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Abstract
Although it has been shown that climate warming has steadily increased the length of the growing
season (LGS) in Europe, we present new evidence that this trend reversed during last decade. Warmer
European winter and spring weather combined with adequate soil moisture still results in early greening,
albeit at slower rates than in the past. However, the recent (2014-2020) accelerated shift toward earlier
onset of dormancy has resulted in a shortening of LGS compared to previous years. The results show
that this is mainly due to higher atmospheric water demand (AWD) in summer. The higher AWD stresses
the vegetation even though there is still enough water, but the vegetation cannot provide the needed water
for transpiration because the water transport system is inadequate, or the root system is adapted to
conditions other than the current condition. Our results have implications for future management of
European ecosystems in a warmer world.

introduction
Vegetation phenology is a sensitive indicator of changes in climatic conditions1-5. The timing of leaf
unfolding in deciduous vegetation, so-called onset of greening (OG), in spring6-8 and onset of dormancy
(OD) in autumn are among the most important phenological events marking the growing season (GS) in
mid- and high- latitudes9-11. Global warming, particularly in the Northern Hemisphere, is leading to an
earlier onset of the vegetation cycle, as evidenced by both ground measurements9,12-14 and satellite-
based monitoring of land surface greenness15,16. Although the results for early OG are in good
agreement, con�icting assessments have been made when evaluating the impact of global warming on
the timing of OD, with some reporting delayed OD7,17,18 and others reporting earlier OD19,20. Delayed OD is
most likely due to increased photosynthetic enzyme activity21, decreased chlorophyll degradation rate22,
decreased likelihood of exposure to frost in the autumn23,24, or increased capacity for growth and
photosynthetic consumption, all caused by increased temperature (T) 17. In most cases, earlier OD is due
to limited leaf life19 or lower plant productivity later in the season due to water de�cits20. A potential
explanation for climate change and soil moisture (SM) changes during GS and their effects on OG and
OD is provided in Fig. 1.

Some observations in the northern hemisphere25 show that during the period 1982-2011, earlier OG and
increased evapotranspiration (ET) in spring resulted in an additional de�cit in SM in summer, which might
result in an earlier OD. However, the impact of a summer SM de�cit on OD due to an ET increase needs to
be supported by an analysis of the long-term relationships between ET, SM and OD. Though, it is not only
ET that determines SM and OD, but also precipitation (P) since lower P at unchanged ET results as well in
lower SM and possibly earlier dormancy. Another possible scenario is that neither P nor SM show a
signi�cant change but increased atmospheric water demand (AWD), e.g., increased vapor pressure de�cit
(VPD) as a measure of AWD, could disrupt the soil-plant-atmosphere water chain and then regulate
stomatal closure and OD. This could, but need not, be accompanied by increased ET, since a
simultaneous increase in AWD and partial closure of the stomata may result in no change in ET.
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Therefore, it is important to investigate whether reduced SM leads to earlier OD or whether increased AWD
are intolerable for certain vegetation types even though SM remains constant. To do this, one may
consider the seasonal variations of VPD and SM as well as their interactions with OG and some
meteorological variables such as P, T, and ET.

In general, there are several mechanisms that cause dormancy, including 1) low T, 2) water de�ciency
(caused by increased ET or decreased P, or a combination of both), 3) maximum leaf age (earlier OG
leads to earlier OD), and 4) other plant stressors (heat stress or breakdown of xylem capillaries due to
high AWD). Climate change can affect all four of these causes, and some may act in opposite directions.
For example, higher T in fall may delay OD, while an increase in P de�cit may result in earlier OD.
Therefore, the objectives of our analysis were to investigate 1) whether our data con�rm previous �ndings
on the shift in OG, OD, and consequently LGS in Europe for the period 1982 to 2020, 2) whether
meteorological variables along with SM data provide explanations for possible shifts, and �nally 3)
whether the water or energy supply is the main controlling factor in LGS changes. 

