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ABSTRACT

Repeated exposures to psychological stress can lead to or
worsen diseases of slow accumulation such as heart diseases
and cancer. The main challenge in addressing the growing
epidemic of stress is a lack of robust methods to measure a
person’s exposure to stress in the natural environment. Pe-
riodic self-reports collect only subjective aspects, often miss
stress episodes, and impose significant burden on subjects.
Physiological sensors provide objective and continuous mea-
sures of stress response, but exhibit wide between-person dif-
ferences and are easily confounded by daily activities (e.g.,
speaking, physical movements, coffee intake, etc.).

In this paper, we propose, train, and test two models
for continuous prediction of stress from physiological mea-
surements captured by unobtrusive, wearable sensors. The
first model is a physiological classifier that predicts whether
changes in physiology represent stress. Since the effect of
stress may persist in the mind longer than its acute effect
on physiology, we propose a perceived stress model to predict
perception of stress. It uses the output of the physiological
classifier to model the accumulation and gradual decay of
stress in the mind. To account for wide between-person dif-
ferences, both models self-calibrate to each subject.

Both models were trained using data collected from 21
subjects in a lab study, where they were exposed to cog-
nitive, physical, and social stressors representative of that
experienced in the natural environment. Our physiologi-

cal classifier achieves 90% accuracy and our perceived stress

model achieves a median correlation of 0.72 with self-reported
rating. We also evaluate the perceived stress model on data
collected from 17 participants in a two-day field study, and
find that the average rating of stress obtained from our
model has a correlation of 0.71 with that obtained from pe-
riodic self-reports.
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1. INTRODUCTION
In moderation, stress can be a positive force in everyday

life. It can motivate action (e.g., when in danger), improve
performance, and increase excitement [24, 44]. However, ex-
cessive, chronic, and repeated exposures to stress can lead to
significant negative health consequences [38, 29]. Excessive
stress can lead to headaches, trouble sleeping, and fatigue
[30, 11, 3]. In the longer term, stress can be associated
with risk for several chronic diseases including cardiovascu-
lar diseases [37, 42]. Animal and human studies have shown
that stress can also play a role in psychological or behavioral
problems, such as depression, addiction, rage, and anxiety
[22, 2, 13, 14]. The main challenge in addressing the nega-
tive consequences of stress is a lack of robust methods that
can continuously measure a person’s exposure to stress in
the natural environment.

In behavioral science, periodic self-reports are commonly
used to measure perceived stress in natural environments.
Self-reports allow collection of instantaneous measurements
of perceived stress, often multiple times per day to reach a
desired sampling of stress. However, self-reports only cap-
ture subjective aspects of stress, may miss stress episodes,
and impose significant burden on the subject.

Since self-reports only capture perception of stress, they
do not provide a proximal measure of the physical health
consequences of stress, such as cardiovascular wear and tear,
ulcer, and cancer. In addition, the episodic nature of stress
means that discrete self-reports can miss stress episodes. To
ensure capture of stress episodes, a continuous measure of
stress is needed. Finally, the active participation required
to provide self-reports means that self-reports are burden-
some and obtrusive. To provide a self-report, a person must
be willing to have their daily life interrupted to complete
self-reports, sometimes as many as 20 times per day. A high
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subject burden may lead to compliance issues and may affect
the quality of measures collected. Thus, a passive approach
to measuring stress that requires little attention of the sub-
ject would be a significant advancement.

Physiological measurements could provide the basis for a
continuous and passive approach to measuring stress. How-
ever, physiological measures present other challenges. First,
the physiological sensors must be unobtrusive, wearable, and
provide scientifically valid measurements in natural environ-
ments. Second, events that occur naturally in daily life, such
as eating, drinking, caffeine intake, conversation, and physi-
cal activity, are confounders. They affect physiology and can
even mask the physiological response to stress. Third, wide
between-person differences in the physiological response to
stress make it difficult to build a simple stress classifier that
works on a large population. Fourth, building such a physi-
ological classifier requires collecting ground truth in natural
environments. However, the most viable approach to col-
lecting ground truth in natural environments are periodic
self-reports. Their subjectivity and discrete characteristics
limit the quality and quantity of ground truth that can be
collected in natural environments.

