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Abstract: Hypersonic missile control in the terminal phase is addressed using continuous higher 

order sliding mode (AHOSM) control with adaptation. The AHOSM self-tuning controller is 

proposed and studied. The double-layer adaptive algorithm is based on equivalent control 

concepts and ensures non-overestimation of the control gain to help mitigates control chattering. 

The proposed continuous AHOSM control is validated via simulations of a hypersonic missile in 

the terminal phase. The robustness and high accuracy output tracking in the presence of matched 

and unmatched external disturbances and missile model uncertainties is demonstrated. 
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I. Introduction 

Controlling Hypersonic Missiles (HSM) represnts a serious challenge [1-6,14,17] for designing 

suitable guidance and autopilot/control (G&C) laws. The following represent the main G&C 

design challenges: 

1. Uncertain dynamics of the HSM frame, which are difficult to predict based on ground tests.  

2. The nonminimum phase behavior caused by elevator-to-lift coupling and the flexible mode 

dynamics. 

3. The multiplicative uncertainties that mostly depend on significantly uncertain elements in 

aerodynamics coefficients, and their effect on the control efficiency is hard to predict. 

A control-oriented model of the Hypersonic Vehicle with curve-fitted approximations of the 

aerodynamic forces and moments [2] is often used for robust controller design. Then an 

adaptation technique is employed for estimating the unknown constant coefficients used in the 

approximations [11]. However, in the presence of time-varying uncertain coefficients, the 

accuracy of the control adaptation can be compromised.  

In this paper control of the Hypersonic Missile in the terminal phase of the flight is 

considered. In order to maximize the ground target penetration, the desired vertical orientation of 

the HSM at the impact is to be achieved [3]. Note that very few guidance and autopilot (control) 

laws have been designed to maximize target penetration in a target impact (terminal phase) 

scenario [3] while controlling the nonlinear highly uncertain HSM. Previously HOSM control 
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and observation techniques have been effectively applied for missile-interceptor integrated 

guidance and autopilot/control [12,13]. In this work a continuous Adaptive Higher Order Sliding 

Mode [9,10,15] (AHOSM) controller that comprises Continuous Finite Time Convergent Control 

[8] driven by a higher order sliding mode disturbance observer [15] is employed to design the 

HSM integrated guidance and autopilot, to track the terminal phase optimal trajectory in the 

presence of additive (external disturbances and the model uncertainties) and multiplicative 

(aerodynamic coefficient uncertainties) perturbations. Furthermore, in order to mitigate any 

residual control chattering caused by the high frequency switching term hidden behind the 

integral in the injection term of the HOSM disturbance observer, an adaptive (self-tuning) 

scheme is proposed. The proposed double-layer gain-adaptation algorithms is based on the 

concept of equivalent control [16] and yields a non-overestimating adaptive gain that closely 

follows the disturbance. Curve-fitted approximations of the aerodynamic forces and moments are 

not used in the proposed control design approach.  

The proposed AHOSM integrated guidance and autopilot (control) law is rigorously studied 

for a HSM in the terminal phase and its efficacy is verified via simulations. 

 

I. Mathematical Model of Air-Breathing Hypersonic Missile 

The mathematical model of the longitudinal dynamics of the rigid body hypersonic missile 

(see Figs. 1 and 2 [3]) that is propelled by an air-breathing jet engine (usually a scramjet) is 

considered as [1,2]  

 

 

 
 

Fig. 1 HSM coordinate frames and 

longitudinal variables 

 

 
Fig. 2 HSM-target end-game scenario 
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where ( )V t   denotes the forward velocity; ( )h t   denotes the HSM altitude; ( )t   denotes 

the angle of attack; ( ), ( )t q t   denote the pitch angle and the pitch rate respectively; ( )t   

denotes the downrange distance (see Fig. 2) measured with respect to the initial HSM position; 

, yym I   denote the mass and the moment of inertia about the HSM body y-axis respectively; 

g  is gravitional acceleration; , ,T D L  denote the thrust, drag, and lift forces, respectively; 

M   is the pitching moment about the body y-axis. In the longitudinal dynamics (1) the flexible 

modes associated with aero-thermo-elastic effects are neglected for simplicity. The thrust T , 

drag D , and lift L  forces, as well as the pitching moment M  about the body y-axis are nonlinear 

uncertain functions that can be given as [2-4]  

( , ), ( , ), ( , , ), ( , )e e eL L D D M M T T T                        (2) 

where ( )e t   denotes the elevator surface deflection, and   is the dimensionless fuel-to-air 

ratio (  0,1.5 ). 

