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CONTINUOUS HOMOTOPIES FOR THE
LINEAR COMPLEMENTARITY PROBLEM*

LAYNE T. WATSON, J. PATRIGK BIXLER, AND AUBREY B. POORE$

Abstract. There are various formulations of the linear complementarity problem as a Kaku-
tani fixed point problem, a constrained optimization, or a nonlinear system of equations. These
formulations have remained a curiosity since not many people seriously thought that a linear combi-
natorial problem should be converted to a nonlinear problem. Recent advances in homotopy theory
and new mathematical software capabilities such as HOMPACK indicate that continuous nonlinear
formulations of linear and combinatorial problems may not be farfetched. Several different types of
continuous homotopies for the linear complementarity problem are presented and analyzed here, with
some numerical results. The homotopies with the best theoretical properties (global convergence and
no singularities along the zero curve) turn out to also be the best in practice.
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1. Introduction. Given a real n n matrix M and a real n-vector q, the linear
complementarity problem (LCP), denoted by (q, M), is to find n-vectors w and z such
that

w Mz q,

w >-_ O, z >= O, wtz O.

The constraint wtz 0 is called the complementarity condition since for any i,
1-< i <_- n, zi 0ifwi 0, and vice versa. A solution where some zi wi 0
is called degenerate. The linear complementarity problem arises in such diverse ar-
eas as economic modeling [15], [16], [59]; bimatrix games [29], [32]; mathematical
programming [10], [19], [34]; mechanics [17]; lubrication [28]; and numerical analysis

There are numerous algorithms for solving special classes of linear complemen-
tarity problems. Those based on pivoting or simplex-type processes include Lelnke’s
complementary pivot algorithm [29]; Cottle and Dantzig’s principal pivot method [6];
Bard-type algorithms [4], [45], [60]; and the n-cycle algorithm [62], [64]. There are
also linear iterative techniques, similar to those for solving linear systems of equa-
tions, such as SOR [2], [3], [8], [351, [50], [51], [61] and various related fixed point
iteration schemes. A very different algorithm is the simplicial homotopy algorithm of
Merrill [37], applied to a Kakutani fixed point formulation (solution is a fixed point
of a point-to-set mapping) of the linear complementarity problem.
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260 L.T. WATSON, J. P. BIXLER, AND A. B. POORE

A more recent development was the formulation of the linear complementarity
problem as a differentiable nonlinear system of equations [33], and the solution of
this system of equations by a globally convergent homotopy method [66]. This ap-
proach has remained a curiosity because few people took seriously the formulation of
a linear combinatorial problem (like the LCP) as a highly nonlinear problem. Re-
cent advances in homotopy theory and mathematical software for nonlinear systems
of equations [68]-[69], and new nonlinear formulations of linear, discrete, and combi-
natorial problems ([33], [53], [54], [66], [67]) suggest that nonlinear formulations of the
linear complementarity problem should be investigated further.

The present paper proposes and analyzes several nonlinear homotopies for the
linear complementarity problem. The existence theorems implied by the globally con-
vergent homotopy theorems are as general as any derived by other methods. Section
2 defines some terminology, {}3-9 describe and analyze different homotopy maps, 10
describes some numerical experiments, and 11 summarizes.

2. Preliminaries. In this section we gather some terms and fundamental results
about globally convergent homotopy methods. For additional background refer to [65],

Let En denote n-dimensional, real Euclidean space and let Enxn be the set of
real n x n matrices. The ith component of a vector v E E’ is denoted by vi, and for
a matrix A E Enxn, Ai. denotes the ith row and A.. denotes the jth column. For
subsets I, J C {1,..., n), AIj denotes the submatrix of A with rows indexed by
Id colus indexed by J. Let e En be the vector such that ei 1 for all i. For
v e En, v+ denotes the vector with components (v+) m{0, v), and v- denotes
the vector with components (v-)i m(0,-vi}. The support of v, denoted by S(v),
is simply (i vi 0). We use the following notation when comparing a vector a En

to 0:
a0 ifai0foralli,

a0 ifa0anda0,

a>0 ifai>0foralli.

Let M Enxn be a real n x n matrix and let q be a real n-vector. M is
nonnegative if each element ofM is nonnegative, copositive if xtMx >= 0 for all x => 0,
and strictly copositive if xtMx > 0 for all x >_ 0. M is called nondegenerate if all of its
principal minors are nonzero, and a P-matrix if all of its principal minors are positive.
The vector q is nondegenerate with respect to M if q is not a linear combination of
any n- 1 columns of (I,-M). Finally, M is strictly semimonotone if for each vector
x >_ 0 there exists an index k such that Xk(MX)k > O.

When w >= 0 and z _-> 0 satisfy w- Mz q, (w, z) is called a feasible solution. If
wtz 0 also, (w, z) is called a complementary feasible solution.

A C2 (twice continuously differentiable) function F En Em is said to be
transversal to zero if the m x n Jacobian matrix DF(x) has rank m on F-l(0). The
theoretical justification for modern probability-one homotopy methods rests on a result
from differential geometry, known as a parameterized Sard’s theorem [65]"
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LCP HOMOTOPIES 261

LEMMA 2.1. Let p: Em x [0, 1) x En --+ En be a C2 map which is transversal
to zero, and define

Pa (A, z) p(a, A, z).
Then for almost all a Em, the map Pa is also transversal to zero.