Results
Figure 2 illustrates the spatial variation of the long-term (1982–2020) LGS mean for Europe as a simple
derivative of OD and OG data (see supplementary Fig. 1). To obtain these results, we applied the
innovative LFD NDVI method (see details in Methods) to long-term (1982–2015) GIMMS26,27 NDVI data
augmented by AVHRR28 (1982–2017) and MODIS29 (2001–2020) NDVI data. Then, using the Mann-
Kendall test30,31 (see Methods), we examined a possible trend in the LGS, OG, and OD data from 1982 to
2020. Our analysis con�rms previous reports of early greening in Europe11,32 showing a signi�cant trend
towards earlier greening in 35% of pixels (see supplementary Fig. 2a), with OG shifting from mid-April in
the �rst period (1982–1990) to early April in the last period (2011–2020), resulting in an average of 11
days earlier greening in these pixels. For 63% of the pixels, there is no signi�cant trend, but still a
backward shift of up to 3 days. Only 2% of pixels show a signi�cant trend toward later OG, with OG
shifting on average by 16 days from early April in 1982–1990 to mid-April in 2011–2020. The amplitude
of the shift (3 to 11 days per total period, equivalent to ~ 1 to 3 days per decade) is within the range of
values reported by other researchers8,25,33 reporting an earlier OG from ~ 1 to ~ 5 days per decade.

The results indicate that OD shows a more complicated response to climate warming than OG. 73% of
the pixels show no signi�cant trend in OD data (see supplementary Fig. 2b), with OD almost �xed to
October 13 (± 1 day). 17% of the pixels show earlier OD, shifting from mid-October in 1982–1990 to early
October in 2011–2020, while the opposite trend (shifting to later days) is observed in 10% of pixels. In
contrast to ours, Liu et al. 17 using the same GIMMS NDVI data, observed a trend toward later OD at ~ 
70% of Northern Hemisphere pixels between 1982 and 2011 (at a mean rate of 0.18 ± 0.38 d/y). Other
studies, e.g., Julien and Sobrino 33, also using the same GIMMS NDVI data and examining the period
1981–2003, show a later OD, but on a global scale.
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Finally, almost two-third of the pixels (65%) showed no signi�cant trend in LGS (Fig. 3), as the LGS is
almost �xed at 185 days (± 1 day). 28% show a lengthening trend where the LGS has increased on
average by almost 13 days from 177 to 190 days, and 7% show a shortening trend where the LGS has
decreased by a mean of 16 days from 194 to 178 days. Julien and Sobrino 33 used the same GIMMS
NDVI data as we used, but a shorter period from 1981 to 2003. In their analysis LGS increased by 0.8 d/y
worldwide. Similarly, Stöckli and Vidale 34 found an increase of 0.96 d/y for Europe during 1982–2001
period. Other researchers15,35,36 also report increasing LGS in the Northern Hemisphere in earlier decades
(before 2010). For our longer period (1982–2020) and Europe, the average increase is only one third of
the reported values (~ 0.3 d/y), and a lengthening occurs in only 28% of the pixels. In agreement with our
results, Garonna et al. 37 showed that the LGS increased signi�cantly from 1982 and 2011 only over 18–
30% of the European land area. It seems that including more recent years in analysis diminishes the
lengthening trend in LGS and the percentage of the land surface over which it occurs, indicating that the
trend has changed more recently. Based on supplementary Fig. 3a showing the spatial patterns of the
long-term (1982–2020) trend slope of LGS data, central Europe mainly shows lengthening trends for LGS
with trend slopes varying between 0 to 1 d/y while the lower latitudes along with higher latitudes show a
shortening trend in LGS data (see supplementary Fig. 3b, c to �nd out about the spatial patterns of OG
and OD).

As part of a periodic trend analysis, we examined the hypothesis of whether the trend slope of the LGS
(as well as the OG and OD) varied across the 1982–1990, 1991–2000, 2001–2010, and 2011–2020 time
periods. Interestingly, Europe shows a positive mean LGS trend slope of 0.43 and 0.35 d/y in the �rst and
second periods, respectively, which can lead to about one week longer seasons at the end of the second
period (Fig. 5). The trend falls to zero in the third decade (2001–2010), but with a tendency toward
negative values. In the last decade, however, the trend changes to negative, with a mean trend slope of
-0.12 d/y, which offsets almost one-third of the shift in the �rst decade. Almost the same behavior
(positive trends of LGS in the �rst two periods and negative trend in the last decades) is seen in
croplands, evergreen needle leaf forests, and grasslands. However, it appears that wooden tundra, mixed
forests, and open shrublands shows a continues lengthening trend for LGS except for a negative trend in
second decade in open shrubland. The mixed tundra is also an exception, where we see a positive trend
in the last period (2011–2020) and negative trends in the remaining periods. Excluding open shrublands
and tundras, the strongest negative trend in the last period is observed in grasslands with a rate of -0.50
d/y, followed by croplands and evergreen needleleaf forests with a rate of -0.29 ± 0.01 d/y. A pessimistic
projection of these results could therefore lead to the conclusion that we face a further decrease in LGS in
most of vegetation types in Europe after 2020, due to the severe dry and warm years that occurred since
then.