The control vector is  

 ,
T

eu                             (3) 

while the vector of controlled outputs is selected as 

 , .
T

y h                            (4) 

Unlike in the existing literature on Hypersonic Vehicle control [4-6], where the control output 

 ,
T

y h V  is driven to a constant vector after a short transient when the velocity and altitude are 

commanded to increase from zero to the prescribed constant values, the work presented here 

considers control of a Hypersonic Missile (HSM) in the end-game scenario with a different 

vector-output (4) and time-varying commanded output trajectories (see also Fig. 2) 

 ( ) ( ), ( )
T

c c cy t h t t                        (5) 

The goal of the considered end-game scenario is to maximize target penetration by means of 

generating the optimal end-game HSM trajectory (5) for system (1) and robustly following this 

trajectory by means of control (3) in the presence of the bounded perturbations (2). 

The optimal command trajectory is obtained in [3] by minimizing the following cost functional:  

 

( ) ( ) ( ) ( ) ,

, , , ,

T

f c f f c f

T

J x t x t x t x t

x V q h 

         



                 (6) 

where 5 5  is a positive definite weighting matrix, and ( )c fx t  denotes the desired final value 

of the state x . The terminal conditions on the state x  are defined to ensure 090    and the 

angle of obliquity (AoO in Fig. 2) is equal to zero at impact: 
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         ( ) / , ( ) 0 deg , ( ) 0 deg/ , ( ) 0 , ( ) 90 degf f f f f fV t V ft s t q t s h t ft t            (7) 

The solution of the trajectory optimization problem is obtained numerically [3] and the 

optimal output command trajectories in eq. (5), (6) are used for the robust output feedback 

tracking controller design. 

Remark 1. In this work, the lift-elevator coupling, which usually represents the main source of 

instability of the internal/zero dynamics, is neglected. In the case of significant coupling, canards 

may be added to HSM to compensate it.  

 

II. Relative Degree Approach: System Transformation and Problem Formulation 

In order to achieve continuity of the control functions, in this work, a HOSM control law is 

designed in term of derivatives of the control functions (3) as 

 1 2, ,
TT

ev v v                              (8)  

Designing the control law in terms of control derivatives serves two purposes: 

  A curve-fitted approximation of the aerodynamic forces and moments is not needed in the 

proposed control design approach and knowledge of the aerodynamic coefficients is not 

required for the controller (8) design. 

 It mitigates noise/chattering effects. 

Next, applying the relative degree approach [3], the input-output dynamics of system (1), (4), 

(8) are derived as 
(3)

11 12 1 11 12 1

(3)
21 22 2 21 22 2

( , , , , , )

( , , , , , )

e

h e

q V g g v g g v

q V g g v g g vh

    

    

            
                       

          (9) 

where the control gain matrix 2 2G   
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        (10)  

is assumed to be nonsingular and is presented as 

0
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                (11)  

with 0G  denoting a known nonsingular nonlinear matrix and G  denoting an unknown norm-

bounded nonlinear matrix.  

The following notations are introduced: 
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Next, the problem is reduced to designing the control law (8) that drives ( ) ( )ch t h t  and 

( ) ( )ct t   in finite time in the presence of the bounded disturbances 

( , , , , , )e q V     , ( , , , , , )h e q V      and the norm-bounded matrix G , where ( )ch t  and ( )c t  are the 

smooth command trajectories defined by eqs. (5) and (6).  