The significance of Lemma 2.1 is partially given by:
LEMMA 2.2. In addition to the hypotheses of Lemma 2.1, suppose that for each

a Era the system pa(O, z) 0 has a unique solution z(). Then for almost all
a E Em there is a smooth zero curve ff C [0, 1) x En of pa(A, z), emanating pore
(0,z()), along which the Jacobian matrix Dpa(A,z) has rank n. ff does not intersect

itself or any other zero curves of Pa, does not bifurcate, has finite arc length in any
compact subset of [0, 1) x En, and either goes to infinity or reaches the hyperplane

LEMMA 2.3. Under the hypotheses of Lemma 2.2, if the zero curve is bounded,
then it has an accumulation point (1,2). Furthermore, g rank Dpa(1,2) n, then ff
has finite arc length.

Conceptually, the algorithm for solving the nonlinear system of equations F(z)
0 is simple. Using the leas above, just follow the zero cue if, starting from some
point (0, z()) and ending at a point (1, 2), where 2 is a zero of F(z). Computationally
this may be nontrivial, but at least the idea is clear. A typical simple choice for the
homotopy map is

pa(A,z) AF(z)+ (1 A)(z- a).
Although this homotopy map has the same form as a stdard continuation or em-
bedding mapping, there are two important differences. First, in stdard continuation
the embedding patterer A increases monotonically from 0 to 1 as the trivial prob-
lem (z- a) 0 is continuously defoed to the given problem F(z) 0. With the
present homotopy method, turning points on ff cause no special difficulties and so A
can increase and decrease as the cue is being tracked. Secondly, the fact that the
Jacobi matr Dpa has full ra along ffd the way in which the zero cue is
tracked arantee that there are never any "sinlar points" which afflict stdard
continuation methods.

3. The 1979 homotopy. To provide a backdrop for the homotopies presented
in the next few sections, we briefly review the homotopy map of [66]. Mangasarian
[33] has shown that the linear complementarity problem (q, M) can be reformulated
as a zero finding problem

H(z) =o,
where H(z) can be made as smooth as desired. Taking 0(t) t3 in Mangasarian’s
Theorem 1 [33], we define H(z) by

Hi(z) -[Mi.z + qi zi[ 3 + (Mi.z + qi)3 + zi3
and

pa(A,z) A U(z) + (1 A)(z- a).
By noting the signs of each term in H, it is clear that z >= O, Mz + q >- O, and
(Mz+ q)tz 0 if and only if H(z) 0. That is to say, z solves the LCP if and only if
H(z) 0. The following result from [66] gives conditions on the matrix M to insure
that a zero curve of the homotopy map Pa can be tracked to obtain a zero of H.
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262 L. T. WATSON, J. P. BIXLER, AND A. B. POORE

THEOREM 3.1. Let M E Enn be either positive definite, a P-matrix, nonde-
generate strictly copositive, or nondegenerate strictly semimonotone, and let q En

be nondegenerate with respect to M. Then there exists 5 > 0 such that for almost all
a >- 0 with Ila[Ioo < 5 there is a zero curve "l of pa(,z), along which Dpa(A,z) has

full rank, having finite arc length and connecting (0, a) to (1, 2), where 2 is a zero of
U(z).

Although it was not stated in [66], the proof of Theorem 3.1 there showed that
if the nondegeneracy assumptions are removed, then the conclusion still holds, except
that (1, 2) is only an accumulation point of the zero curve /(of possibly unbounded
variation). The map Pa above is the standard hcmotopy map. In the context of this
paper we can view it as relaxing all of the solution requirements of the LCP while the
zero curve is being tracked. Initially z is set to some arbitrary point a having nothing
to do with the solution to (q, M). As A gets closer to 1 we can say that, in some

sense, z gets closer to such a solution. However, for any A < 1, z and w Mz q-q do
not necessarily form a feasible solution or a complementary solution to (q, M). These
conditions are imposed only at the end, when A 1, and then all at once. In the next
few sections we present several homotopies, based on Mangasarian’s function, that
attempt to maintain at least feasibility or complementarity for a modified LCP right
from the start. The hope is that the homotopy process is then more efficient.

4. Relaxation of M. In this map, all of the continuation is applied to the
matrix. We maintain a complementary feasible solution for some other matrix which
is a convex combination ofM and the identity. When 0 the matrix is the identity,
and when , 1 the matrix is M. We can view this map as relaxing only the matrix
M as the zero curve is being tracked.

Define h:[0, 1) En --. En by

Ai(A, z) -[[(1 A)I + AM]i.z + qi Zi[ 3 - ([(1 )I + AM]i.z + qi) 3 + z
for/-- 1,...,n.

Observe that since this is simply Mangasarian’s map with a modified matrix for
M, feasibility and complementarity are preserved wherever h is zero.

LEMMA 4.1. Let P be any of the following properties:

(a) positive definite,

(b) P-matrix,

(c) nondegenerate strictly copositive,

(d) nondegenerate strictly semimonotone,

and let 0 <= A <- 1. If a matrix M Enxn has property P, then (1 A)I + AM also
has property P except possibly for finitely many values of A.

