, large GV, excessive postprandial excursions, and
nocturnal patterns and variability. Use of masked CGM was
intended to ensure that the data would be representative of
actual experience without changes that patients might intro-
duce if they had received instant feedback regarding their
glucose levels.

A few studies have claimed benefits from short-term
(3–5 days) professional CGM.64–66 However, other studies
failed to demonstrate a clinical benefit for short-term pro-
fessional CGM.67

How long a series of CGM data is required before one can
characterize glucose patterns and statistics? Four studies have
addressed this question.

Mazze indicated that one needs about 15–30 days of CGM
to obtain a stable pattern for the ambulatory glucose pro-
file54,68. Dunn and Crouther also reported that 14 days
provide a good snapshot.69 Xing et al.70 recommended the
use of at least 12–15 days of data to ensure that results would
be correlated with results based on a 3-month study to char-
acterize the overall level of glycemic control, mean glucose,
coefficient of variation of glucose (%CV), and percentages
of glucose values within the hypoglycemic, hyperglycemic,
and target ranges.

Neylon et al.71 also concluded that one needs at least
12 days of CGM data to obtain reliable, consistent, and stable
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estimates of GV using SD and %CV. Parameters such as
MAGE and CONGAn require more data and their estimation
can be seriously impaired in the face of missing data.

Clinicians and researchers should be extremely cautious
when interpreting CGM data based on less than 14 days of
CGM data. Two weeks is the minimum amount of time re-
quired to begin to detect reproducible changes in patterns
related to the day of the week. Thus, it is no surprise that 3- or
6-day professional CGM has not been demonstrated to be
very useful clinically.

Impact of CGM on clinical trials of new
therapeutic agents

One of the most important applications of CGM is for
purposes of clinical research to evaluate and compare different
forms of treatment, both for type 1 and type 2 diabetes. Ever
since the DCCT study, clinical research was focused almost
entirely on HbA1c values, fasting blood glucose, and perhaps a
glucose profile obtained using SMBG seven or eight times per
day for 1, 2, or 3 days. These studies required a large number of
subjects to obtain sufficiently reliable data. It was recognized
that the 8-point SMBG profile would miss many hypo- and
hyperglycemic episodes, especially at night. Today it is fea-
sible to utilize CGM to compare treatment regimens with other
interventions, other active agents, or placebo. This has been
applied to rapid-acting72,73 and long-acting74 insulins, SGLT2

inhibitors,75 GLP-1 RAs,72,76,77 and other classes78 of medi-
cations. CGM is critical when we wish to compare GV for
different forms of therapy, evaluate nocturnal patterns, fre-
quency, severity, and duration of hypo- and hyperglycemia,
and postprandial patterns. CGM is essential for many phar-
macodynamic studies. One can expect that CGM will play a
progressively larger role in clinical trials. The barriers to use of
CGM to date might have included uncertainty whether regu-
latory bodies would accept CGM data. It would be helpful if
CE and FDA would make an unambiguous declaration that
they will accept CGM data as part of the formal evaluation of
new forms of therapy. The improving accuracy, ease of use,
duration of use, user acceptance, reduced costs of CGM sys-
tems, and the success of studies reported to date72–78 should
spur increasing use of CGM in clinical trials.

Part II: Closed-Loop Control

We will now consider the recent developments regarding
the use of CGM as one of the pillars of closed-loop control
systems for automatic delivery of insulin and glucagon.

We acknowledge the importance of the ‘‘#we are not
waiting community’’ that developed Nightscout for remote
sharing and monitoring of glucose levels obtained using real-
time CGM79,80 and then turned to developing an open access
artificial pancreas system (OpenAPS).81,82