To our knowledge, the literature does not yet address all
of these issues, nor does it provide a passive, scientifically
valid, and continuous measurement of stress that works in
natural environments. Several attempts at measuring stress
or emotion physiologically exist in the literature [20, 31, 26,
41, 25, 27, 36, 9, 21], but these measurement tools are not
suitable for use in natural environments. They have been ex-
clusively applied and tested in controlled or semi-controlled
environments, where it is easier to collect ground truth and
control for physiological confounders. Some recent work has
tried to address between-person differences in physiology us-
ing a personalized classifier of emotion for use in controlled
environments [40, 25]. Most personalization schemes require
capturing calibration data in controlled environments from
the individual to whom the algorithm will be personalized.
However, calibration stages in controlled environments are
not scalable.

In this paper, we present two models that each allow con-
tinuous prediction of stress from physiological measurements
captured in natural environments. The first model is a phys-

iological stress classifier that predicts whether a one minute
measurement corresponds to a physiological response to a
stressor. As this model directly captures the notion of phys-
iological stress, it is useful as a proximal measure of health
outcomes that result from ”wear and tear,” such as heart
diseases. The second model is a perceived stress model that
predicts the stress rating a subject would provide during
a particular minute. In other words, the perceived stress
model predicts whether a person feels stressed during a par-
ticular minute. The output of the perceived stress model is
useful as a proximal measure of psychological or behavioral
outcomes associated with stress, such as depression. Finally,
converting self-reported stress to a binary stress state is not
an obvious process due to subjectivity and wide between-
person differences. We develop and train a simple classifier
to detect the stress state from self-reports.

All three models are trained and tested using data from
a 21 person lab study where participants were carefully ex-
posed to three diverse and validated stressors (public speak-
ing, mental arithmetic, and cold pressor challenges) while
physiological data and self-reports were collected. The phys-

iological data was captured using a newly developed, wear-
able, unobtrusive sensor suite called AutoSense [1] that pro-
vides electrocardiography (ECG) using 2 electrodes, respi-
ration using a respiratory inductive plethysmograph (RIP)
and 3-axis acceleration, among several others.

The physiological stress classifier is modeled using a va-
riety of ECG features that have been previously shown to
respond to stress, such as heart rate and heart rate vari-
ability. We complement these with additional features from
respiration such as inhalation duration, exhalation duration,
minute ventilation, and stretch (i.e., difference between peak
and valley of a respiratory cycle). After removing outliers
from the feature set, we normalize the feature values to ac-
count for the baseline of each individual. This makes the
model self-calibrating for each individual. We then compute
various statistics over these features such as mean, median,
and quartile deviation, making for a total of 35 features.

The perceived stress model maps the output of the phys-
iological stress classifier to perceived stress. Physiological
changes induced by stress may decay rapidly so the body
can quickly regain its allostatic balance, but the perception
of stress may take longer to decay after a stress event. In
addition, repeated exposures to stress may cause them to
accumulate in the mind, which may take even longer to fade
away. Therefore, to model perceived stress, we propose an
accumulation and decay model. The accumulation and de-
cay parameters are personalized to each participant to ac-
count for between-person differences. The perceived stress
model can also be regarded as an aggregation model that ag-
gregates the output of the physiological classifier for a given
window of say, 10 minutes, to obtain the effect of the past
10 minutes on the current stress state of the individual.

In the lab, across 21 subjects, our physiological stress
model obtains 90% accuracy, using only 13 (out of 35) fea-
tures. Even when ECG or RIP are used in isolation (say,
if only one of these sensors is functional), we obtain > 85%
accuracy. The fact that we are able to obtain such high
accuracy using RIP alone is a surprise given that the stress
literature does not highlight respiration being as discrimina-
tory of stress as ECG. In addition, the perceived stress model
achieves a median correlation of 0.72 with self-reported rat-
ings of stress provided by participants in the lab. The self-
report classifier obtains an accuracy of 84%.

