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Abstract. Ambient assisted living technologies and services make it
possible to help elderly and impaired people and increase their personal
autonomy. Specifically, vision-based approaches enable the recognition of
human behaviour, which in turn allows to build valuable services upon.
However, a main constraint is that these have to be able to work on-
line and in real time. In this work, a human action recognition method
based on a bag-of-key-poses model and sequence alignment is extended
to support continuous human action recognition. The detection of action
zones is proposed to locate the most discriminative segments of an action.
For the recognition, a method based on a sliding and growing window
approach is presented. Furthermore, an evaluation scheme particularly
designed for ambient assisted living scenarios is introduced. Experimen-
tal results on two publicly available datasets are provided. These show
that the proposed action zones lead to a significant improvement and
allow real-time processing.
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1 Introduction

Currently, ambient assisted living (AAL) is attracting great interest in pub-
lic and administration. This is due to the dual challenge our society is fac-
ing with an increasing need of assistance for elderly and impaired people and
the simultaneous difficulties in containing the budget deficit. AAL can play
a key role in this matter, since it enables diverse care and safety services
and can extend the independent living at home of the people. Specifically,
vision-based technology is of special interest because it allows to provide valu-
able services from the detection of home accidents to telecare services [1].
To this extent, vision-based human behaviour analysis can be extremely use-
ful in order to detect actions and activities of daily living which are valuable for
health-status monitoring.
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In human action recognition (HAR), actions like falling, walking, sitting and
bending are recognised. Great advances have been made in order to improve
the recognition rate, support multiple views and view-invariant recognition [2,
3] as well as real-time performance [4, 5]. However, it can be observed that
HAR has been addressed by classifying short video sequences that contain single
actions. Therefore, two strong assumptions have been made: 1) segmented video
sequences which only contain a single action each are provided, and 2) all the
video sequences necessarily match with one of the learnt action classes. Whereas
these assumptions are commonly made in the state of the art and most of the
datasets provide such data, these do not hold true in practical situations as in
AAL scenarios, but also regarding human-computer interaction, gaming or video
surveillance. In people’s homes, cameras will provide a continuous video stream
which can contain actions at any moment. This leads to continuous human action
recognition (CHAR). In other words, an unsegmented video stream has to be
analysed in order to detect actions at any point. Another restriction, which comes
along with dealing with the raw video stream of the cameras, is that actually
these may not record the expected actions. The person could be performing an
unknown action, or nothing at all. Therefore, the proposed system needs to be
robust enough in order to discard unknown actions that otherwise would result
in misclassifications.

In this paper, continuous human action recognition (CHAR) is addressed in
order to overcome the aforementioned assumptions. The concept of action zones

is introduced and a novel method is proposed to detect the most discriminative
segments of action sequences. For continuous recognition, a method based on
a sliding and growing window technique is presented. Finally, to perform con-
tinuous evaluation considering specific constraints of AAL scenarios, a suitable
evaluation scheme based on segment analysis and F1 score is proposed. Experi-
mental results on two publicly available datasets are provided.