These open-source, do-it-yourself (DIY) endeavors pro-
vided proof of concept that undoubtedly spurred the devel-
opment of artificial pancreas systems by academia and
industry, energized regulatory agencies and the general public,
and raised awareness of the urgent need for these systems.
Many of the current ventures by the commercial sector, gov-
ernment, academia, and diabetes organizations had already
been well underway at the time the open-source community
announced their work. Open-source systems only serve one
person at a time and have a very high barrier to entry: one must

construct the system oneself. Open-source systems are not
readily generalizable to a large and diverse community and
there are no financial resources, incentives, and infrastructure
to test, disseminate, and support these systems—which should
be regarded as experimental prototypes. The systems devel-
oped by industry and academia have been rigorously and
painstakingly developed in terms of safety, robustness, reli-
ability, clinical trials, documentation, development of resources
for user training and support, and scalability. Products should be
designed to survive in the face of rapidly changing technologies
and user expectations. Some active innovators in the OpenAPS
community subsequently moved to industry, whereupon they
quickly discovered that they would need 100–200 million dol-
lars to begin to reach commercial viability.

We note the work of a few of the pioneers in the long quest
for an artificial pancreas.83–87 We consider five levels in the
development of an artificial pancreas:

(1) Threshold low-glucose suspend of insulin infusion
(2) Predictive low-glucose suspend of insulin infusion
(3) The hyperglycemia/hypoglycemia minimizer (control

to range)
(4) Hybrid closed-loop systems with user adjustment of

premeal boluses
(5) Full closed-loop systems (insulin only)
(6) Dual-hormone closed-loop systems utilizing insulin

and glucagon

Recent research utilizing several of these approaches will
be discussed in more detail later throughout this special
Supplement issue of Diabetes Technology and Therapeutics.

Low-glucose suspend of insulin infusion

Rather than giving an alarm when hypoglycemia is de-
tected (which may or may not be heard) and relying on the
patient or a family member to take the necessary action, real-
time CGM can be used to suspend insulin delivery from an
insulin pump. This simple and straightforward algorithm
was shown to be very effective in reducing the risk of noc-
turnal hypoglycemia88–91: there was a 38% reduction in the
AUC below 70 mg/dL for subjects using the threshold sus-
pend. There was approximately a 25% reduction in time with
glucose in the range 51–70 mg/dL and more than a 50%
reduction in time with glucose £50 mg/dL. One should
generally expect a greater relative reduction in time spent in
the more severe levels of hypoglycemia (£50 mg/dL) than
with less stringent criteria (e.g., glucose £70). There were no
meaningful changes in HbA1c and no increase in hyper-
glycemia.88–91

Predictive low-glucose suspend of insulin infusion

Rather than waiting until the observed glucose has fallen
below a specified threshold glucose level, one can predict
when such an event is likely to happen within a short period
of time. There are several algorithms for making that pre-
diction.92 Use of a predictive algorithm improves the per-
formance compared with low-glucose suspend: the number
and duration of nocturnal hypoglycemic events were both
reduced, with the greatest reduction for events with glucose
<60 mg/dL and lasting >180 min for children (ages 4–10) and
adolescents (ages 11–14).93,94
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Calhoun et al.94 reported that a system utilizing overnight
predictive glucose suspend achieved a twofold reduction in
risk of hypoglycemia. This effect was so robust that it was
unaffected by 14 factors describing the patient and conditions
at bedtime: (1) age; (2) gender; (3) diabetes duration; (4)
baseline HbA1c at onset of study; (5) daily %basal insulin;
(6) total daily dose of insulin; (7) bedtime blood glucose; (8)
presence or absence of a bedtime snack; (9) calculated
amount of insulin on board at bedtime; (10) CGM rate of
change at bedtime; (11) day of the week; (12) time of day
when the low-glucose suspend system was activated; (13)
exercise intensity; and (14) the number of hypoglycemic
CGM values £60 mg/dL between noon and 8 pm on the day
preceding the overnight study.