Denoting  
1

11 12 1 1 1 11 12 1

21 22 2 2 2 21 22 2

1

11 12 11 12 11 12

21 22 21 22 21 22

g g v v g g

g g v v g g

g g g g d d
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              (12) 

and substituting into eq. (10) we obtain  

 

 

(3)

12 2 11 1

(3)

21 1 22 2

( , , , , , ) 1

( , , , , , ) 1

e

h e

q V d d

h q V d d

       

      

    


   

               (13)  

The output tracking errors are defined as 

( ) ( ), ( ) ( )c h ce t t e h t h t                         (14)  

and the error-dynamics are derived 

 

 

(3) (3)

12 2 11 1 1

(3) (3)

21 1 22 2 2

( ) ( , , , , , )

( ) ( , , , , , )

h

c e

h c h e

e t q V d d

e h t q V d d


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
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
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    
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              (15)  

The following assumptions are made: 

Assumption 1. The derivatives of the nonlinear terms 

12 2 21 1( , , , , , , , ), ( , , , , , , , )e h eq V d q V d             are norm-bounded in a reasonable flight domain, 

i.e. 

12 2

21 1

( , , , , , , , ) ,

( , , , , , , , ) , , 0.

e

h e h h

q V d C

q V d C C C

 



    

    

 

  
                (16)  

Assumption 2. The nonlinear terms 
11 12 21 22, , ,d d d d  are also bounded in a reasonable flight domain, 

i.e. 

11 11 12 12 21 21 22 22 11 12 21 22 11 12 21 22, , , , , , , 0, 1, 1d d d d                          (17) 

Inequalities (17) guarantee the dominance of the control functions , 1,2i i   in the , 1,2thi i   

channels over the perturbations, including cross-coupling between the channels. 

 

Finally, the problem is reduced to designing the continuous control law  1 2

T
    that 

provides convergence , 0he e   in finite time for perturbed system (15)-(17). 

III. Continuous Finite Time Convergent Control Driven by the Disturbance Observer  

Consider SISO input-output dynamics of the form [15] 
( ) ( )r t u   ,                        (18)  

where u ,    are control and output variables, respectfully, and ( )t  is a disturbance. The 

following theorem gives a control law that provides finite time convergence in the unperturbed 

version of system (18). 
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Theorem 1 [8] Consider the unperturbed system (18) with ( ) 0t  . Let the 0i   be such that the 

polynomial 1
2 1...r r

rs s s       is Hurwitz, then there exists  0,1   such that for every 

 1 ,1    the origin of the system (18), ( 1)... 0r        is a globally finite-time stable 

equilibrium under the feedback control 

     
1

1( 1) ( 1) ( 2) ( 2)
1 1...

r rr r r r
r ru sign sign sign

  
        

   
           (19)  

where the coefficients 1 2, ,..., r    satisfy 

1
1

1

, 2,...
2

i i
i

i i

i r
 


 






 


                     (20)  

with 1 1,r r     . 

Remark 2. It is worth noting that the control (19), (20) is continuous. 

A. Continuous HOSM Control Design 

The theoretical result that allows designing a finite-time converging continuous control for the 

perturbed system (18) is formulated in the following theorem. 

Theorem 2. Consider the perturbed system (18) with smooth ( ) 0t   so that ( )t H  . Let 0i   

be such that the polynomial 1
2 1...r r

rs s s       is Hurwitz, and  0,1   is identified so that 

the unperturbed system (18) is finite-time convergent with the control feedback (19), (20). Then 

the origin of the perturbed system (18), ( 1)... 0r        is a globally finite-time stable 

equilibrium under the continuous control feedback  

     
1

1( 1) ( 1) ( 2) ( 2)
1 1...

r rr r r r
r ru sign sign sign

  
         

   
              (21)  

where 

 1
,

r
s z z u 


                           (22) 

1

2 1 2

1/ 2
( )

1/ 2( ), 1.5 , 1.1

s sign s

sign s H H

  

   

 

  

                  (23) 

Proof. The s  dynamics in (22) satisfy 

( )s t                              (24) 

in accordance with eq. (18). Then the super-twisting control [10]  

1

2

1/ 2
( )