We also conducted an initial analysis of the generalizabil-
ity of the lab-derived classifiers (physiological and perceived)
to the field. Participants wore the sensor suite for two days
(12-14 hours each day) as they went about their normal daily
life. Throughout each day, approximately 25 self-reports of
stress were collected. We applied the lab-derived perceived
stress model to this field data after appropriate screening
and cleaning. We found that the average rating produced
by the perceived stress model has a correlation of 0.7 with
the average rating of stress provided by each subject in the
field. Figure 1 depicts how the three models are constructed
and applied.

To our knowledge, this work provides the first classifier
of stress that can be readily used in natural environments
without pre-calibration. This innovation was made possible
because of the development of the AutoSense wearable sens-
ing suite which we could use to collect measurements both
from a rigorous lab stress protocol (that has been repeat-
edly validated in behavioral science) and from the natural
environment of the same individuals.
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Figure 1: Three models - physiological stress clas-
sifier, perceived stress classifier and the self-report
(or EMA) classifier - constructed and trained from
data collected in the lab (left side of the figure).
These classifiers are applied to the data collected in
the field (right side of the figure) to obtain three
distinct measures of stress.

Potential New Applications. In addition to enabling
the self-monitoring of stress by individuals and the study
of stress by behavioral scientists, development of a stress
classifier opens the door for several new applications. First,
real-time inferences of stress could be used to trigger timely
interventions relevant to the user (e.g., the phone could
play a “soothing” song) when a user’s stress level is too high.
Second, reactivity to an intervention - how it changes
physiology and stress levels, could also be measured in real-
time. This would enable personalized selection/evaluation of
interventions in the field. Third, common, everyday inter-
ruptions - a significant source of stress - could be managed
by the phone based on the user’s current stress level. For
example, a call from one’s boss might be routed to voice
mail if previous measurements indicate a call from the boss
when at home leads to excessive stress [12]. Last, but not
least, stress measurements could also be used as part of a
system that extracts and uses subjective information about
a person from her sensor data (subjective sensing [28]). For
example, real-time measurements of stress could be linked
to a subjective navigation system which selects a longer, but
less stressful, route for driving to work.
Organization: Section 2 describes some related work. The
lab and field study designs are presented in Section 3. Sec-
tions 4, 5 and 6 present the design, development, and evalu-
ation of the physiological, perceived, and self-reported stress
classifiers, respectively, on the lab data. Section 7 presents
the results of applying our models to the field data. Section
8 concludes the paper and points out several opportunities
for future work in this area.

2. RELATED WORK
William James raised provoking questions on the rela-

tion between physiology and psychology in 1890 [23]. John
Cacioppo and others subsequently revitalized the interest
in predicting psychological state from physiological mea-
surements [10]. Over the past two decades several markers
of stress have been identified that are activated by stress.
These include heart rate, heart rate variability, respiratory
sinus arrythmia (RSA), respiratory patterns, electrodermal
response and blood pressure [26, 25, 21]. While it has been
shown that these features do respond to stress, they may be
activated by other demands on the body such as speaking,
change in posture, physical activity, etc. Hence, using these
measures to predict stress has been exceedingly difficult.

The first challenge is the availability of an unobtrusive,
wearable sensor system that can collect measurements from
multiple modalities and process them on the body. Lever-
aging recent developments in wearable sensing and smart
phones, we have developed the AutoSense [1] sensor suite
that collects ECG, respiration, activity, and other measure-
ments and wirelessly transmits them to a smart phone.

The second challenge is to account for confounding fac-
tors that may overwhelm the changes in physiology caused
by change in stress level. From 1996 onwards, Myrtek and
colleagues attempted to predict changes in emotion from
physiological measurements, but they did not find signifi-
cant correlations between those exhibited by physiology and
those collected in self-reports [31]. The main hypothesis for
the lack of correlation was the presence of confounders. In
even the most recent attempts in inferring emotion in the
natural environment, only those measurements that were
collected close to the markings provided by subjects were
used, due to a lack of ground truth available for the rest of
the data [20].