Hypoglycemia/hyperglycemia minimizer:
control to range

Following the use of a low-glucose suspend algorithm, one
of the next logical steps was to introduce a similar kind of
control algorithm to help prevent excursions on the hyper-
glycemia side of the target range, thereby creating a control-
to-range algorithm. In addition to a low-glucose suspend to
address actual or predicted hypoglycemia, one can increase
insulin infusion rates if the glucose level goes above (or is
expected to go above) a specified threshold. This has been
called a hypoglycemia/hyperglycemia minimizer.95 As ex-
pected, this approach can provide improved control and in-
crease the percentage of time in the target range. The authors
also examined the effects of aggressiveness of the algorithm
for control of hypoglycemia.96

Hybrid closed-loop control

Early studies with closed-loop control systems consistently
demonstrated excellent control for the overnight period, but
experienced greater difficulty in achieving good control during
the day. One of the major problems is estimating the dose of the
premeal insulin boluses. Accordingly, a number of groups
utilized a hybrid closed-loop system, where each person con-
trols her own premeal boluses, possibly using the same logic or
same bolus calculator she had been using previously with an
open-loop insulin pump. Then, the closed loop would handle
the glucose control between meals. The premeal boluses taken
under the control of the user were reduced by 30% to 50%
relative to the calculated amount based on the supposition that
this could give rise to fewer hypoglycemia events, and the
closed loop could make up for any underestimate for the insulin
bolus. Numerous algorithms have been used for the hybrid
closed loop. Clinical studies have ranged from overnight to 1
year, from a clinical research center to outpatient studies in a
restricted and protected environment with close monitoring, to
free living conditions, diabetes camps, and skiing expedi-
tions.97–113 These studies have shown a consistent increase in
the percentage of time spent in the target range (%time in range
or %TIR), a modest reduction in the percentage of time in the
hyperglycemic range, and reduction in the hypoglycemic range
for adults and adolescents. Improvement during the nocturnal
period is consistently superior to that observed for the full 24-h
period.95–113 A recent study112,113 provided the basis for ap-
proval of the first hybrid closed-loop system by the FDA.114,115

Thabit and Hovorka116 summarized 12 studies of the ar-
tificial pancreas involving 339 children, adolescents, and

adults in transitional and home settings using a wide variety
of experimental designs (e.g., overnight to 12 weeks, noc-
turnal only, or 24 h/day) and using a variety of comparators
(insulin pump, sensor-augmented pump [SAP], or threshold
suspend). Eight studies utilized single-hormone (insulin)
closed-loop control; three involved bihormonal control. In
nine cases, the percentage of glucose values within the target
range (%TIR) (with various definitions) was the primary or
coprimary response parameter. %TIR increased in eight of
the nine cases from an average of 53.1% – 13.7% (SD) to
69.5% – 6.8%. The average change in %TIR was 12.9% – 9.3%
(SEM –3.1%) (P < 0.01).

The % of glucose values in the hypoglycemic range was
the primary or coprimary response variable in six studies. The
mean % hypoglycemia was reduced from 6.8% – 2.4% (SD)
to 4.9% – 2.7%. The relative reduction of % hypoglycemia
using closed-loop control was 34% – 20% (–8.0% SEM),
(P < 0.01).

Two studies used other primary endpoints. In one study,
the risk of severe hypoglycemia was reduced threefold; in
another, the LBGI was reduced by 43%. FPG and 24-h mean
glucose were the primary endpoints in two studies, with re-
ductions of 1.4 and 1.7 mM (25 and 31 mg/dL), respectively.

A late-breaking abstract at the 2016 ADA scientific
meetings,112 presented a pivotal study leading to FDA ap-
proval of the first closed-loop system.112–114 Time in range
(%TIR) improved from a median of 67.8% to 73.4% and to
76.4% for the overnight period. Mean %TIR increased
from 66.7% – 12.2% to 72.2% – 8.8% overall and from
66.8% – 14% to 75.3 – 9.8 (nocturnal). Results of this study
were presented in greater detail by Garg et al.113 Results are
consistent with those from 12 studies discussed above.116

The studies cited here97–117 used a wide range of technol-
ogies for glucose sensor, controller, algorithms, and insulin
infusion devices. All achieved excellent safety, efficacy, and
user acceptance.

While insulin can be used to reduce glucose, there is no
good way for a system using only insulin to increase glucose
rapidly except to ask the subject to consume carbohydrates.
Management of premeal insulin is challenging. In the hybrid
system, the user takes his/her own insulin bolus before the
meal based on carbohydrate content and other factors. The
bolus may be calculated conservatively since the closed-loop
system could be expected to provide additional insulin if
needed. Several studies are underway to automatically and
reliably detect the onset of meals and administer insulin at an
appropriate rate.