While Europe has experienced an average trend of -0.31 d/y for the OD over the last period (2011–2020),
in this period there has been almost less shift in the OG with a trend slope of -0.19 d/y (see
supplementary Figs. 4 and 5). This reverses the trend of LGS over the last period and offsets the
lengthening of LGS in previous periods. However, to determine when such a trend reversal in LGS (and OG
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and OD) occurs, we performed another trend analysis, this time setting the data period to a 15-year
window and shifting the window across different years from 1982–2020 and conducting trend analysis
over these data. In this way we can see which year is critical and at what time the reversal occurs. The
results (Fig. 5) show that the reversal in LGS trend occurs after 2003–2004, probably due to the severe
drought we had in Europe in 2003. However, we still see a positive trend for LGS till 2013–2014, meaning
that the growing season is still lengthening, albeit at a slower rate. However, after 2014 the trend becomes
negative, which means that from then on the length of the season is shortened.

In this suction, we determined control factors (see supplementary Figs. 6 to 8) for anomalies (Δ) in the
OG and OD as well as LGS using the GMDH38 framework (see Methods) together with the main
meteorological variables (T, P, and VPD) and surface SM (SSM) and root zone SM (RSM) from GLDAS-
NOAH39–41, ERA5-Land42, and GLEAM43,44. All variables are averaged for winter [January 1 until 30 days
before OG], early spring [30 days before the OG to OG], spring [OG to the peak of greening, PG], summer
[PG to until two weeks before the OD], and late summer [two weeks before the OD to OD] times.

Our analyses shows that ΔT and ΔVPD in late summer beside ΔT in early spring and spring are the most
important control factors for LGS (supplementary Fig. 6). For almost 28% of the pixels, late summer ΔT is
the �rst important factor entering the model. For nearly 13% of the remaining pixels, it is also important
as a second control factor. Similarly, ΔT in early spring is the �rst and second important factor entering
the model for nearly 12 and 8% of the pixels, respectively. Overall, for almost 54% of the pixels, ΔT (either
in spring or summer) is the most important factor for LGS. For 40% of the remaining pixels, ΔT is still the
second most important factor for LGS.

ΔVPD in late summer is the second important variable for the model. For almost 16% of pixels, ΔVPD in
late summer is the most important control factor of the LGS, while for 10% of pixels it is the second most
important control factor. Regardless of the period for which an average is taken, ΔVPD is the �rst and
second important control factors for LGS for nearly 29 and 22% of pixels, respectively. Finally, ΔP is the
third most important variable controlling LGS, being the �rst control factor for almost 10% of pixels and
the second for 15%. ΔSM (both at the surface and in the root zone) clearly have the least in�uence on
LGS.

Looking at the control factors for OG and OD, we �nd that ΔT and ΔVPD in early spring are the most
important control factors for OG (see supplementary Fig. 7a) and ΔT in late summer and summer along
with ΔVPD in late summer are the most important control factors for OD (see supplementary Fig. 7b).
This means that the availability of SM to plants is the least limiting factor for plant growth in Europe,
even though climate change has probably altered P patterns in Europe. This shows that, in contrast to
other publications20 citing SM de�cit (especially in summer) as the most important factor driving
changes in OD, at least SM availability has not played such a prominent role in Europe until 2020. This
conclusion raises the question: If SM is less of a constraint, why did we still observe a shortening of LGS
during recent years, even though OG still shifted to earlier dates, albeit at a slower rate? A possible answer
is that AWD was increased due to warmer conditions (re�ected in increased average T and VPD), and
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water supply was therefore below plant water demand (caused by higher AWD), which led to earlier OD. A
principal component analysis (PCA) between OG and other variables (supplementary Fig. 9a) showed
that OG is negatively correlated with T, VPD and P in winter and early spring, while other variables,
including SSM and RSM, are not correlated with OG. This means that the higher T, VPD, and P are in
winter and early spring, the earlier OG is reached. In a similar analysis (supplementary Fig. 9b), OD shows
a negative correlation with VPD and T in summer and late summer and a positive correlation with P in all
periods, i.e., the higher VPD and T are in summer and late summer, the earlier OD is reached or the higher
the P, the later the OD is reached. As mentioned earlier, there is no signi�cant correlation between OD and
other variables, especially SSM and RSM.