Most recent work has focused on inferring emotion from
physiological measurements [26, 41, 25, 27, 36, 9]. In most of
these protocols, only measurements collected when specific
emotions are experienced by subjects (e.g., when seeing pic-
tures/videos or listening to music) are used for classification.
The classifiers developed in these studies can’t be applied to
infer emotion in the natural environment since it is not know
how well these models can distinguish measurements when
emotions are experienced from those when emotions are not
strong, which was the challenge encountered in [31]. Fur-
thermore, work on emotion classification cannot be directly
applied to detecting stress, since each emotion classification
targets a specific set of emotions and does not cover all neg-
ative emotions that may constitute stress.

There has been some work on detecting stress, most no-
tably [21] in which four drivers wore physiological sensors
and drove on highway and non-highway city streets. On av-
erage, driving on city streets was more stressful than high-
way driving, which was more stressful than being parked
in a garage. The work showed that selected 5-minute seg-
ments of driving, regarded by human raters to correspond
to low, medium, and high stress, could be classified with
97% accuracy from physiological measurements. However,
since the labeling of 5-minute driving segments is based on
human raters, and these segments may not constitute vali-
dated stressors, these results do not generalize to other real-
life situations. In contrast, the stressors used in our work
have been well-validated in various scientific studies[4, 5, 7,
6]. A limited number of subjects (i.e., 4) also limit the appli-
cability of the model in [21] to a wider population. Finally,
the model presented in [21] is not evaluated in unsupervised
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natural life conditions.
In a preliminary work, we trained a support vector ma-

chine to classify stress using a similar data set as used in this
work [40]. However, several issues with this initial approach
emerged after more extensive analysis. First, self-reported
ratings of stress were used as ground truth to train the classi-
fier. Self-reports are inherently subjective and sometimes in-
accurate, and thus may not represent an ideal ground truth.
Second, a single threshold was applied to self-report rat-
ings from all subjects to classify them into stressed and not-
stressed. Given that all participants in this work were ex-
posed to the same lab stressors (which have repeatedly been
shown to elicit stress in most subjects), lab stressors are used
as ground truth in this work, instead of self-reports.

The third challenge in inferring stress from physiolog-
ical measurements is accounting for wide between-person
differences. It has been observed in several recent works
that a personalized model produces better accuracy than
a population-level model [25, 40]. Although personalized
models produce better accuracy, they are not as practical
since they require collecting training data on each subject
to produce the personal classifier.

In summary, the work presented in this paper is, to the
best of our knowledge, the first one to provide a population-
level classifier that calibrates itself to each subject and pro-
vides 90% accuracy in predicting stress from physiological
response under a variety of real-life stressors. In addition,
this is the first work to provide a perceived stress model
to map physiological response of stress to perceived stress.
Finally, although self-report has been used extensively to
collect subjective experience of stress, this is the first work
that provides a classifier to classify self-reported ratings into
stressed and non-stressed categories.

3. DATA COLLECTION USER STUDY
We conducted a two-phase user study to collect training

and test data for the three models of stress. In the first
phase, physiological and self-report measures were collected
from 21 participants while they were subjected to known,
validated stressors in a lab setting. The controlled exposure
to stressors in the lab provided the training data needed to
develop the stress models. In the second phase, physiological
and self-report measures were again collected from the same
participants, but in their natural environment over two sep-
arate days. This section describes the study in more detail,
including the population from which the participants were
selected, the measures collected from them, and the proce-
dure they followed in the lab and field to collect the data
needed to train and test the models.

3.1 Participants
Participants were recruited via flyers posted in the Duluth

campus of University of Minnesota. Potential participants
completed a preliminary phone screening interview to con-
firm initial eligibility. The interview included questions con-
cerning current or recent history of medical or psychiatric
disorders, medication intake, and health related behavior
(e.g., smoking, drinking). Those who met the initial screen-
ing requirements were invited to an on-site screening. In the
on-site screening, participants were asked if they had any
history of a major illness or psychiatric disorder, weighed
within ±30% of Metropolitan Life Insurance norms, con-
sumed two or less alcoholic drinks a day, and did not rou-

tinely use prescription medications (except contraceptives).
Participants read and signed a consent form approved by
the Institutional Review Board and completed the labora-
tory portion of the study. Participants received monetary
compensation for their participation. Twenty-one college
students (mean age ± SD: 20.6±1.9) were recruited. Half of
them were women and the majority were Caucasian (96%).