( )

s sign s

sign s

  

 

 


                       (25) 

with  

2
H  ,                            (26) 

   
2

1
2

12

1

H q

H q






 


 
                     (27) 

where ( ) , 0 1,t q qm m       drives , 0s s   in finite time 1t . It is also known [10, 15] that 

choosing 
1 2

1/ 21.5 , 1.1H H    drives , 0s s   in finite time as well.  
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Therefore   becomes equal to ( )t  for 1t t  . Hence, the control (21) starts compensating for 

the disturbance ( )t  for 1t t  , and the system (18) becomes unperturbed. Then, in accordance 

with Theorem 1 the origin ( 1)... 0r        is globally finite-time stable, and the theorem is 

proven.  

Remark 3. The continuous controller (21)-(23) can be claimed to be a continuous HOSM 

controller for the system in (18), since it drives ( 1), ,..., 0r      in finite time in the presence of 

the smooth disturbance ( )t  with bounded derivative ( )t H  . 

B. Adaptive Continuous HOSM Control Design: Equivalent Control Approach 

As argued in the previous section, the continuous HOSM in (13) contains the term   that 

represents a reconstruction of the unknown disturbance term ( )t .The super-twisting injection 

term in (21) contains a component  , whose derivative is a discontinuous high frequency 

switching function with gain 
2

H  . In order to reduce chattering, it is desirable to make 
2

  as 

close to H  as possible whilst ensuring 
2

H  . Therefore, assuming that the gain 
1

  can be 

selected large enough so that the second equation in (27) holds, the aim is to adapt 
2

 in equation 

(26) so that 
2

 is close to H  whilst satisfying condition in (26). This self-tuning procedure 

reduces the amplitude of the high frequency part of the super-twisting term in equation (25), 

which mitigates chattering. In this paper an adaptive scheme built on the equivalent control [16] 

is employed. 

B.1 Equivalent control in super-twisting control adaptation 

Consider the super-twisting structure arising from equations (24) and (25) written out in a 

transformed form as 

1 2

2

1/ 2
( )

( ) ( )

s s sign s

t w t

 

 

  

 
                     (28) 

where ( ) ( )t t   and 

( ) ( ) ( )w t k t sign s                        (29) 

The goal is to derive an adaptive scheme for the time-varying gain k(t) so that a 2SM is 

achieved and maintained, but which also attempts to ensure k(t) is as small as possible. It will be 

further assumed that ( ) , 0t N N   , which means that the original disturbance term ( )t  must 

be twice differentiable. In the 2-SM, 
2

0s   , which is exactly equivalent to the condition 

0s s  , and the equivalent control is ( ) ( )w t teq  . It is assumed that an approximation ˆ ( )w teq  is 

available (for instance by low pass filtering of the high frequency switching tem (29)) for use in 

the adaption schemes.  

B.2 An adaptive super-twisting observer with known N 

Define 
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0
1

1
( ) ( ) ( )t k t w teq 


                       (30) 

where 
1

0 1   and 
0

0   is a small real number. 

Define the first layer of the dual-layer adaptation algorithm, associated with the gain k(t) in 

(29) as 

   
0 0

( ) ( ) ( ) , 0k t t sign t                        (31) 

The adaptive gain ρ(t) associated with the second layer of the adaptation algorithm is chosen 

to satisfy 

 
0

( ) ( ) ( ) , 0t t sign e t                         (32) 

where 

   ( ) ( )
1

N
e t t


                          (33) 

Theorem 3. Consider the system in (18) with a twice differentiable disturbance ( )t  subject to 

( ) , ( )t H t N   , where N  is known. Then the sliding mode observer in equations (22), (23), 

(28) and (29), with the dual layer gain-adaptation in equations (30)-(33) reconstructs the 

disturbance h(t) in finite time as 

1

1/ 2ˆ( ) ( ) ( ) ( )h t s sign s k t sign s dt                    (34) 

Furthermore the variables δ(t) and e(t) converge to zero in finite time and the gains k(t) and ρ(t) 

remain bounded. 