There may be different reasons for the observed behavior for different land use types. In general, Europe-
wide trends in OG are driven to a large extent by the pattern observed for forested and mixed tundra
(supplementary Fig. 4). These high-latitude ecosystems are very sensitive to climate change, so a few
degrees of warming have a greater impact there than in temperate regions46. This likely explains that why
early spring T is the most important controlling factor for the OG (supplementary Fig. 7a) and,
consequently, one of the two most important variables in explaining LGS. Similarly, the earlier OD is
primarily due to cropland and grassland, which are generally expected to have shallower root systems
than the other woody land-use classes. It is therefore not surprising that late summer T and VPD were the
most important and second most important variables for these land uses, as grasses and cropland will
suffer drought �rst. To address this, we examined the control factors of LGS (as well as OG and OD) in
different land use types (results not shown). In the case of LGS, these are almost the same factors as
Europe that play a role within the different vegetation types, except for tundra (both wooden and mixed)
and to some extent for evergreen needle leaf forests. For evergreen needle leaf forests, the only difference
is that late summer ΔVPD plays a lesser role and dominates in 14% of the pixels of this land cover,
compared to 26% in Europe. For mixed and wooden tundras, the importance of late summer variables for
LGS decreases even more. The other dominant land cover types in Europe, including cropland, mixed
forest, grassland, and open shrubland, show almost the same behavior as we observed for Europe as a
whole. Almost the same results were also obtained for OD and OG (not shown).

To support the results of the GMDH analysis, we performed an additional trend analysis over late summer
ET, RSM, SSM, T, VPD, and P data. Results show no trend for SSM, RSM, P, and ET, but increasing trends
for T and VPD in majority of pixels in Europe, which is consistent with our previous reports. This is
con�rmed by both reanalysis (see supplementary Table 1) and in situ data (supplementary Fig. 10). A
supplementary discussion is also provided in supplementary information.

The ecohydrological feedback we highlighted in our research (onset of wilting/senescence at higher SM
when ET is higher) is already well documented. For example, in one of the �rst studies on the relationship
between ET and SM, Brown 47 experimentally showed already 110 years ago that the transpiration rate
affects the SM threshold at which wilting occurs. If the transpiration rate is high, plants will wilt at a
higher SM, while at a lower transpiration, plants will gradually be able to absorb more water from the soil,
so that wilting will occur only when the SM is lower. Gao et al. 48 also noted that OD occurs earlier despite
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having still su�cient SM, but the plant’s root systems are adapted to extracting the amount of water that
is normally required and that amount changes probably due to increased VPD.

Our results implicate that changes in OG and OD and consequently in LGS will directly affect the net
carbon balance of the ecosystem49–51, the exchange of water and energy with the atmosphere52 and
management of ecosystems but the impact of these changes is not yet accounted for in land surface
models. To cope with these changes agricultural management practices will need to be adapted in terms
of suitable crop selection and breeding (e.g., optimally designed root systems), crop rotation and
intercropping (e.g., avoiding bare soil) and irrigation management to optimally exploit the change in LGS.
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Methods
Study area and working units: this study is conducted at the scale of the European continent
(supplementary Fig. 11). We classi�ed all pixels within Europe using the GLDAS Vegetation Class/
Mask40 (GVC, see supplementary Fig. 11). The GVC map is available at
https://ldas.gsfc.nasa.gov/gldas/vegetation-class-mask. To classify the pixels, dominant GVC land cover
types were selected for further analysis. Selected land cover types include croplands, evergreen
needleleaf forests, mixed forest, open shrublands, wooden tundra, grasslands, and mixed tundra. Once
the work units were identi�ed, all calculations were performed on a pixel-by-pixel basis and then the
results within each work unit were averaged (wherever necessary) to obtain class-speci�c results.