3.2 Measures
Sensory Measures. The AutoSense wearable sensor suite
(shown in Figure 2) was used to monitor cardiovascular, res-
piratory, and thermoregulatory systems, systems known to
respond to stress and other psychologically and physically
demanding conditions. Six sensors were used: 1) an elec-
trocardiograph (ECG) attached to the body with two elec-
trodes to measure electrical output of the heart, 2) the ECG
electrodes were used to measure skin conductance, 3) a skin
temperature thermistor attached to the skin mid thorax, 4)
an ambient temperature sensor, 5) a three-axis accelerom-
eter, and 6) a respiratory inductive plethysmograph (RIP)
band to measure relative lung volume at the rib cage. The
sensors were integrated onto two wireless motes1. One mote
was dedicated to the RIP sensor and the second mote hosted
all other sensors. Each mote is 2.5 square-inches and pow-
ered by rechargeable 750 mAh batteries. The lifetime for
streaming raw data on a wireless channel is up to 72 hours for
moderate datarate (60 samples/node/sec). The system also
uses an 802.15.4-to-Bluetooth bridge that sends the data re-
ceived from sensors to a mobile phone via Bluetooth. More
details on AutoSense is available at [1].

Figure 2: The AutoSense wearable sensor system in-
cludes six sensing modalities including ECG, respi-
ratory inductive plethysmograph (RIP), and three-
axis accelerometer.

Self-Report. In both the lab and field studies, partici-
pants completed questions describing their subjective stress
state on a mobile phone. Responses to the questions were
synchronized to the physiological data. Five questions were
used: 1) Cheerful?, 2) Happy?, 3) Angry/Frustrated?, 4)
Nervous/Stressed?, and 5) Sad?. Each item was answered
on a four-point scale: 0 (NO), 1 (no), 2 (yes), and 3 (YES).

3.3 Lab Procedure
To prepare for the laboratory session, participants were

asked to wear or bring a comfortable fitting shirt and not
wear metal objects or accessories on the session day (in the

1A mote is a computing platform which contains a micro-
controller, wireless radio and some sensors
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Figure 3: The Lab Study Procedure

unlikely event that they could interfere with the sensors). As
several factors can affect physiological signals besides stress,
additional requirements were added to the study to control
for these factors. Participants were instructed to avoid caf-
feine, tobacco, and strenuous exercise at least 4 hrs before
the beginning of the session, alcohol 24 hrs prior to the ses-
sion, and pain medication (including over the counter drugs
such as aspirin) for at least 72 hours before the session. If a
participant did not meet the criteria, he or she was resched-
uled.

Figure 3 summarizes the lab protocol. The lab session
lasted approximately two hours. Participants began the
session by reading and signed the Informed Consent Doc-
ument. If consent was given, the participant was fitted with
the sensors. The sensors continuously collected physiologi-
cal signals throughout the remainder of the session. Next,
the participant had a 30 minute baseline rest period. Dur-
ing the rest period, the participant relaxed on a recliner and
watched neutral nature programming. Following the rest
period, the participant was exposed to three stressors —
public speaking, mental arithmetic, and cold pressor (pre-
sented in this order). These stressors were chosen because
they are representative of the social, cognitive, and physical
stressors experienced in natural everyday life and are known
to induce stress in most people [4, 5, 7, 6].
Public Speaking: During the public speaking stressor,
the participant was asked to deliver a 4 minute speech which
was preceded by 4 minutes of silent preparation. To increase
the social stress inherent in the task, the participant was told
that his or her speech would be videotaped and subsequently
evaluated by staff members at a later time.
Mental Arithmetic (sitting and standing): This stres-
sor required the participant to continuously add the digits of
a three-digit number and add the sum to the original num-
ber. As physiology is affected by posture, the arithmetic task
was presented in two segments, seated and standing. This
allowed training the stress model to be resistant to changes
in posture. The order of the seated and standing tasks were
counterbalanced to control for a potential learning effect.
Cold Pressor: After the recovery from the mental arith-
metic, the participant was asked to insert his or her dom-
inant hand in ice-cold water up to their wrist. The ses-
sion lasted 90 seconds, unless the participant decided to pull
his/her hand out earlier.