Proof. (a) It follows from the definition of positive definite that

xt[(1 A)I + AM]x (1 A)(xtx)+ A(xtMx) > 0

for all x 0 whenever M is positive definite.
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LCP HOMOTOPIES 263

(b) It can be shown [13] that M is a P-matrix if and only if for all x - 0 there is

an index k such that Xk(MX)k > O. Let M be a P-matrix and let x 0. Then

Xk ([(1 A)I + AM]x)k (1 A)x,(Ix)k + Axk(Mx)k
(1 A)x + Axk(MX)k

>0

for some index k.

Let M be nondegenerate and let K C (1,..., n}. Because the determinant is

multilinear we have

det((1 A)I + AM)Kg Z (1 A)lgl-IJlAlJI detMjj,
JCK

which is simply a polynomial in A. Notice that, since ((1 A)k-A 0 <_- j -<_ k)
forms a linearly independent set of polynomials, and det Mjj 0 for any subset
J C (1,..., n}, this polynomial is not identically zero. (By convention, detM 1.)
This polynomial has only a finite number of zeros and so (1-A)I+AM is nondegenerate
except for finitely many values of A.

(c) It follows from the definition of strictly copositive that

xt[(1 A)I + AM]x (1 A)(xtx)+ A(xtMx) > 0

for all x _> 0 whenever M is strictly copositive.

(d) An argument similar to that for (b) holds ifM is strictly semimonotone and
x>0.

Lemma 4.1, Theorem 3.1, and the subsequent remark give us the following theo-
rem.

THEOREM 4.1. Let M E Enxn be positive definite or a P-matrix, and let
q En. Then there exists a zero curve ofA emanating from (0, q-) and reaching a

point (1, 2), where 2 solves the LCP (q, M).
Note that Theorem 4.1 does not include strictly copositive or strictly semimono-

tone matrices, nor any reference to the rank of the Jacobian matrix along the zero

curve /. If M is nondegenerate strictly copositive or nondegenerate strictly semi-

monotone, there is a solution to the LCP (q, [(1 )I + M]) for every e [0, 1]
by Theorem 3.1. However, there may be multiple solutions, and when the number of
solutions changes at some some of the zero curves of A either "stop" or "start" at
A. Thus there is no guarantee that a single zero curve of A will reach all the way from
A --0 to A 1. For example, take

M= 0 1 10 q= -4.0
1 0 1 -0.9
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264 L.T. WATSON, J. P. BIXLER, AND A. B. POORE

M is nondegenerate strictly semimonotone, but the zero curve emanating from (0, q-)
disappears at 2 0.8. Also we cannot say that the Jacobian matrix DA(A,z) is
nonsingular along the entire zero curve /. The ith row of the Jacobian matrix of h is

(DA(A,z))i. (-31AI(A)(-I + M)i.z + 3(B)2(-I + M)i.z,

3]AI(A)(Amil + 3(B)2($mil),
31AI(A)(-$ + Amii)+ 3(B)2(1 + $mii)+ 3z,...
31Al(A)($mi,)+ 3(S)(Amin)),

where A [(1 $)I + $M]i.z + qi zi,

B [(1 A)I + AM]i.z + qi.

Observe that if Iql > 0, then rank DA(0, q-) n, and so the starting point z q-
for the zero curve is nonsingular.

PROPOSITION 4.2. Let M E Enxn be positive definite or a P-matrix, and
let q En. Whenever M and q are such that (,2), the solution to (q,M), has
S() S(q-), the Jacobian matrix ofh has singularities along the zero curve " of A.
There is at least one singularity for each element in the disjoint union

s(q-)) \ s(q-)).

Proof. Let (@,) be the solution to (q,M) and let i e S(2) \ S(q-). First note
that, on the (unique) zero curve - of A, both z and w are continuous functions of A.
Since z q- when A 0, there must be a point Ao such that, along the zero curve,
zi 0 for 0 -< A =< Ao and zi > 0 for Ao < A < Ao+ e for some e. Since complementarity
is maintained along the zero curve, wi 0 for Ao < A < Ao + e. By continuity, wi
must be 0 at A Ao. This means that both zi and wi [(1 A)I + AM].z + qi are
zero at A Ao, and hence the Jacobian matrix Dh(Ao, z(Ao)) is singular.

Similarly, let i S(q-) \ S(2). There must be a point A1 such that, along the
zero curve % zi > 0 for 0 -< A < A x and zi 0 at A A. Again by complementarity
and continuity, wi must be 0 at A Ax and the Jacobian matrix DA(A,z(A1)) is
singular. [:]

5. Relaxation of q. We can also relax the right-hand side of the LCP keeping
the matrix M fixed. This map maintains feasibility and complementarity, but uses a
convex combination of the vectors q and Ilqllooe for the right-hand side of the equation.
When A 0, we have the trivial problem (llqllooe, M) where the right-hand side has
all components positive and, when A 1, we have the given problem (q, M).

Define O:[0, 1) x En -- En by

o 13 (M + Aq / (1 A)llqllo) a 4- z
for i 1,..-,n.