https://ldas.gsfc.nasa.gov/gldas/vegetation-class-mask
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Datasets: Data from different sources are used for this analysis. We used NDVI (Normalized Difference
Vegetation Index) data from the Global Inventory Monitoring and Modelling System
(GIMMS) 26,27(covering the period 1981-2015), the Advanced Very High-Resolution Radiometer (AVHRR)28

(covering the period 1981-2020), and the Moderate Resolution Imaging Spectroradiometer (MODIS) 29

(covering the period 2001-2020) to determine the OG and OD and consequently the LGS. In addition, the
NASA Global Land Data Assimilation System (GLDAS) along with the NOAH Land Surface Model39-41

(v2.0, for 1982-2014, and v2.1, for 2000-2020), the European Centre for Medium-Range Weather Forecasts
(ECMWF) ERA5- land42 (for 1982-2020), and the Global Land Evaporation Amsterdam Model43,44 (GLEAM
v3.6a, for 1982-2020) were the three other datasets used in this analysis. We also used in situ
measurement data from FLUXNET45 (with a duration of 1995-2020) as a benchmark for the reanalysis
data.

Data preprocessing: The data used in this analysis from different sources are provided at different spatial
resolutions, with the coarser resolution being 0.25 degrees for GLDAS and GLEAM databases. Therefore,
for consistency, we used the RegularGridInterpolator function of the interpolate sub-package of the
Python package of scipy to interpolate them (wherever necessary) with a resolution of 0.25 degrees,
using the same latitude and longitude vectors of the GLDAS and GLEAM databases. In the case of the
NDVI data, we used the GIMMS NDVI data as a benchmark for our analysis because it is commonly used
in other studies. However, it should be noted that the GIMMS NDVI data are available at biweekly
temporal resolution (i.e., two data per month), the MODIS NDVI data are available at monthly resolution,
and the AVHRR NDVI data are available at daily resolution. Therefore, we brought them all to monthly
resolution by averaging the data that fall within each month, i.e., in the case of the GIMMS data, the two
data within each month, and in the case of the AVHRR data, all daily data of each month. This was
necessary because the temporal resolution of the NDVI data affects the derived OG and OD
values. Additionally, we excluded the last three years of AVHRR data (2018-2020) from the analysis due
to unknown quality of the data for these years.

The Princeton meteorological forcing data used for GLDAS 2.0 ends in 2014, so GLDAS 2.1 (covering
2001-present) uses other forcing data including observation-based P and solar radiation, resulting in
signi�cantly higher values nearly for all variables, as the climatology of the forcing variables differs from
that of the Princeton forcing dataset. Therefore, we used the overlapping period 2001-2014 to construct
location- and day of year-speci�c linear regressions between paired variables from v2.0 and v2.1, and
then applied the developed regression to match the GLDAS 2.1 data to the climatology of GLDAS 2.0. In
the case of P, day of year-speci�c linear regressions were not possible due to high variability and
frequency of zero values, therefore we only applied site-speci�c linear regressions. 

While the temporal resolution of the GLEAM dataset is daily, the GLDAS data are provided with a
temporal resolution of 3 hours. Therefore, we averaged the 3-hourly data from GLDAS to account for the
daily data. Although the ERA5-land dataset is originally provided with a spatial resolution of 0.05 degrees
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and a temporal resolution of 1 hour, for consistency, we downloaded the daily and 0.25-degree resolution

data using the ERA5-land Daily Statistics CDS API
[1]

. 

In cases where a variable was available from two or more of the above reanalysis products, a PCA was
performed, and the �rst component was then used for further analyses when the target variable was in
demand. This was the case for ET and SSM. In the case of ET, the �rst component accounted for 95 or
more percent of the variation in all products, while in the case of SSM, 85 or more percent of the variation
in the products used was explained by the �rst component.