After each stressor, the participant was given a five minute
break before beginning the next stressor. The rest periods
allowed the participant’s physiological response to the stres-
sor to partially subside before exposure to the next one. Af-

ter the last stressor, the participant underwent a 30 minute
recovery phase similar to the baseline rest period experi-
enced earlier in the session. The participant was then sched-
uled for subsequent field sessions.
Self-Report Schedule: Fourteen self-reports were admin-
istered in total throughout the lab session. The self-reports
were scheduled to capture both subjective stress and non-
stress states. The first self-report was completed at the be-
ginning of the lab session, immediately after putting on the
sensors. Next, self-reports were administered at 10 and 20
minutes into the 30 minute baseline rest period. Self-reports
were also administered before and after each stressor. Fi-
nally, an additional three self-reports were administered ev-
ery ten minutes during the 30 minute recovery period.

3.4 Field Procedure
The same participants returned to the lab on two separate

days for field study. They were outfitted with the sensors
and given a mobile phone to carry with them for the day as
they went about their normal life. The mobile phone stored
physiological samples captured from the wireless sensors. In
addition, the phone periodically prompted the participant
to complete self-report questionnaires (approximately 25 per
day). We use the field data to test our model of psychological
stress derived from the lab data.

4. MODELING PHYSIOLOGICAL STRESS

FROM SENSOR MEASUREMENTS
We train and test a physiological classifier using features

derived from one-minute measurements from ECG and RIP,
both of which were sampled at 64 HZ. We achieve 90% clas-
sification accuracy on lab data using both RIP and ECG
features together. Remarkably, we attain only marginally
lower accuracies using just one or the other modality. Pre-
vious work has highlighted the discriminatory power of ECG
for stress, but to our knowledge, this work is the first to show
that RIP features alone can be used to classify stress accu-
rately. Thus, either modality could be used if the other is
not available. The respiration band is less burdensome than
ECG electrodes and thus provides the best combination of
wearability and accuracy needed to deploy stress classifi-
cation in the field. In addition, respiration measurements
can be used to infer other human states such as conversa-
tion [35, 34]. We also found that classification accuracies
improve when a simple within-person normalization is ap-
plied to the features. The remainder of this section describes
how features are selected and computed, and the classifica-
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tion results in more detail.

4.1 Feature Selection and Computation
For selecting features, we considered features usually re-

ported in the literature as distinguishing for stress. In addi-
tion, for respiration, which is not as extensively investigated,
we worked with physiologists in identifying new features. We
selected those that were found to be distinguishing either vi-
sually or when used in a classifier. We now present details of
the features that were selected. We note that although we
collected skin conductance and temperature measurements
in addition to ECG and RIP, we do not use these measure-
ments in our analysis. Analyzing the effects of adding these
measures is a subject of future work.

4.1.1 ECG Features

For ECG, all features are derived from windows of RR
intervals — the time duration between successive R peaks
in an ECG signal. RR intervals correspond to the duration
between heart beats (see Figure 4), and thus can be used to
calculate several statistical features describing the behaviors
of the heart. We derive four additional features from RR
intervals for each minute of data — the ratio between low
and high-frequency components of heart beat and heart beat
frequency in 3 bands (low, medium, and high).

Figure 4: An RR interval is the duration between
two successive R peaks in the ECG signal.