Use of closed-loop systems often results in a two- to
threefold reduction in rates of hypoglycemia compared with
CGM and insulin pump (SAP) depending on the patient
population, study design, and criteria utilized. Closed-loop
control sometimes results in reduction of the total insulin
dose per day, which might be regarded as more efficient,
effective, and physiological use of insulin. Effects on HbA1c
have been variable and dependent on the baseline value, and
on target levels for mean glucose.

Dual-hormone (insulin and glucagon) closed-loop
systems

The next level in the evolution of the closed-loop system is a
dual-hormone system providing the ability to infuse either or
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both insulin and glucagon. Several groups have investigated
this option and several systems have been brought to fruition
and extensively tested clinically both for inpatients and for
long-term ambulatory use.118–125 The dual-hormone control
systems are able to reduce the risk of hypoglycemia by ap-
proximately a factor of three relative to the risk when using
SAP. The dual-loop algorithm as used by Russell, Damiano,
El-Khatib, and coworkers requires minimal specification of
parameters for each individual patient—only the patient’s
weight is required.123,124 There is an urgent need for an FDA-
approved stable and soluble glucagon preparation. The in-
creased complexity of dual-hormone control systems might be
expected to lead to increased costs. It remains to be seen which
subgroups of patients would benefit from a dual-hormone
system in a cost-effective manner.

Discussion

Clinical benefits and application of CGM

CGM technology has improved dramatically over the past
5 years. The accuracy, reliability, and robustness of CGM
permits use for adjustment of insulin dosage for basal insulin
and premeal and correction boluses, without confirmation by
a blood glucose meter. There is no question that relative to
SMBG, use of CGM can dramatically improve the quality of
glycemic control both in type 1 and type 2 diabetes. The
benefit is especially pronounced in high-risk patients with
frequent or severe hypoglycemia, often associated with hy-
poglycemia unawareness. CGM is also finding increasing use
in the hospitalized patient for monitoring and for control of
insulin infusions. CGM can be used effectively with either
MDI or with CSII.35–42

Short-term masked CGM can be used to detect problems,
evaluate quality of glycemic control, describe patterns of
glucose, assess risks of hypoglycemia and hyperglycemia by
time of day and day of the week, and evaluate GV. This can
be helpful to the physician and patient.

Diabetes management options

For many patients using basal–bolus insulin with MDIs, the
benefits of CGM and the benefits of CSII are roughly equiva-
lent while combination of CSII and CGM can provide addi-
tional benefits. Accordingly, the management of a patient using
basal–bolus insulin therapy, who has not achieved their indi-
vidualized target level for mean glucose with an acceptable risk
of hypoglycemia, can be schematized as shown in Figure 1.

Hypoglycemia

In addition to the enormous cost (2–4 billion US dollars per
year) for emergency room visits and hospitalization,126–129

there is another cost to hypoglycemia. Brod130–132 and
coworkers have reported a series of studies showing the
enormous economic, psychological, and loss-of-work-pro-
ductivity costs of nonsevere hypoglycemia. This factor must
also be considered when evaluating the cost-effectiveness of
approaches to mitigate hypoglycemia. The cost-effectiveness
of CGM and closed-loop systems is considered in more detail
elsewhere.133–135

CGM also serves as a tool that can assist evaluation of new
and improved methods for medical therapy of diabetes, for
earlier detection of prediabetes, and earlier diagnosis of diabetes.

Other indications for CGM

CGM (real-time, personal, and masked, professional) and
the closely related technique, FGM, are now well established
as important tools for the management of patients with
diabetes—both type 1 and type 2. CGM is also clinically
useful when dealing with other conditions, for example, di-
abetes associated with cystic fibrosis, excessive glycemic
excursions seen following bariatric surgery, evaluation of
hypoglycemia related to insulinoma, Hirata’s disease (anti-
insulin autoantibodies), and rare conditions attributable to
autoantibodies to the insulin receptor.