2 Related Work

Determining the relevant segments of a continuous video stream may be triv-
ial for a human, but it certainly involves a great difficulty for an automated
computer vision system. This explains why few works deal with the related ad-
ditional constraints. Some works try to find the boundaries of the actions in
order to apply temporal segmentation. These boundaries can be detected based
on discontinuities or extremes in acceleration, velocity or curvature [6]. Once the
resulting video segments are obtained, sequence-based action recognition can be
applied. Such a temporal segmentation is performed in [7], where atomic move-
ments are localised in the video stream based on so-called ‘ballistic movements’.
These are defined as impulsive movements, which involve a sudden propulsion of
the limbs, and rely on the acceleration and deceleration of start and end of the
ballistic segments. A trajectory-based motion feature (i.e. the popular motion-
history images from [8]) is employed along velocity magnitude features based on
silhouette transformation, frame differences and optical flow. Two approaches
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are tested for the temporal segmentation. The first proposal handles alignment
of the optical flow direction by means of dynamic programming. Whereas in
the second, assuming that boundaries are characterised by zero velocity, move-
ment begin-end detection is performed with a boosting based classifier. The first
option performed better, since it does not classify specific temporal moments,
but aligns a globally optimal segmentation taking into account movement di-
rection. In [9], start and end key frames of actions are identified. Segmentation
is performed based on the posterior probability of model matching considering
recognition rounds. Depending on the accumulated probability, rounds are ended
if a threshold is reached. Adjacent rounds classified as the same action classes
are connected into a single segment. Lu et al. deal with temporal segmentation
of successive actions in [10]. During the learning, only a few characteristic frames
are selected based on change, which leads to an outstanding temporal perfor-
mance of the recognition. Likelihood of action segments is computed considering
pair-wise representations of characteristic frames. Although good results are ob-
tained, no further instructions are provided on how an actual continuous video
stream would be handled.

A very popular technique in video and audio processing is the sliding win-
dow approach. Sliding windows allow to analyse different overlapping segments
of the stream in order to isolate a region of interest and then perform classifi-
cation comparing the window to a set of training templates. If a variable size is
also considered, both window position and size dynamically change so that all
necessary locations and scales are taken into account. Some works have applied
the sliding window technique to CHAR [8, 11, 12]. In [13], a sliding window
is employed to accumulate and smooth the frame-wise predictions of a frame-
based low-latency recognition. Low-latency CHAR is also considered in [14],
where so-called action points are proposed as natural temporal anchors. These
are especially useful for gaming. Two approaches are proposed. The first relies on
a continuous observation hidden Markov model (HMM) with firing states that
detect action points. And the second employs a direct classification based on
random forests classifiers and sliding window. In conclusion, by means of sliding
window techniques, the temporal segmentation is simplified, since no specific
boundaries have to be detected. However, due to its computational cost it may
only be used if the applied segment analysis can be performed very efficiently.

3 Human Action Recognition Method

As it has been previously mentioned, this work builds upon prior contributions
in which HAR has been successfully performed for action sequences that have
been segmented beforehand. Since in this work these contributions are extended
to support continuous recognition, this section provides a brief summary of the
related previous publications.

For pose representation a silhouette-based approach has been chosen due to
its rich spatial information and low computational requirements. More specifi-
cally, a feature representation based on the distance between the contour points
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and the centroid of the human silhouette is employed. Furthermore, spatial align-
ment and a significant dimensionality reduction are performed to obtain a low-
dimensional and noise-reduced feature (see [15] for greater detail).

Based on the method published in [16], the most representative feature rep-
resentations involved in each action class (the so-called key poses) are obtained
based on a clustering algorithm, and a bag-of-key-poses model is generated.
In order to complement this spatial information related to the human posture,
temporal cues are considered by means of modelling the evolution of the hu-
man silhouettes along the action sequences. To extract this kind of informa-
tion, sequences of key poses are learned. These, in turn, are employed for action
recognition, where temporal alignment of sequences is performed for matching
using dynamic time warping (DTW). Also multi-view recognition is taken into
account [5]. Concretely, intelligent feature fusion of single-view feature repre-
sentations is performed with a feature concatenation operator in addition to a
weighted feature fusion scheme that is based on a priori knowledge about the
usefulness of each camera.

4 Learning of Action Zones

It can be observed that the method presented in section 3 is clearly based on
segmented recognition since it performs spatio-temporal matching of action se-
quences. Nevertheless, its accurate recognition and outstanding temporal per-
formance led us to extend it for continuous scenarios. The first issue that has to
be addressed is the existence of misclassifications. Action sequences may contain
irrelevant segments which are common among actions and therefore ambiguous
for classification. For this reason, we propose to extract action zones.

Definition 4.1 Action zones correspond to the most discriminative segments

with respect to the other action classes in the course of an action.