Preprocessing for Training: Several preprocessing steps
are taken to prepare the data for training. As ECG responds
very quickly to stressors (Figure 5), careful synchronization
of physiological measurements to the timing of stressors is
done before labeling windows. The key issue here is to en-
sure that data lost in wireless transmission do not affect
synchronization. RR intervals are then computed using the
Tompkin’s algorithm [32]. Next, RR intervals that are found
to be more than 2 standard deviations (SD) away from the
mean of each minute, are flagged as outliers and ignored.
The RR intervals of each subject have been shown to be
normally distributed [8] and hence we adopt this method
of filtering outliers. For increased robustness, we use quar-
tile deviation (QD) in place of standard deviation (SD).
For normal distribution, 2SD = 3.32QD, and hence we use
3.32QD for identifying outliers in each minute. In addi-
tion, we ignore one minute of data immediately following
each self-report. The latter is done to remove the effect of
interruption induced by self-report prompts, which acutely
affects physiology as seen in Figure 5. After outliers are
removed, the base features are normalized to account for
between-person differences before computing any statistical
features. After the features are computed, each one-minute
window is labeled with the ground truth. Windows within

the period of the lab stressors are labeled as stressed, and
all other windows are labeled as not stressed.

Figure 5: RR intervals (red dots) obtained from a
participant during the lab session. Outliers (blue
crosses) are removed from the dataset before com-
puting statistical features, as is each minute im-
mediately following a self-report (SR moments are
marked in green). Physiology changes immedi-
ately after self-reports due to interruption from self-
report prompt.

4.1.2 Respiration Features

Computation of the respiration features involves the iden-
tification of each respiration cycle, which is composed of an
inhalation and an exhalation period. Thus a respiration cy-
cle starts from a valley that corresponds to the start of an
inhalation phase and ends at another valley that marks the
start of the next inhalation (see Figure 6).

We investigated 7 different features computed from the
respiration signal (see Figure 6 for illustration). Inhalation
Duration corresponds to the time elapsed from a valley
of a signal to the next peak, which denotes the maximum
expansion of the chest in the respiration cycle. Exhala-
tion Duration corresponds to the time duration between
the peak and the next valley. Respiration Duration is
the sum of the inhalation and exhalation duration, i.e. the
duration of a breath. IE Ratio is the ratio of inhalation
duration to exhalation duration. Stretch is the difference
between the amplitude of the peak and the minimum ampli-
tude the signal attains within a respiration cycle (see Figure
6). Minute Ventilation/Minute Volume is the volume
of air inhaled (inhaled minute volume) or exhaled (exhaled
minute volume) from a person’s lungs in one minute. We
use the inhalation minute volume as a feature. We estimate
it by computing the area under the curve of the inspiration
phase of a respiratory cycle. Breath Rate is simply the
number of breath cycles per minute.

Respiratory sinus arrhythmia (RSA) is another fea-
ture sometimes used in emotion classification (e.g. [41]). It
is a multimodal feature derived from both ECG and res-
piration that describes the variability in RR intervals due
to respiration; inspiration shortens RR intervals and expira-
tion grows RR intervals. It is computed by subtracting the
shortest RR interval from the longest RR interval within
each respiratory cycle, using the peak-valley method [17].
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Preprocessing for Training: As a preprocessing step, the
incoming respiration signal is segmented into segments of
uniform duration. We choose the duration of 1 minute for
this purpose and discard segments that are missing more
than 15% of their samples due to packet loss. We adapt
the peak-valley detection algorithms presented in [43, 45] to
identify the peak and valley in each respiratory cycle and
mark the start and end of a respiratory cycle. In order to
remove spurious peaks, we set a threshold for peaks. From
experimentation, we find that setting this threshold to the

75th percentile of the signal amplitudes for each window
works well. We also require the duration between two suc-
cessive peaks be at least 1.5 seconds. Through visual inspec-
tion, the performance of the peak-valley detection algorithm
is found to be satisfactory.

For a one-minute window, we obtain one measure for breath
rate and minute ventilation. For all the other features the
number of measures obtained correspond to the number of
breath cycles found in each window. To account for be-
tween subject differences, we normalize each feature by ac-
counting for the mean value of the corresponding feature for
each subject.

Figure 6: Three base features are computed from a
respiration signal — inspiration duration, expiration
duration, and stretch. They are shown for respira-
tion measurements collected during speaking.

4.1.3 Statistics over Features

To reduce the effect of noise and outliers (e.g. spikes in
the respiration signal due to movement) we compute four
statistics on those features for which we have multiple val-
ues in each minute (e.g., RR intervals, stretch, RSA, etc.).