Clinical management strategies

Additional clinical studies and real-world follow-up will
be necessary to develop strategies and guidelines for the al-
location of advanced efficacious, but potentially costly re-
sources, with the multiple new options that are just becoming
available now (Fig. 1).

Educational materials and assisted interpretation

There is need for educational materials for HCPs and pa-
tients regarding retrospective interpretation and use of CGM
data and for selecting patients and monitoring performance of
closed-loop systems. Most physicians have not been trained
in the interpretation of CGM data and use of those data for
generating recommendations for revision of therapy, diet, or
lifestyle. There is need for automated interpretation to alert
users to specific patterns and make recommendations for
changes in therapy and/or lifestyle. Finally, there will be need
for guidelines for physicians, as to when to deploy these new
systems for control of insulin administration.

Standardization of metrics for assessment
of CGM and closed-loop control systems

There are now dozens of ways to express the changes in
glycemic control, hypoglycemia, hyperglycemia, and GV
following an intervention106 (e.g., Supplementary Table S1).
This makes it difficult to compare and combine the results of
multiple studies involving different patient populations, dif-
ferent sensors and control algorithms for closed-loop control,
different settings and durations of studies, different defini-
tions of hyperglycemia, target range, and hypoglycemia.106 It
will be important to select a few criteria to be included rou-
tinely in the evaluation and characterization of CGM and
closed-loop systems. Multiple ranges of blood glucose cov-
ering different degrees of severity of hypo- and hyperglycemia
can be amalgamated using triads of metrics such as {HBGI,
LBGI, BGRI} or {GRADEhypoglycemia, GRADEhyperglycemia,
GRADE} or {Hypoglycemia Index, Hyperglycemia Index,
IGC}. This can simplify the analysis and interpretation and
reduce problem of conflicting results.

The ambulatory glucose profile (AGP) has proven to be
extremely useful in summarizing the results of CGM and
closed-loop studies. Several groups have superimposed control
and intervention groups using different colors and displayed
the percentiles (10th, 25th, 50th, 75th, and 90th) for each
treatment group. The evolution of the AGP is described in the
literature.54,68,136–141 The AGP has been employed in many of
the studies cited here: it facilitates analysis of the percentages
of time in the hyper-, target, and hypoglycemic ranges by time
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of day and the changes in these percentages attributed to
various interventions. The AGP provides a qualitative picture,
but does not provide a single metric. The IGC, BGRI,
GRADE, Q-score, glucose pentagon/pentagram, ADRR, and
%TIR enable us to reduce this dynamic picture to a single
score. Since there are two aspects of poor control, one needs a
minimum of two measures—one to reflect hypoglycemia,
another to reflect hyperglycemia.141

Minimal duration of CGM data

If different days of the week show different glycemic
patterns, it would be necessary to obtain least 2 (and pref-
erably four) weeks of CGM recordings, followed by ap-
propriate analyses. Two weeks appear to be the minimum
time required for reliable, stable, and sensitive retrospective
CGM.54,68–70

Implanted sensors

With proven clinical efficacy and safety of CGM and of
closed-loop control, and the need of many patients to use
CGM on a long-term continuous basis, there has been a re-
surgence of interest in long-term implantable glucose sen-
sors.142 Several companies are developing prototypes of
implantable sensors using a variety of techniques. We can

expect continued rapid activity on that front, just as the
percutaneous glucose sensors continue to improve.

Conclusions

CGM (including flash glucose monitoring) systems are
safe and effective in both type 1 and type 2 diabetes and can
improve quality of glycemic control, reduce risk of hypo-
glycemia, and permit selection of lower target levels for
mean glucose and HbA1c. Recent CE and FDA approvals for
use of CGM for adjustment of insulin dosages are a major
step forward. The application of CGM for closed-loop con-
trol is advancing rapidly, with well-documented reduction in
risk of hypoglycemia in many carefully controlled studies in
multiple locations worldwide applied to multiple patient
groups under diverse conditions with progressively more
sophisticated sensors, algorithms, usability, and integration
with the insulin pump. The FDA has approved one system
for commercialization and one can expect many additional
systems to follow.
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