Proof. The ( )t - and ( )e t - dynamics are derived as 

   

 

0
1 1

0

1 1
( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

d d
t k t w t t sign t teq

dt dt

e t t sign e t

    
 

   

     

  

          (35) 

The Lyapunov function candidate  
1 12 2

2 2
V e


                         (36) 

is considered for dynamics in (35). Its derivative is computed taking into account eq. (33): 

 0 0

0 0

0 0

0 0 0 0

1 1
( ) ( ) ( ) ( )

1

1
( ) ( ) ( ) ( )

1

1
( ) ( ) ( )

( )1 1 1/ 2( ) 2 2
2 2

N
V ee t t t e t e

N
t t t e t e

t e t e t e

t
t e e V

      
  

     
 

    



    

 

        

 
      

 

    

 
        

 

          (37) 

Inequality (37) implies finite time convergence V → 0, which means the finite time convergence 

of δ, e → 0. Therefore, both δ and e remain bounded. Furthermore, since 

0
1

1
( ) ( ) ( )k t t w teq 


    and ( ) ( )

1

N
t e t


  , the variables ( ), ( )k t t  also remain bounded. Since δ 
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= e = 0 in finite time, and from the definition of δ(t) in (30), the following equality holds (in 

finite time) 

1
0 0

1 1

( )1
( ) ( ) ( )

w teq
k t w t w t Heq eq


 

 


                  (38) 

This means that equation (26) holds, and therefore selecting 
1

 sufficiently large, guarantees the 

finite time convergence to zero of the dynamics in (28), (29), and, therefore, ˆ( )h t  in (34) 

perfectly reconstructs ˆ( )h t in finite time. Consequently the theorem is proven. 

Remark 3. It is easy to show that when the value N  exists but is unknown the first layer of the 

gain adaptation law remains the same as in eq. (31), but the second layer of the adaptation law 

(32) is simplified to be 

( ) ( )t t                           (39) 

C. Adaptive Continuous HOSM 

Again, consider the sliding variable dynamics in (18). In Theorem 2 a continuous HOSM 

control driven by the super-twisting-based disturbance observer, which drives , 0s s  in the 

presence of the smooth bounded disturbance h(t), was identified in eqs. (21)-(23). Theorem 3 

gives formulations of adaptive super-twisting equivalent control-based disturbance observers that 

reconstruct the disturbance h(t) in (18). The main result is formulated in the following theorem. 

Theorem 4: Consider the system (18) with a twice differentiable disturbance ( )t  satisfying 

( ) , ( )t H t N    and assume H  is unknown and N  is known. Let the coefficients γ1, γ2, ..., γr 

be such that the polynomial 
2 1

1 ...
r

r rp p p       is Hurwitz. Then there exists a  0,1   

such that for every  1 ,1    the origin ( )... 0r       is a finite time stable equilibrium 

under the feedback control in (13), where 
1 2

, ,...,
r

   satisfy (20) with 
1

1
r




  and 
r

  ;   is 

defined in (25), (28), (29) and the adaptive scheme is given by equations (30)-(33). 

Proof straighgforwardly follows Theorems 2 and 3. 

D. Tutorial example 

In this section the relative degree 3 system in (18) is simulated. The coefficients of the 

underlying Hurwitz polynomial 
3 2 1

3 2p p p     associated with the controller are selected as 

γ1 = 8, γ2 = 12, γ3 = 6. The exponents 
1 2 3

, ,   in equation (3) are calculated based on the seed α 

= 0.8. Explicitly they are given by α1 = 0.56, α2 = 0.66 and α3 = 0.8. In the simulations the initial 

conditions are selected as (0) 1, (0) 0.5, (0) 0     . The disturbance in (18) is taken as 

( ) 2sint t  . The parameter 
1

  in the injection term (23) is supposed to be sufficiently large and 

is taken as 
1

4.75  . The other parameters are selected as ρ0 = 1, γ = 10 and 
1

0.99  , 
0

0.01   = 

0.99. 