Since this is once again Mangasarian’s map with a slightly different vector for q,
feasibility and complementarity on the zero set of O is guaranteed. By Theorem 3.1
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LCP HOMOTOPIES 265

and the remark following it, we know that the LCP has a locally unique solution for
any q whenever M is nondegenerate strictly semimonotone. Thus we easily have the
following theorem about O.

THEOREM 5.1. Let M Enxn be positive definite or a P-matrix, and let
q En. Then there exists a zero curve "7 of 0 emanating from (0, O) and reaching a

point (1, 2), where 2 solves the LCP (q, M).
Note that Theorem 5.1 does not include strictly copositive or strictly semimono-

tone matrices, nor any reference to the rank of the Jacobian matrix along the zero
curve /. If M is nondegenerate strictly copositive or nondegenerate strictly semi-
monotone, there is a solution to the LCP (Aq + (1 A)llqllooe, M) for every A [0, 1]
by Theorem 3.1. However, there may be multiple solutions, and when the number of
solutions changes at some some of the zero curves of O either "stop" or "start" at
A. Thus there is no guarantee that a single zero curve of O will reach all the way from
A 0 to A 1. For example, take

M-- 5 1 10 q- -2
1 1 1 -1

M is nondegenerate strictly semimonotone, but the zero curve emanating from (0, 0)
disappears at A 4/5.

Furthermore, we cannot say that the Jacobian matrix is nonsingular along the
entire zero curve. The ith row of the Jacobian matrix of O is

(DO(A,z)) i. (- 31AI(A)(qi- Ilqlloo) + 3(B)2(qi -Ilqllo),

31AI(A)(mil)+ 3(B)Zmi1,
31al(a)(m- 1) + 3(B)m + 3z,.. ,
31al(a)(m,)+ 3(B):m=),

where A Mi.z + $qi + (1 ,X)llqlloo z,

B M.z + ,kqi + (1 ,X)llqllo.

Note that the first column and the diagonal element differ slightly in form from the
rest of the entries. Also note that if zi and wi Mi.z+qi+(1-)llqllo are both zero
for some A, then every entry in (DO)i. is 0. Hence, the Jacobian matrix is singular
and we have the following proposition.

PROPOSITION 5.2. Let M E Enn be positive definite or a P-matrix, and let
q e En. Whenever M and q are such that (z, 2), the solution to (q, M), has 2 O,
the Jacobian matrix of 0 has singularities along the zero curve " of O. There are at
least as many singularities as there are nonzero components of 2.

Proof. Let (0, 2) be the solution to (q,M) and let i be such that 2i > 0. First
note that, on the (unique) zero curve of O, both z and w are continuous functions of
A. Since z 0 when A 0, there must be a point o such that, along the zero curve,
zi 0 for 0 -< -< Ao and zi > 0 foro < < o+e for some e. Since complementarity
is maintained along the zero curve, wi 0 for Ao < < Ao / e. By continuity, wi
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266 L. T. WATSON, J. P. BIXLER, AND A. B. POORE

must be 0 at A Ao. This means that both zi and wi Mi.z + Aqi + (1
are zero at A Ao, and hence the Jacobian matrix DO(Ao, z(Ao)) is singular.

Geometrically, the singularity corresponds to the point at which the vector Aq
(1 A)llqllo passes through the boundary of one complementary cone [44], [48], [56],
[62] and into another. If it happens that this vector stays in such a boundary for all
A in some interval [o, A1], then zi and wi are simultaneously 0, and the Jacobian
matrix is singular, along that entire interval. Since there are a finite number (2n) of
complementary cones, however, we can always perturb the right-hand side by adding
some (e, e2, an), for example, so that there are only a finite number of singularities.

6. Relaxation of complementarity. This section presents a map that uses
the given matrix M and the given vector q, but does not maintain a complementary
solution as we track the zero curve. Although nonnegativity of z is preserved along
the curve, complementarity is enforced only at the very end of the curve, when 1.
Throughout this section, let M E Enxn and q En be fixed.

Define En x [0, 1) x En En by

i(a, , z) -AlMi.z + qi- zil3 + (Mi.z + qi)3 + zi
3 (1 ,)ai3

for i 1,...,n. For fixed a En let a(,Z) 9(a,A,z). The next few lemmas
show that, for suitable matrices M, there is a zero curve of that can be tracked to
obtain a solution to the LCP (q, M).

LEMMA 6.1. If a >- O, then z >- 0 on -1(0).
Proof. Note that if both zk and Mk.z + qk are negative, then the entire sum

comprising (a(A,Z))k is negative. If, on the other hand, zk < 0 and Mk. + qk >= 0,
then IMk. + qkl < Mk. + qk zk, and the sum is again negative.

LEMMA 6.2. LetM be strictly semimonotone. Then there exists r > 0 such that
zeE, > II=rz o, and ]lz implies that zk(Mz + q)k > 0 for some index k.

Proof. First let
(z) max zi(Mz)i

l<_i<_n

and note that, because M is strictly semimonotone, (I) > 0 for z >_ 0. Also note
that since (I) is continuous and {z" z >- 0, Ilzlloo 1} is compact, (I) must assume its
minimum on that set. Call that minimum and take r > Ilqllo/. Then for z _-> 0
and Ilzll r, there is some index k such that

zk(Mz + q)k Ilzll ’i’(dllzll<><>)+ z#qk
_-> Ilzll:’<><>,i, Ilzll<>o Ilqll<,<,

Ilzllo<> (11 11o<> Ilqllo<>)
>0.