Data validation: Before any further analysis, we validated the ET and SSM data from the datasets used
(GLDAS, GLEAM and ERA5-Land) by comparing them with in situ measurement data from FLUXNET45.
For this purpose, we extracted reanalysis data on ET and SSM for the pixels containing FLUXNET
stations for the overlapping periods 2000-2020, and then performed a station-by-station comparison of
the reanalysis data with the FLUXNET data. In total, 8 and 23 FLUXNET stations contain the complete
data for ET from all datasets for the 2000-2009 and 2010-2020 periods, respectively, while only 4 and 18
stations have the complete data for SSM from all datasets for the 2000-2009 and 2010-2020 periods,
respectively. Supplementary Fig. 12 shows the Pearson correlations between ET and SSM from FLUXNET
and ET and SM from other datasets. There are strong correlations between ET from FLUXNET and ET
from GLDAS, GLEAM and ERA5-land with correlation coe�cients ranging from 0.59 to 0.87 for the period
2000-2009 and 0.64 to 0.91 for the period 2010-2020. In contrast to ET, the correlations between SSM
from FLUXNET and SSM from GLDAS, GLEAM and ERA5-land appear to be weak (with correlation
coe�cients ranging from 0.24 to 0.60 for the period 2000-2009 and 0.07 to 0.83 for the period 2010-
2020), partly due to the uncertainty of SSM measurements at FLUXNET stations, as seen in the large
changes in SSM values or repeated constant values for some months. Overall, it seems that the
reanalysis data used in this investigation can reasonably show the ongoing trend in the real world, and
we can be con�dent that the conclusions we have drawn in this paper are valid.   

LFD NDVI Method: To determine the OG and OD for individual pixels in Europe and for individual years of
the entire study period (1982-2020), we needed an innovative algorithm that could operate independently
for each year and pixel. This was important because classical methods, e.g., Piao et al. 53, typically
calculate a critical long-term NDVI value for the entire period and then determine the timing for
approaching such a critical value in all individual years. However, this was prone to bias because the
NDVI data used came from three different products of GIMMS [1982-2015], AVHRR [1982-2017], and
MODIS [2001-2020], especially with different temporal resolutions (biweekly, daily, and monthly), which
can affect the long-term critical value and consequently the timing for OG and OD. Therefore, we
developed the logistic function derivative of NDVI curve (LFD NDVI method) which can be used for each
year individually. It uses the �rst and second derivatives of the �tted logistic function of the cumulative
NDVI curve of a given year to determine the OG and OD (Extended Data Fig. 1a). As a �rst step, we
converted all data to a monthly time scale, as mentioned earlier. Then we calculated the cumulative NDVI
data over time and �nally fed them into the LFD NDVI method to determine OG and OD. However, before
feeding the data into the LFD NDVI method, we normalized both the NDVI and time data between 0 (min)



Page 14/23

and 1 (max) as this was required for further calculation.  Normalization of the NDVI data was done twice,
once before accumulation to eliminate possible negative NDVI values, and another time after
accumulation to bring them within the range of 0 to 1. In the following, the calculation with the LFD NDVI
method is described in detail. When t and NDVI are referred to in the following, the rescaled forms are
meant for the sake of simplicity.  

In a �rst step, a logistic function was �tted to the data (Extended Data Fig. 1b):

1
where y(t) is the cumulative NDVI on day t of the year and the model coe�cients are a, b, c, and d. Using
this �tted function, we obtained the smoothed curve of the cumulative NDVI data for all days of the year
(t = 1:365 or 366, being scaled to 0 and 1). Third, we determined the curvature of the data, k(t), for each t
using the �rst y'(t) and second y''(t) derivatives of the �tted logistic function:

2
Plotting k(t) versus t typically showed two maxima separated by a minimum. The times at which the
maxima occur allow the logistic curve to be divided into three parts with nearly linear behavior (Extended
Data Fig. 1c). The �rst part occurs during the winter and early spring before the �rst curvature maximum
in the data; we refer to this part as the winter dormant period. The second part occurs between the �rst
and second curvature maxima in the data; we refer to this part as the active growth period. Finally, the
third part occurs during the late summer and fall after the second curvature maximum in the data; we
refer to this part as the fall dormant period.