Firstly, the control law in (19), (20) is tested for controlling the unperturbed and perturbed 

system (18).  The results of the simulations are shown in Figs. 3 and 4. In Fig. 3, finite time 
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convergence to the origin is achieved after 4.5 secs. Fig. 4 shows that neither finite time nor 

asymptotic stability of the origin is achieved in the presence of the disturbance. Therefore, the 

finite convergent time controller (19), (20) is not applicable for controlling the perturbed system. 

 

 
Fig. 3. Finite-time stabilization in unperturbed 

system (18) by the control in (19), (20) 

 
Fig. 4. Finite-time stabilization in perturbed system 

(18) by the control in (19), (20) 

D1. The case with known N  

In this subsection the perturbed system in (18) is simulated using the AHOSM control 

function defined in (28), (29), (30)-(33). In this case the upper bound N  on the disturbance’s 

second derivative is assumed to be known. Since during the simulation the disturbance in eq. 

(18) is taken as ( ) 2sint t  , the absolute value of its second derivative ( ) 2sint t    is bounded 

( ) 2t N   . 

It is shown in Fig. 5 that the nominal disturbance-free performance is recovered, and finite 

time convergence is achieved. Fig. 6 demonstrates the high frequency switching component ( )w t  

and also the adaptive term ρ(t) which is shown to converge to the upper-bound on the 2nd 

derivative of the disturbance term. It is shown in Fig. 7 that the modulation term k(t) tracks | ( )t | 

very accurately. Fig. 8 shows the control signal u(t), which is clearly smooth and chatter-free, 

and yet compensates for the disturbance ( )t . It is shown in Fig. 9 that ˆ( )t  accurately 

reconstructs the unknown disturbance ( )t . 

 

 
Fig. 5. Finite-time output stabilization of 

 

 
Fig. 6. The second layer of adaptation: ρ(t) 
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perturbed system via adaptive HOSM control with 

known N  
and ( )t  with known N  

 

 
Fig. 7. The first layer of adaptation: k(t) and | ( )t | 

with known N   

 

 

 
Fig. 8. The continuous adaptive HOSM control 

function with known N   

 

 
Fig. 9 The disturbance estimation/reconstruction with known N  

 

D2. The case with unknown N  

In this subsection the perturbed system (18) is simulated while controlled by u(t) in equations  

(28), (29), (30), (31), (39). In this case the bound N  on the second derivative of the disturbance 

is assumed to be unknown and is not used in the control fuction. It is shown in Fig. 10 that, as in 

subsection D1, the nominal disturbance-free closed-loop performance is recovered, and finite 

time convergence is achieved. Figure 11 shows the high frequency switching component w(t) 

and also the adaptive term ρ(t). It can be seen that ρ(t) remains bounded and asymptotically 

converges to a value close to 7.0 (which is greater than in the case with known 2N  ). This is 

consistent with the theoretical study, since the dual-layer adaptive scheme in (28), (29), (30), 

(31), (39) cannot guarantee that ( )t N  . However Fig. 12 shows the modulation term k(t) still 

tracks ( )t  very accurately (since in this case 
1

0.99 1   ). Finally Fig. 13 shows that ˆ( )t  

accurately tracks the unknown disturbance ( )t . 
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Fig. 10. Finite-time output stabilization of the 

perturbed system with gain adaptation ( N  is 

unknown) 

 

 
Fig.11 The second layer of adaptation: ρ(t) and w(t) 

( N  is unknown) 

 

 
Fig. 12. The first layer of adaptation: k(t) and | ( )t | 

( N  is unknown) 

 
Fig. 13. The disturbance estimation ( N  is unknown) 

 
 

IV. Design of the Continuous Adaptive Finite Time Convergent Control driven by the 

Disturbance Observer for Air-Breathing Hypersonic Missile 

Here continuous finite time convergent control functions are defined for system (15) in terms 

of 
1 2,   for 3r   as 

     
3

2 1(2) (2)
3 2 1

i
i i

i i i i i i i i ii ie sign e e sign e e sign e
  

                  (40) 

where  

 ,i h ,  

 the coefficients 1 2 3, , 0i i i     are selected so that the polynomials 3 2
3 2 1i i is s s      are 

Hurwitz, 

 the coefficients 1 2 3, ,i i i    are defined 

 1 2 3, ,
2 2 1 2

 
   

 
  

  
                   (41) 

with  0,1  .  