LEMMA 6.3. LetM be strictly semimonotone. Then there exists r > 0 such that
qo(, z) 0 for 0 <= <= 1 and ]lzll r.

Proof. By Lemma 6.1, it suffices to consider z >- 0. Let r and k be as in the
conclusion of Lemma 6.2 above and simply notice that, since zk and (Mz + q) are
both positive, o(, z) cannot be 0. [3
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LEMMA 6.4. Let M be strictly semimonotone. Then there exists r > 0 and
6 > 0 such that 0 <= A <- 1, Ilzlloo r, and []al[oo < 6 implies a(, Z) # O.

Proof. Let r be as in Lemma 6.3, and note that {(a, A, z) a 0, 0 _-< A =< 1,
]lzlloo r} is disjoint from -1(0). Since the first of these sets is compact and the
second is closed there is a positive distance ti > 0 between them, measured in the max
norm. This satisfies the conclusion of the Lemma.

Notice that a positive definite matrix is also a P-matrix, a P-matrix is strictly
semimonotone by the sign-reversal property of P-matrices [13], and a strictly copos-
itive matrix is clearly strictly semimonotone. Hence, Lemmas 6.1-6.4 hold for any
such matrix and we can state the following theorem.

THEOREM 6.5. Let M E Enxn be positive definite, a P-matrix, strictly copos-
itive, or strictly semimonotone, and let q En. Then there exists > 0 such that
for almost all a > 0, Ilalloo < 5 there is a zero curve " of a(,z), along which the
Jacobian matrix Da(, z) has furl rank, emanating from (0, a) and reaching a point
(1, 2), where 2 solves the LCP (q, M).

Proof. First observe that, for a > 0, is transversal to 0 (i.e., its Jacobian matrix
has full rank on- (0)). To see this, note that O/Oal is zero if i j, and nonzero
if i j. Thus, the n columns ofD corresponding to the partials of with respect
to the ai are linearly independent. Clearly, a is C2, and therefore by Lemma 2.1, for
almost all a > 0, a is also transversal to 0. Thus, by the implicit function theorem,
a has a zero curve q, starting from (0, a), along which the Jacobian matrixDa (, z)
has full rank. All of this is true regardless of the conditions on the matrix M.

ForM strictly semimonotone (positive definite, strictly copositive, or a P-matrix),
Lemma 6.4 insures that there exists 5 > 0 such that the zero curve /is bounded for

Ilalloo < and 0 -_< -<_ 1. Note that (0, a) is the unique zero ofa at 0, and by
the implicit function theorem, -/cannot return to (0, a). Since the curve can neither
simply stop, nor return to , 0, nor go to infinity, it must reach a point (1, 2), where
solves the LCP (q, M).

7. Expanded Lagrangian homotopy. The expanded Lagrangian approach
[54] may be described as an optimization/continuation approach and has in its simplest
form two main steps.

Step 1. (Optimization phase).
At r ro > 0 solve the unconstrained minimization problem

min P(w, z, r),

where

1 1 n n

P(w, z, r) rr Ilzo Mz qll / (zo, z) u r In z, rZ In
i=1 i=1

Step 2A. (Switch to expanded system).
A (local) solution of minP must satisfy

I )(w-Mz-q)0 V(w,z)P _M r
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Introduce the following variables:

w-Mz-q

0 (w, z)

#i --, i 1,...,n,
wi

r/i --, i 1,...,n,
zi

which ultimately represent the Lagrange multipliers. This helps to remove the in-
evitable ill conditioning associated with penalty methods for small r and we thus
obtain our equivalent but expanded system:

(1) (z)_M ,8 + 0 O,w

w- Mz q-r O,

(w, z) rO O,

#iwi r O, i 1,. ,n,

?izi r O, i 1, n.

(Remark. As a result of the optimization phase and the initial starting point with

ro > O, the solution (w(),z()) of minP(w,z, ro) satisfies z() > 0 and w() > O. As
a consequence, #(o) > 0 and r/() > 0 from the definitions of # and r/. They remain
positive until r- O, where we formally have

(1) (z)_M + O- O,w

w Mz q O,

(o, z) =0,

#w O, i 1,...,n,

Tizi O, i 1,..., n,

w, z, O, #, ? >-_ O,

which implies that we have solved the problem.)
In practice we do not solve the optimization problem minP to high accuracy

since a highly accurate solution may have only a digit or two in common with the
final answer. However, it is imperative that VP be reasonably small in magnitude,
say, less than ro/10. The expanded system is converted to a homotopy map by letting
r to(1 A) and modifying the first equation to obtain:

(1) (z) (#) r (o)
_M + O- ---VP(w() z ,ro)=O,

w-Mz-q-r=O,

(w, z) rO O,

#iWi ?" O,

iZi " O,
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Write this system of 5n + 1 equations in the 5n + 2 variables , w, z,/, 0, #, r/as

Step 2B. (Track the zero curve of T from r ro to r 0.)
Starting with arbitrary ro > 0, w() > 0, and z() > 0, the rest of the initial point

(0, w() z() (o), 0o, #(o), r/(o)) is given by

f(o) w() -Mz()-q
ro

(w(01 z(O))
00 ro

#o) ro
w_.(o), i 1,..., n,

r/}o) ro
zO),

i 1,..., n.