Based on definition 4.1, for instance, the fall action contains an action zone
corresponding to the segment from where the body is partially bent, until it is
completely collapsed. In other words, the part where the person is standing still
is ignored as well as the part where the person is lying on the floor, since these are
not discriminative with respect to other actions. In this way, the most relevant
segments can be identified in order to ease the differentiation between actions.
Furthermore, action zones are shorter than the original sequences. For this rea-
son, the matching time will be significantly reduced. Since the underlying HAR
method also presents a very low computational cost, a sliding window approach
may be employed without prohibitively reducing the temporal performance.

Initially, the same learning is performed as detailed in section 3. Since seg-
mented sequences are still needed for the learning process, these can easily be
obtained relying on the frame-wise ground truth and discarding the segments
where no action is performed. Action zones may be located at different parts of
the actions depending on the type of action and how the action ground truth has
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been labelled. However, based on the provided definition, action zones can be de-
tected automatically by analysing the transition of key poses. For this purpose,
we first compute the discrimination value of each key pose wkp. All available pose
representations are matched with their nearest neighbour among the bag of key
poses and the ratio of within-class matches is obtained (wkp =

matcheskp

assignmentskp
).

Therefore, this value indicates how valuable a key pose is for distinguishing action
classes. In this way, based on the transition of key poses and their discriminative
value, our action zones, i.e. the most discriminative segments, can be detected.

Specifically, for each training sequence of action class a and a specific tem-
poral instant t, the following steps are taken for the corresponding frame:

1. The feature representation V̄ (t) of the current frame is matched with the
key poses of the bag-of-key-poses model. For each action class a, the nearest
neighbour key pose kpa(t) is obtained.

2. For the A action classes, the raw class evidence valuesHraw1
(t), Hraw2

(t), ...,
HrawA

(t) are computed based on the ratio between the discrimination value
wkpa(t)

and the distance distkpa(t)
, where distkpa(t)

denotes the Euclidean
distance between the pose representation and the matched key pose kpa(t).
Hence, the discrimination value will be taken into account depending on how
well the key pose defines the current pose.

Hrawa(t) =
wkpa(t)

distkpa(t)
, ∀a ∈ [1...A] . (1)

3. Normalisation is applied with respect to he highest value observed:

Hnorma(t) =
Hrawa(t)

Hrawmax(t)
, ∀a ∈ [1...A] . (2)

4. Gaussian smoothing is performed centred in the current frame, considering
only the frames from a temporal instant u ≤ t. In this way, we do not take
into account future frames, as this would require to delay the recognition
for a constant time interval. Convolution is applied to the history Hnorm(u)
values with a Gaussian filter kernel in order to generate Hsmooth(t). Discrete
kernel values are processed based on approximating the continuous values
(see [17]):

G(u) =
1

σ
√
2π

e
−(u−µ)2

2σ2 , / u ≤ t . (3)

5. Attenuating the resulting value, the final class evidence H(t) is obtained:

Ha(t) = e10Hsmootha
(t), ∀a ∈ [1...A] . (4)

Figure 1 shows the H(t) evidence values that have been obtained over the
course of a bend action. In comparison to the raw values, here outliers have
been filtered and the differences between classes have become more pronounced.
As it can be seen, the evidence of the bend class is significantly higher than
the others in the central part of the sequence. This is due to the fact that
the person is initially standing still. He or she then bends down and, finally,
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(a) Raw values

(b) Processed values

Fig. 1. Evidence values of each action class before and after processing are shown for
a bend sequence of the Weizmann dataset.

returns to the initial position. The segment that corresponds to the poses in
which the person is bent down is the most discriminative one. The poses of this
segment match with the most discriminative key poses of the bend action class,
whereas the ratio between discrimination value and distance is lower for the other
classes. For this reason, action zones can be detected by defining the thresholds
HT1(t), HT2(t), ..., HTA(t) that have to be reached by the class evidence values
of these segments. Specifically, an action zone will be collected from the frame
on where:

Haction(t) > Hmedian(t) +HTaction , (5)
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where action corresponds to the action class of the current sequence and
Hmedian(t) indicates the median value out of H1(t), H2(t), ..., HA(t). An action
zone will end if this condition ceases to be met. The median value is employed
because the expected peak of Haction(t) would influence the average. Moreover,
this approach also works if action segments present a high evidence value for
more than one action class, which may happen for very similar actions. A sec-
ond example is shown in figure 2, where the class evidence values that have
been obtained for the cyclic jumping jack action are detailed. Several short ac-
tion zones could be found choosing the appropriate threshold HTa. It can also
be seen that the peaks correspond to the discriminative segments in which the
limbs are outstretched.

(a) Evidence values

55 6050

Frames

(b) Corresponding silhouettes

Fig. 2. Evidence values H(t) of each action class and the corresponding silhouettes of
one of the peaks of evidence are shown for a jumping jack sequence of the Weizmann
dataset.
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5 Continuous Recognition

In this proposal, continuous human action recognition is performed by detect-
ing and classifying action zones. For the continuous recognition of the incoming
multi-view data, a sliding window technique is employed. More specifically, a
sliding and growing window is used to process the continuous stream at different
overlapping locations and scales. At this point, a null class has to be considered
in order to discard unknown actions and avoid false positives. This class corre-
sponds to all the behaviours that may be observed and have not been modelled
during the learning.

Algorithm 1 details the process: The sliding and growing window grows δ

frames in each iteration and slides γ frames if the window has reached its maximal
length lengthmax. If at least lengthmin frames have been collected, the segment
of the video stream (or video streams if available) S that corresponds to the
window is compared to the known action zones. The best match is obtained
by matching the segments of key poses using DTW. Then, a threshold value
DTa is taken into account in order to trigger the recognition. This value DTa

indicates the highest allowed distance in a per-frame basis. In this way, only
segments which match well enough with an action zone are classified. Eventually,
the unrecognised frames will be discarded and considered to belong to the null

class.

6 Experimentation

6.1 Parametrisation

Special consideration has been given to the parameters HT1, HT2, ..., HTA and
DT1, DT2, ..., DTA. The first ones define the threshold that has to be surpassed
by the class evidence Haction(t) in comparison to the Hmedian(t) value. Differ-
ent values are admitted for each action class, since the class evidence behaves
differently for each type of action. In the case of the second set of parameters,
each action class is considered to require a specific similarity between sequence
segments and action zones in order to confirm the match as a recognition and
avoid false positives for ‘poor matches’. This leads us to two sets of A parameters
that are difficult to establish empirically, as exhausting tests are unaffordable.

Among the possible search heuristics, evolutionary algorithms stand out since
they are proficient for scenarios where the shape of the solution space is un-
known and this hinders the election of optimal algorithms. They can also deal
with a large number of parameters in a moderate run time. Moreover, relying
on a coevolutionary-based approach the intrinsic relationship between our two
parameter sets can be considered. For this reason, a technique based on the co-
operative coevolutionary algorithm from [18] has been employed for parameter
selection. By means of this method, the best performing combination of HT and
DT values can be found.
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Algorithm 1 Continuous recognition: sliding and growing window

Let δ denote the number of frames the window grows in each step.
Let γ denote the number of frames the windows moves when slid.
Let S denote the video stream.