 The terms i  are defined in accordance with eqs. (21), (22), (22), (28)-(33) 
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1

1/ 2
( )

( ) ( ),

,

i

i

s sign si i i i

k t sign si i

s e z zi i i i i i

  



 

 



    

                      (42) 

where 

   

0
1

0 0

1
( ) ( ) ( )

( ) ( ) ( ) , 0

( ) ( ) , 0

i i i

i i

t k t w teq

k t t sign ti i

t ti i

 


   

   

  

   

 

                 (43) 

Then, the control laws (3) can be computed as 

1
1 11

0

2 22

;
e

v dt v
u G

vv dt

 

 



 
     

        
      
 




                  (44) 

The first and second derivatives of the output tracking errors , he e  that are used to compute i  

in (42) are exactly estimated using the HOSM differentiator [7,15] for 4k   as: 

 

The HOSM differentiator is used to obtain the ,i ie e . Using the order of HOSM differentiator 

equal to 4 sufficiently satisfies the differentiation requirements and accuracy of the 

differentiations.  The   values are taken as [15] 0 1 3 41.1, 1.5, 3, 8         

4 /51/5
0 4 0 0 1

3/ 41/ 4
1 3 1 0 1 0 2

3/ 41/ 3
2 2 2 1 2 1 3

3/ 41/ 2
3 1 3 2 3 2 4

4 0 4 3

( )

( )

( )

( )

( )

i i i i i i i

i i i i i i i

i i i i i i i

i i i i i i i

i i i i

z L z e sign z e z

z L z z sign z z z

z L z z sign z z z

z L z z sign z z z

z L sign z z











    

    

    

    

  

                 (45) 

with ,i h  , (3)
iie L , and 1.1, 1.5, 20 1 2     . 

The differentiator (45) converges in finite time to 

, , .0 1 2z e z e z ei i i i i i                        (46)  

V. Simulation study 

A. Mathematical model of linearized HSM 

The nonlinear equations of HSM dynamics (1) were linearized [3,17] at a forward speed 

5,808 /V ft s  and an altitude 60,000h ft : 

( ),x Ax Bu f t y Cx                        (47)  

where  , , , ,
T

x V q h  , the external disturbance ( )f t  is a smooth function, norm-bounded 

together with its first and second derivatives: 
0( ) ,f t F 1( ) ,f t F 2 0 1 2( ) , , , 0f t F F F F  , the 

matrix 0 ( ) ( )nB B B t B t    with 
0B  a known matrix, while ( )B t  is a norm-bounded constant 

perturbation matrix, ( )nB t  is a perturbation matrix with periodical entries (both multiplicative 

perturbation matrices are unmatched), and the controllable matrices 
0,A B  are given as in [3]: 
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5

6 7

8

18

0.0063291 16.996 0 5.6665 10 31.986

2.0235 10 0.44804 1 4.843 10 0

0.00022922 27.667 0 9.8466 10 0

2.2663 10 5807.5 0 0 5807.5

0 0 1 0 0

A



 





    
 
    
    
 
  
 
  

              (48) 

0

127.24 0.06884 25.618 0 0

98.641 0.0058935 0.40286 0 0

T

B
   

    

                 (49) 

The output matrix is defined 

0 0 0 1 0

0 0 0 0 1
C

 
  
 

                        (50)  

The constant disturbance multiplicative matrix is presented as a percentage of the nominal 

entries of the matrix 
0B and has the following form 

5.563% 85.475% 7.806% 0 0
( )

18.788% 18.776% 99.752% 0 0

T

B t
 

    
              (51)  

Its entries can be non-constant, but bounded. 

The matrix ( )nB t  has the form 

3
1 1 1 1 1

( ) 2.6 10 sin(12 )
1 1 1 1 1

T

nB t t  
    

 
                 (52) 

It is worth noting that 2 2,CB  0 0 . 