This approach requires careful attention to implementation details. For example,
the linear algebra and globalization techniques with dynamic scaling are critically
important in the optimization phase. For degenerate problems the path can still be
long. One possible resolution is the use of shifts and weights as developed in the
method of multipliers [5], but holding r ro fixed. (This approach is currently
under investigation in the context of linear programming [53].) However, in keeping
with the philosophy of the "pure" homotopy approach of the current work, we do
not solve the optimization problem (Step 1), but instead use the above equations
T(,k, w, z, f, 0, #, r/) 0 as a "pure" homotopy.

Logarithmic barrier potential functions are hardly new [5], and have been used
recently by Kojima et al. [26], [27] and Mizuno et al. [38] to extend the ideas of Kar-
markar to obtain polynomial-time algorithms for the LCP. The exact details of how
the barrier parameter, step size selection, concomitant numerical linear algebra, and
initial point computation are handled are crucial to the practical utility of such meth-
ods, and in practice are far more significant than theoretical polynomial complexity. It
is reasonable that the pure expanded Lagrangian homotopy (without the optimization
step) would behave significantly differently from other logarithmic barrier homotopies
[26], [27], [38], which include a Phase 1 step equivalent to Step 1 here. These latter
homotopies of Kojima et al. are certainly not globally convergent, since they require
a nontrivial preliminary computation to get a special starting point at which to begin
the homotopy.

8. Absolute Newton method. The method of this section is not a homotopy
method, but is presented for the sake of comparison and as an example of what can be
done with a Newton-type iterative scheme (see also [1] and [35]). Let x (w, z) E E2n

and define F E2n E2n by

w-Mz-q
WlZ1

WnZn
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Then the LCP (q, M) is equivalent to F(x) 0 for x nonnegative. F(x) 0 is a
polynomial system of equations of total degree 2n, which in general has 2n solutions
over complex Euclidean space C2n, counting multiplicities and solutions at infinity.
Thus all solutions of the LCP (q, M) are among the zeros of F(x), including degenerate
solutions, which correspond to manifolds (in C2n) of zeros of F(x). The algebraic
geometry theory of polynomial systems is rich and deep, and beyond the scope of this
paper. Discussions of the pertinent aspects of algebraic and differential geometry for
polynomial systems are in [39], [40], [41], and [68]. It suffices to note here that F(x)
is a polynomial system with a particularly simple structure.

The Jacobian matrix of F is

DF(x) diag(z,...,zn) diag(w,...,wn)

a 2n x 2n marN. The absolute New,on iteration is

(k+l) (k)_ [D((k))]-l((k)) =0,1,,""

for arbitra starting point (o) Nn. The absolute value signs mean to replace
each component of he vector by is absolute value (precisely, z+ + When
ghis ieration is well defined is given by the following theorem:

THEOREM 8.1. Let M Enxn be nondegenerate and let (, 2) be a zero of
F. Then the Jacobian matrix DF() is invertible if and only if + > O.

Proof. Suppose that k 2k O. Then the (n + k)th row of DF() is zero, so
DF() is not invertible.

Conversely, suppose that + 2 > 0. Obsee that and 2 are complementa
vectors, since (, 2) is a zero of F. For each index k such that 2k 0 interchange
the kthd (n + k)th colus of DF(). This produces a matr of the form

0 diag( +,...,N +n)
where A.i {I.i,-M.i} for i 1,..., n. detA is a principal minor of-M and is thus
nonero, since M is nondegenerae by assumption. rther, since + > 0 and ,
are eomplemenga, i + i 0 for i 1,..., n. Thus

det DF() deA de diag( + ,..., +)

detA(i + 2i)
i=l

0,

d DF() is invertible.
This absolute Newton iteration has been used for chemical equilibrium systems,

which have a unique real positive solution. It has never been obseed to fail for
those systems with a random starting point x() [36]. The asymptotic behavior of this
absolute Newton iteration is not derstood, nor even the ordinary Newton iteration
in complex Euclidean space Cn, which is related to Julia sets and chaotic dynamical
systems. Both the standard Newton iteration and the absolute Newton iteration were
tried on F(x) O, where M was a P-matr, and both completely failed for starting
points distant from the solution. Why the absolute Newton method should be so
successful on chemical equilibrium polynomial systems, and fail on LCP polynomial
systems, is not clear.
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9. Kojima-Saigal homotopy. This homotopy [25] uses the same nonlinear
system as the absolute Newton method. Suppose that w(),z() E En have been
obtained such that

w(O) Mz(o) q,

w()>0, z()>0.

This can be done, for example, by applying Phase 1 of the simplex algorithm to the
problem

w- Mz q- e + Me,
w>-O, z>=O

to get a feasible solution (, 2) -> 0. Then w() + e > 0 and z() 2 + e > 0 will
suffice. The homotopy map K :[0, 1) x En x En En is given by

K(X,w,z)

w-Mz-q
WlZl --(1- A)w)z)

-(1 )

The following theorem shows that this is a reasonably good homotopy map, at least
for P-matrices.