start = 0
length = 0

repeat

—————— Sliding and growing window ——————-
length = length+ δ

if length > lengthmax then

Discard γ frames considered to belong to the null class

start = start+ γ
length = length− γ

end if

—————— Compare to action zones ————————
if length ≥ lengthmin then

distmin = max value
for each action class ∈ training set do

for each action zone ∈ action class do

dist = dDTW (action zone, S[start : start
+length])
if dist < distmin then

distmin = dist
a = action class

end if

end for

end for

——————— Recognise or continue ———————
if distmin ≤ length×DTa then

Recognise segment S[start : start+ length]
as action class a
start = start+ length
length = 0

end if

end if

until end of stream or forever

6.2 Continuous evaluation

For action recognition based on segmented sequences, the evaluation scheme is
straightforward. Since the ground truth label of each sequence is known, the
ratio of correctly classified sequences in the test is commonly used as accuracy
score. Nevertheless, for continuous evaluation, several new constraints appear.
Depending on the application scenario, one might be interested in the num-
ber of repetitions of each action. This happens in gaming (e.g. three punches),
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whereas in video surveillance the fact that the action happened is more rele-
vant (e.g. punching). In AAL, it is especially important not to miss any actions,
because this could result in safety issues (e.g. falling down). A delay of a few sec-
onds may be acceptable if this improves the recognition avoiding false negatives.
As a result, the applied evaluation scheme varies between authors.

A common option is to apply frame-by-frame evaluation as in [10], but the
reliability of this approach is arguable. This is due to the lack of correlation
between frames and actions. It could happen that only a few last frames of an
action are not recognised correctly. This would result in a high frame-by-frame
recognition rate (e.g. 90%), although only one correct class label and one or
more incorrect predictions have been returned by the system. This means that
50% or more of the returned labels were erroneous. For this reason, other levels
of evaluation have been proposed, such as event analysis, where only the activity
occurrence and order is considered, or the hybrid segment analysis [19]. In this
last approach, a segment is defined as “an interval of maximal duration in which
both the ground truth and the predicted activities are constant”. In this way,
despite the fact that segments may have different durations, alignment is given
since each ground truth or prediction change leads to a new unit of evaluation.

Action 

State

Null Class 

State

new recognition / evaluate

thresholded recognition
thresholded recognitionnew recognition / evaluate

same recognition

Fig. 3. This finite-state machine details the logic behaviour of the applied segment
analysis.

This last level of analysis has been employed in this work, as it provides
a clear way to align the recognitions with the ground truth and avoids the
disadvantages of the frame-based analysis. Figure 3 shows how the null class has
been considered in the segment analysis. As it can be seen, only new recognitions
(i.e. different from the last predicted action class) are taken into account for
evaluation. The thresholded recognitions are retained and their segments are
considered to belong to the null class. In addition, recognitions are accepted for
a delay of τ frames after the ground truth indicated the end of the action. Note
that this is only allowed if no prediction was given until that moment, i.e. the null
class state was active since the action started and until the delayed recognition
has occurred. Otherwise, the action would have already been classified (correctly
or wrongly).
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In view of the multi-class classification that is performed and that now a null

class has to be contemplated, results are measured in terms of true positives
(TP), false positives (FP), true negatives (TN) and false negatives (FN). These
values are accumulated along a cross validation test. A leave-one-actor-out cross
validation (LOAO) is proposed in which each sequence includes several contin-
uously performed actions of an actor. In order to consider both precision and
recall rates, the F1-measure is used as follows:

F1 = 2× precision× recall

precision+ recall
(6)

precision =
TP

TP + FP
(7)

recall =
TP

TP + FN
(8)

6.3 Results

Our approach has been validated on the multi-view INRIA XMAS (IXMAS) [20]
dataset and the single-view Weizmann [21] dataset. The former provides contin-
uous multi-view sequences of different actions performed by the same actor,
whereas the latter provides segmented single-view sequences. In order to sup-
port continuous recognition, the sequences of the same actor are concatenated
into a single continuous sequence. Consequently, unnatural transitions are cre-
ated due to the gaps of information. Nevertheless, tests have been performed on
this dataset for illustrative purposes so that a comparison with other approaches
can be made.

With regard to the introduced parameters, the following values have been
used during the experimentation (these have been chosen based on experimen-
tation):

1. The threshold parameters have been established by the coevolutionary
parameter selection algorithm as follows: HT ∈ [0.05, 1.5] and DT ∈

[0.002, 0.02]. In figure 4, the class evidence values of a sample sequence can
be seen, where the action zone that has been obtained using these HT class
evidence thresholds is highlighted.