The unmatched additive time-varying vector-disturbance ( )f t  is taken as 

4 3 4 4 4( ) 0.8 0.6 ( ), 2 10 10 ( ), 0.02 0.5 ( ), 2 10 0.01 ( ), 2 10 10 ( )
T

f t t t t t t                     (53) 

where ( ) sin( ) 1.4sin(2 )t t t   . 

The Hurwitz constant in the HOSM differentiator (29) is taken as 59.2 10L   . The parameters of 

the adaptation law in (43) are selected as 0 0 11.1, 2, 15, 0.99, 120, 250h o h            . 

 

B. Validation of the adaptive continuous HOSM controller  

The simulation results of the HSM in the terminal phase (47)-(53) using the adaptive 

continuous finite convergent higher order sliding mode controller driven by the continuous 

higher order disturbance observer (40)-(45) with the second layer adaptive gain taken in the 

simplified form of (39), i.e. ( ) ( )t ti i   , with the unmatched time-varying external disturbances 

( )f t  in (53) and the multiplicative perturbations ( )B t  and ( )nB t  in (51) and (52) respectively are 

presented in Figs. 14-21. 

High accuracy attitude tracking is demonstrated in Figs. 14-16. Maximum target penetration is 

provided, which can be seen in Figs. 14-16 and 21, where the altitude, pitch, and downrange 

distance errors are near zero. It should be noted that the downrange distance accuracy is within 

1.67 ft of the desired target location. The control inputs time history in Fig. 17 shows continuous 

control functions. The fuel air ratio control does saturate at zero for short time in order to stay 

within the fuel/air ratio limits of [0, 1.5]. Figure 18 demonstrates how the adaptive observer 

injection term gains adjust while compensating the perturbations.  
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Fig. 14 Altitude Tracking 

 

 

 
Fig. 15 Pitch Angle Tracking 

 

 
Fig. 16 Altitude and Pitch Angle Errors 

 

 
Fig. 17: Control Inputs 

 

 
Fig. 18 Adaptive first layer control gains 

 

 
Fig. 19 Adaptive control terms that are hidden behind 

integrals 
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Fig. 20 Adaptive second layer control gains 

 

 

 
Fig. 21 Downrange tracking error 

 

Figure 19 shows the adaptive control high frequency switching terms that are hidden behind 

the integrals. Their amplitudes adjust just to compensate for the additive and multiplicative 

disturbances and are in line with the adaptive gains ( )hk t  and ( )k t . The time history of the 

second layer adaptive gains ( )h t  and ( )t  that support the adaptation of the first layer gains 

( )hk t  and ( )k t  are shown in Fig. 20. It can be seen that the first and second layer adaptive gains 

are bounded. Therefore, the application of the proposed control algorithms to HSM control is 

feasible and achieves excellent results in the presence of bounded additive and multiplicative 

disturbances, whose nature and format are unknown. 

VI. Conclusion 

In this paper control of a hypersonic missile (HSM) in the terminal phase is considered. Two 

control inputs, elevator deflection and the throttling of the air-breathing engine are used to 

control the HSM. The output variables to control are defined as the pitch angle and the HSM 

altitude. The adaptive double-layer continuous higher order sliding mode controller driven by the 

higher order continuous sliding mode observer that is robust to the perturbations is proposed and 

rigorously studied. In order to improve the smoothness of the control laws, the controller was 

designed in terms of the derivatives of the control functions. Curve-fitted approximations of the 

aerodynamic forces and moments are not needed in the proposed control design approach. A 

linearized model of a HSM was used for testing the proposed control algorithms. The proposed 

controller has been studied in a challenging end-game scenario with matched and unmatched 

additive and multiplicative periodic disturbances. The output tracking errors , he e  are accurately 

driven to zero by the continuous adaptive HOSM controller in the presence of matched and 

unmatched perturbations. The proposed adaptive control technique demonstrates the capability to 

accurately control the hypersonic missile in the terminal phase target, while maximizing the 

target penetration. 
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