THEOREM 9.1. Let M Enxn be a P-matrix and let q En. Then there exist
w(), z() En such that

w()-Mz()=q, w() >0, z() >0.

Furthermore, there is a zero curve "7 of K(A, w,z), along which the Jacobian matrix

Dg(A,w,z) has full rank (for 0 -< A < 1), emanating from (0, w(), z()) and reaching
a point (1,, 2), where 2 solves the LCP (q, M). A is strictly increasing as a function
of arc length s along "7 (dA/ds > 0).

Proof. Since M is a P-matrix, the LCP (q e q- Me, M) has a solution (b, ) by
Theorem 6.5. Then w() b-b e > 0 and z() -b e > 0 have the desired properties.

The Jacobian matrix of K(A, w, z) is

DK(A,w,z)

0 I -Mw)z)
diag(zl,..., z) diag(wl,...,

Suppose (w, z) > 0 and consider the last 2n columns D(w,z)K of DK:

( -- )detD(,z)K det
diag(zl ...,z,) diag(wl,...,w,)

det
0 diag(w,...,w,) + diag(,.--,,)M

det (diag(w, , ton) + diag(,..-,) M)
>0

D
o
w

n
lo

ad
ed

 0
8
/0

4
/2

2
 t

o
 1

0
6
.5

1
.2

2
6
.7

 .
 R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r 

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/t
er

m
s-

p
ri

v
ac

y



272 L. T. WATSON, J. P. BIXLER, AND A. B. POORE

since diag(wl,...,wn)+ diag(zl,..., zn)M is also a P-matrix (it is easily verified
that the principal minors remain positive after multiplying by and adding a positive
diagonal matrix). Thus rank DK(A, w, z) 2n for 0 <- A < 1 and w > 0, z > 0. By the
Implicit Function Theorem, there is a zero curve /ofK emanating from (0, w() z()),
and the Jacobian matrix DK(A, w, z) has full rank along /for 0 -< A < 1 since w > 0,
z > 0 along /by continuity and the definition of K.

"7 can be parametrized by arc length s, giving A A(s), w w(s), z z(s)
along /. Furthermore, the last 2n columns of Dg(A(s), w(s), z(s)) being independent
means that w w(A), z z(A), and dA/ds > 0 along "7 (this is well known, see [65],
for example). Thus A A(s) is strictly increasing along

To prove that "7 reaches A 1, it suffices to prove that "7 is bounded. Let
a mAax(llAIIoo, IIA-111oo}, where the maximum is taken over all matrices A

with A.i E (Li, -M.i} for i 1,..., n. a is well defined since each detA is a principal
minor of -M, which is nonzero by assumption. Fix Ao in (0, 1), and let e maxi(1
o)w)z). Then for o < (s) -< 1, either w(s) < e or z(s) < e along /. For
i 1,...,n, let yi be wi(s) or zi(s), whichever is less than e, and let i be the
complementary variable. Write w(s) M z(s) q as

Ay+Bf/=q.

Then

[l[l []B-l(q Ay)ll =< IIB- [Io (llqll + IIAllo Ilyllo ) < (llqllo + ),
which says that w(s) and z(s) are bounded for o < (s) --< . [:]

Note that the theorem does not include strictly semimonotone matrices since
diag(w,... ,wn) + diag(z,... ,zn)M can be singular for strictly semimonotone M.
Thus while K is a better homotopy than A, , and T, it is not as generally applicable
as Pa or a.

10. Numerical experiments. The homotopy maps from the previous sections
were tested on several problems, chosen to illustrate certain features of the various
homotopies. A complete description of the data, tables of numerical results, and
a comparative discussion of the different homotopy maps and numerical results are
in [70]. The main observations from those experiments are summarized here: The
probability-one homotopies Pa and a work for everything that the theory predicts.
The computational complexity of Pa and a, measured by the number of steps along
the zero curve, is relatively insensitive to n. This is in direct contrast to pivoting
methods, which can exhibit exponential complexity in the number of steps [47]. The
homotopies h and O frequently fail, but when they work at all, may be more efficient
than the homotopies Pa or a. The expanded Lagrangian homotopy T without the
optimization phase fails for most starting points, with the zero curves of T either
going off to infinity or returning to another solution at r to. T does work very
well from sufficiently close starting points, but these are not random starting points
(as are used for Pa and a), and the homotopy algorithm based on T without opti-
mization is certainly not globally convergent. The Kojima-Saigal homotopy requires
Phase 1 of the simplex algorithm just to get a starting point, which is antithetical
to the homotopy philosophy of global convergence from an easily obtainable starting
point. Furthermore, K and iX/a both essentially relax complementarity, anda is more
generally applicable.
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11. Conclusion. There are many reasonable ways to construct a homotopy
map for the LCP, and only a few of the possibilities have been considered here. The
homotopies here fall into three different classes: artificial, natural, and interior. (See
the discussion of the words "artificial" and "natural" in relation to homotopies in

[69].) 3_ and O are "natural" homotopies in the sense that for each [0, 1] the
equation A(A, z) 0 or O(, z) 0 corresponds to an LCP. Thus, the intermediate
points (A, z) on the zero curve of the homotopy map have interpretations as solutions
to a related family of LCPs. In contrast, Pa and Pa are "artificial" homotopies in that
the homotopy equations Pa(, z) 0 and Pa(A, z) 0 do not correspond to an LCP
for 0 < < 1, and the points (,, z) on the zero curves for 0 < A < 1 have no useful
interpretations as LCP solutions. T and K would be considered "interior" methods,
since they only generate points (A, w, z) interior to the feasible region, i.e., (w, z) > 0
for 0 <- A < 1. These class distinctions are not always clear-cut, but are useful at a
high conceptual level.