For the second part, a �rst-order polynomial function was �tted by simply using the two points of
maximum curvature and their respective cumulative NDVI values, plus an additional point in between. For
the �rst and third parts, we used the sequential linear approximation method described by Dathe et al. 54

to identify the linear part of the rescaled cumulative NDVI curve before the �rst and after the second
curvature maximum. The method consists in calculating linear regressions over a consecutive number of
points before the �rst and after the second curvature maximum. The dependence of R2 on the number of
data points was used to determine the number of points to be included in the regression. In this analysis,
an R2 value of 0.95 was used as the critical value to determine the linear parts of winter- and fall-
dormant. Next, we determined the equation of the bisector of the obtuse angle between the regression
equations of the winter-dormant and active growth parts (Eq. 3) and the fall-dormant and active growth
parts (Eq. 4) by computing the angle between two lines.

y (t) = a +
b

1 + exp(− )t−c

d

k (t) =
|y′′ (t)|

(1 + y′ (t))1.5
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3

4
where awa and cwa correspond to the slope and intercept of the line bisecting the lines of winter dormancy
and active growth parts, and afa and cfa correspond to the slope and intercept of the line bisecting the
lines of fall dormancy and active growth parts. After determining the equations for the bisecting lines, the
intersection between them and the �tted logistic function determines the OG and/or OD (Extended Data
Fig. 1d). Mathematically, OG and OD are calculated by solving the following equations for t:

5

6
In this analysis, the root_scalar function of the Optimize sub-package of the Python package scipy (as an
alternative to the "fzero" function in MATLAB) was used to �nd a null of the above expression by
changing the t values.

Using the above-mentioned method, we determined the OG and OD from three different NDVI products of
the GIMMS (for the period 1982–2015), the AVHRR (for the period 1982–2017), and the MODIS (for the
period 2001–2020). Since the higher quality of GIMMS data is already well documented, we used the
results obtained with GIMMS as a benchmark and compared the results from two other products to it. A
scaling factor at different land use levels was used to adjust the results of the AVHRR and MODIS to
GIMMS. Finally, the average values for the OG and OD from these products were used for further analysis.

Trend analysis of Mann-Kendall test: In this analysis, we examined the overall trend of OG and OD as well
as LGS using the Mann-Kendall test30,31. To do this, we applied the Python implementation of the
nonparametric Mann-Kendall trend analysis called pyMannkendal55 employing the original and Theil-Sen
methods with a signi�cance level of 0.05. Both original and Theil-Sen methods show how the OG, OD,
and/or LGS change with time, but Theil-Sen is more robust against individual outliers56. As suggested by
Cortés et al. 56, prior to trend analysis, we dealt with temporal autocorrelation of data with AR(1)correction
to prevent the occurrence of false positive rates57. As suggested by von Storch 57 and outlined by Cortés
et al. 56, the following equation is used to calculate the temporal autocorrelations at lag -1:

y (t) = awat + cwa

y (t) = afat + cfa

awat + cwa = a +
b

1 + exp(− )t−c

d

afat + cfa = a +
b

1 + exp(− )
t−c

d
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7

where  is autocorrelation, xt is data at time t,  is the mean value of all data, and n is number of the
data. Then, when autocorrelation is computed, the original time series (xt) were replaced with adjusted
one (yt) using following equation:

8
Group Method of Data Handling: we applied the group method of data handling (GMDH) 38 to develop a
gray box network predicting the OG and OD, and the LGS, using several meteorological variables along
with soil moisture as inputs. For this purpose, we used the main meteorological variables (T, P, and VPD)
plus SSM and RSM. We excluded ET and transpiration from this analysis because they are logically
strongly correlated with the phenological states of vegetation and mask the importance of other
variables. We also excluded climate indices (NAO: North Atlantic Oscillation, El Nino, etc.) from this
analysis because the pretest showed that in this context, they play a lesser role than the other included
variables. All included variables were averaged for several time periods, namely winter [January 1 to 30
days before the OG], early spring [30 days before the OG to the OG], spring [OG to the PG], summer [PG to
the two weeks before the OD], and late summer [two weeks before OD to the OD]. Then, their long-term
anomalies were calculated for each period and then subjected to modeling.