2. The Gaussian smoothing applied to the H(t) class evidence considers σ =
10.486 frames. Since approximate discrete values are applied for the convo-
lution, a total of 22 history frames are taken into account and the rest is
considered zero.

3. Regarding the sliding and growing window, in each iteration the window
grows 5 frames (δ = 5), and when the maximal length lengthmax is reached,
the window slides 10 frames (γ = 10).

4. A delayed recognition is accepted within a period of 60 frames, corresponding
to approximately 2 seconds (τ = 60). This time interval has been considered
acceptable for this AAL application.
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Fig. 4. Evidence values H(t) of each action class and the detected action zone are
shown for a scratch head sequence of the IXMAS dataset.

Table 1. Obtained results applying CHAR and segment analysis evaluation over a
LOAO cross validation test. Results are detailed using the proposed approaches based
on action zones (1) or segmented sequences (2).

Dataset Approach lengthmin lengthmax F1

IXMAS 1 3 30 0.705
IXMAS 2 10 120 0.504

Weizmann 1 3 20 0.928
Weizmann 2 10 120 0.693

Table 1 shows the scores that have been achieved by our approach over the
ideal value F1-measure of 1.0. The IXMAS dataset presents several known diffi-
culties as view invariance and noise which explain the score difference. Further-
more, the segments labelled as null class in which ‘other actions’ are performed
can easily lead to an increase of false positives. In order to show the benefit
gained from the action zones approach (approach 1), tests have also been per-
formed using the entire segmented sequences instead (approach 2). In this way,
larger segments are considered by the sliding and growing window and these are
compared to the original action sequences provided by the ground truth. It can
be seen that the proposed continuous recognition based on action zones provides
a substantial performance increase and leads to higher scores in general.

Comparison with other state-of-the-art works is difficult in CHAR, due to
different evaluation schemes. In [10], frame analysis is employed and 81.0% ac-
curacy is reported on the IXMAS dataset. In the case of the Weizmann dataset,
for example in [9], CHAR is performed and a score of 97.8% is reached. Seg-
ment analysis is employed in this case, although the rate of correctly classified
segments is computed based on a 60% overlap with the ground truth.
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The temporal performance has also been evaluated for this continuous ap-
proach. While the sliding and growing window technique is computationally
demanding, this is offset by the proposed action zones. The short lengths of
both action zones and temporal windows make the comparisons between them
very efficient. Using a PC with an Intel Core 2 Duo CPU at 3.0 GHz and Win-
dows x64, a rate of 196 frames per second (FPS) has been measured on the
Weizmann dataset including all necessary processing stages.

7 Discussion and Conclusion

In this work, a method for segmented human action recognition has been ex-
tended to support continuous human action recognition. Improvements have
been made at the learning and recognition stages. The concept of action zones
has been introduced to define and automatically learn the most discriminative
segments of action performances. Relying on these action zones, recognition can
be carried out by finding the equivalent segments that clearly define the action
that is being performed. For this purpose, a sliding and growing window ap-
proach has been employed. Finally, segment analysis is used introducing special
considerations for the specific AAL application of our work. Tests have been per-
formed relying on the whole segmented sequences or only on the action zones,
and significant differences can be seen. By means of action zones, higher accu-
racy scores are obtained. Real-time suitability of this continuous approach has
also been verified. This is indispensable for most of the possible applications,
and a necessary premise for online recognition.

In future works, further evaluation should be applied to ease the comparison
to other approaches. It could be useful to implement other state-of-the-art tech-
niques and test them in the same conditions as our proposal. Furthermore, a con-
sensus should be reached about the appropriate evaluation schemes. It has also
been observed that regarding CHAR, there is a lack of suitable benchmarks in-
cluding foreground segmentations or depth data. Therefore, new datasets should
be created along the corresponding evaluation schemes.
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