The theory of globally convergent probability-one homotopy maps can be applied
to the LCP in several ways; the maps Pa and Pa are two examples. The convergence
theory for the homotopy maps Pa and Pa is very satisfactory: global convergence from
an arbitrary starting point is guaranteed for a wide class of LCPs. Theorems 3.1 and
6.5 are existence results, and as such are close to the best known existence results.

Our computational experience, reported in [70], indicates that 9a is the best
homotopy. It never failed, is indeed globally convergent, and was frequently more
efficient than h and O, even on problems where 3. and O did well. Pa takes second
place, since it also never failed, but tends to be very expensive (long homotopy zero

curves). This is not surprising, since a was crafted with the benefit of ten years expe-
rience since Pa was created. It is quite likely that a more efficient globally convergent
homotopy map than 9a can yet be constructed.

3_ and O failed badly on problems with many singularities (corresponding to the
right-hand side passing through the face of a complementary cone) along the zero
curves of the homotopy maps 3. and O. One might hope that the curve tracking
algorithms would, by chance, miss hitting the singularities exactly and thereby step
past them. This does happen, to some extent, but when there are a large number of
singularities close together or highly rank deficient singularities (corresponding to the
right-hand side passing through a lower dimensional face of a complementary cone),
the numerical linear algebra is simply overwhelmed by the ill conditioning.

Overall, the natural homotopies 3_ and O are much worse than the artificial homo-
topies Pa and 9a. For particular problems, a natural homotopy may be very efficient,
but their performance is unreliable and very much data dependent. The difficulties,
both theoretical (cf. Propositions 4.2 and 5.2) and practical, of natural homotopies
like 3_ and O appear to remove them from further consideration (cf. the discussions
in [39]-[41] and [69]).

The numerical experiments show that the expanded Lagrangian homotopy is un-
acceptable as a robust homotopy without solving the optimization problem (Step 1).
The zero set of T contains loops (in [0, 1) E5n+1) starting and ending at A 0 as
well as unbounded curves. Although the increased dimension is discouraging, we do
note that 2n of the 5n/ 1 equations result in diagonal matrices which can be exploited
in the linear algebra. Furthermore, T does work well for fair starting points, and so
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T may be useful for LCPs using an optimization phase to get a fairly good starting
point. Although the expanded Lagrangian homotopy is an interior method based on
a logarithmic barrier potential function similar in spirit to methods of Kojima et al.
[26], [27], [38], it is not equivalent to any of those methods. The Kojima et al. methods
converge to a solution in polynomial time from an arbitrary interior starting point (for
a restricted class of LCPs), which is not true of the expanded Lagrangian homotopy
method. However, generating a feasible interior starting point for K is tantamount
to the optimization Step 1 for T, and neither K nor T can be considered a globally
convergent homotopy for the LCP in the same sense as #a and a. Furthermore, the
Kojima et al. homotopies without Phase 1 would be even less successful than the
expanded Lagrangian homotopy is without Step 1.

The Kojima-Saigal homotopy is closely related to the continuous Newton ho-
motopy of Smale. Both are theoretically interesting, but computational experience
on real problems [67], [68] suggests that the globally convergent probability-one ho-
motopies (like Pa and a) are more robust and more general than the continuous
Newton homotopies. Our numerical experience is that interior homotopies like T and
K (lacking dynamic scaling) are very inefficient, but worthy of further study. At any
rate, a is more general than K (cf. Theorems 6.5 and 9.1). Similar comments apply
to the polynomial-time homotopies of [26], [27], and [38], which are both less stable
numerically and less generally applicable than probability-one homotopies like a.

There are numerous fixed point iterative schemes for the LCP [2], [3], [8], [18],
[35], [50], [51], [61], but they generally involve nonsmooth operators (e.g., v+ or Ivl)
or apply to a small class of matrices (e.g., symmetric positive definite M). Homotopy
algorithms are more versatile than fixed point iteration algorithms, but whether they
are competitive with fixed point iteration remains to be seen. A systematic comparison
of complementary pivoting, fixed point iteration, and homotopy methods would be a
worthwhile undertaking.

The LCP is a linear combinatorial problem. That the LCP should be reformu-
lated as a nonlinear problem, which is in turn embedded in a complicated nonlinear
homotopy, is counterintuitive. Nevertheless, a homotopy algorithm based on a(A, z)
is globally convergent for a wide class of LCPs, numerically robust, reasonably efficient,
and (most encouraging) rather insensitive to the dimension of the problem.

12. Acknowledgment. The authors are indebted to Jong-Shi Pang, Katta
Murty, and Romesh Saigal for useful comments and suggestions.
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