The following quadratic regression is used to obtain the preliminary estimates (zij) for the �rst layer of the

GMDH network58:

9
where xi and xj represent the pairwise selection of input variables and c0 to c5 represent the polynomial

predictors. The following equation determines the total number (n) of possible polynomials58:

10
where N is the number of input variables. To develop the GMDH network, we �rst developed all possible
polynomials with pairwise selected variables (xi and xj). Then we had to �lter out the least effective new

variables using a statistical selection criterion38. We used the following criteria to select the best new
variables to build the next layer of the network59:

r̂ =
n∑n−1

1 (xt−
−
x)(xt+1−

−
x)

(n − 1)∑n
1(xt−

−
x)

2

r̂
−
x

yt = xt − r̂xt−1

zij = c0 + c1xi + c2xj + c3x
2
i + c4x

2
j + c5xixj

n =
N × (N − 1)

2
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11
where p is the selection pressure and means a number between 0 and 1 (with p = 0.75 in our analysis),
with higher numbers indicating higher pressure in selecting new variables. The preliminary estimates with
root mean square error (RMSE) smaller than e were selected for the next layer. The polynomials were then
further improved by repeating steps 1 and 2 and using new selected variables (zij) from the previous step.
This continues until the smallest value of the selection criterion from the current iteration shows no
improvement over the smallest value from the previous iteration58.

To develop GMDH models for predicting anomalies in LGS (the same applies for the OG and OD), we
forced the models to have only one layer with two most important variables going into the model. The
concept underlying this strategy is to select only two variables for each pixel for predicting the OG and OD
or the LGS. To train and evaluate the developed networks, the data were randomly split into two subsets,
with 70 percent of the data used to train the networks and the rest used to test as independent data.

The GMDH method provides a built-in algorithm58,59 that retains only the essential input variables.
Therefore, here we repeated 100 times the random division of the data into training and test subsets,
developed the models, and calculated the Pearson correlation (R) between the target and output variables
for each replication. Then, the replications with R value less than 0.7 in the evaluation subset were �ltered
out and the selected sets of variables for predicting the onset of the OG and OD and LGS in the remaining
replications were determined. The used GMDH algorithm is coded in Python.

To visualize the results obtained from GMDH analysis, the �rst and second important control factors of
anomalies of LGS (as well as OG and OD) are plotted against each other, and the colors show their
frequency among the pixels in Europe (see supplementary Figs. 6 and 7). In this way, we were able to
check which variable was the most important factor and with which other variable it usually paired to
explain the anomalies in LGS (and/or OG and OD).

Principal component analysis and biplotting: To investigate the direction of the effects of the control
factors on LGS as well as OG and OD, we performed PCA on the data and illustrated the result as biplots.
Biplots show both the observations and the original variables in principal component space60. In a biplot,
positively correlated variables are closely aligned, while negatively correlated variables are aligned in the
opposite direction. In both cases, the stronger the correlation between variables, the larger the size of the
arrows. Variables aligned at 90 degrees to each other have no correlations 61. 

[1]
 - https://cds.climate.copernicus.eu/cdsapp#!/software/app-c3s-daily-era5-statistics?tab=overview
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Figures

Figure 1

Schematic representation of the effects of climate change on the occurrence of onset of greening (OG)
and dormancy (OD). It shows the effect of increased temperature (T) in spring on early OG and the effect
of increased T in summer on increased vapor pressure de�cit (VPD) and decreased soil moisture (SM)
and consequently on OD. The length of the growing season (LGS) is de�ned as the period between OG
and OD.
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Figure 2

Spatial variation of the long-term (1982-2020) average length of growing season (LGS) in Europe.
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Figure 3

Histogram of the season length in different decades and different pixels with signi�cant decreasing or
increasing trend or without signi�cant trend. The letter μ corresponds to the mean ± standard deviations.
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Figure 4

Histogram of changes in season length (trend parameter, from Mann-Kendall analysis) for different
decades under different land cover types like croplands (Crp), evergreen needleleaf forests (ENF), mixed
forest (MxF), open shrublands (OpS), wooden tundra (WdT), grasslands (Grs), and mixed tundra (MdT).
The letter μ and σ correspond to the mean and standard deviations.
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Figure 5

Variation of average trends of length of growing season (a), onset of greening (b), and onset of dormancy
(c) during moving time window of 15-years from 1982-2020 in Europe.

Supplementary Files

This is a list of supplementary �les associated with this preprint. Click to download.

Supplementaryinformation.docx

�oatimage6.jpeg

https://assets.researchsquare.com/files/rs-2162650/v1/1b5163cec5e5793c2852bf3d.docx
https://assets.researchsquare.com/files/rs-2162650/v1/3a4d9a943b301a22f335eb51.jpeg