We compute the mean, median, quartile deviation, and 80th

percentile of the normalized features. The 80th percentile
attempts to capture close to the highest value of the corre-
sponding feature in each minute, while discounting extreme
values. Overall, we compute a total of 35 features that are
used to train the classifiers.

4.2 Classifiers and Evaluation Metric
Selected features and ground truth are used in WEKA [19]

to train the classifiers. We trained three types of classifiers,
a J48 decision tree, a J48 decision tree with adaptive boost-
ing (AdaBoost), and a support vector machine (SVM). We
chose the J48 decision tree because it is simple to implement
and requires minimal computational resources compared to
other classifiers [33], making it appealing for use on a smart
phone. Adaptive boosting is a generalized technique for im-
proving the performance of classifiers that does not require
significant additional computational resources for classifica-

tion [16]. SVMs are known to perform well for high dimen-
sional feature space because they find the maximum separa-
tion between classes in a feature space [39]. We use 10-fold
cross validation to obtain the performance measures of all
three classifier types2.

Classifier performance is measured using accuracy, kappa,
confusion matrices, as well as receiver operating character-
istic (ROC). Accuracy is defined as the number of correctly
classified windows divided by the total number of windows.
Kappa measures the correlation between predictions and
ground truth, taking into account the probability that agree-
ment comes from chance. The confusion matrix contains the
number of true positives and true negatives on the diagonal
and the false positives and false negatives off the diagonal.
ROC is a graphical plot of the sensitivity, or true positive
rate vs. false positive rate for a binary classifier system as
its discrimination threshold is varied.

4.3 Classification Results on Lab Data
We now present the results of applying and evaluating our

physiological classifier on the lab data. The number of valid
datapoints available from the lab study was 929 minutes (271
classified as stress, and 658 as baseline). To avoid problems
with unequal sample sizes, the sample sizes were equalized
before training the classifiers, by selecting a random sub-
sample of 600 minutes (271 stress and 329 baseline). Tables
1 and 2 show the performance of several classifiers trained
on all 35 features. In the following, we describe the classi-
fication accuracy when ECG and RIP are used in isolation,
impact of normalization on accuracy, classification accuracy
for individual stress tasks, and accuracy when using only a
select subset of features.
Classification Accuracy when Using ECG or RIP in
Isolation: Figures 7 and 8 show the performance of clas-
sifiers when trained only on ECG or RIP features. Sur-
prisingly, both features were highly discriminatory of stress.
Training with ECG features alone produced a SVM classifier
with 86% accuracy. Training only with respiration features
led to 87% accuracy.
Effect of Normalization: Normalization generally im-
proves the accuracy of classification. Tables 1 and 2 show the
performance of several classifiers trained on all 35 features,
with and without normalization. We obtain 90% accuracy
using a J48 decision tree with Adaboost trained on normal-
ized features (Table 1). Without normalization, the decision
tree’s accuracy decreases to 88%. Normalization decreases
the number of false negatives (instances of stressed misclas-
sified as not stressed) and false positives (instances of not
stressed misclassified as stressed). Normalization also im-
proves the performance of other classifiers (see Table 2). For
normalization, we only account for the mean. Accounting
for the standard deviation did not lead to better accuracy.
Classification Accuracy for Individual Stress Tasks:
We found that it is possible to achieve accuracies of 95%
or greater if the goal is to classify stress for specific stres-
sors rather than a wide variety of stressors. Figures 7 and 8
show how the classifier performs if trained and tested on data
from individual stressors. Using the speaking stressor data,
accuracy as high as 99% can be obtained using only respira-
tion features. This is likely because of the unique signature
of speaking in respiration patterns [34] (i.e., speaking can

2Dividing the data into training (66% of the data) and test-
ing data, we obtain 92% accuracy using 13 selected features.
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Accuracy Kappa Confusion Matrix
Not 88.00% 0.7574 NS 295 34

Normalized S 38 233

Normalized 90.17% 0.8010 NS 303 26

S 33 238

Table 1: Performance of a J48 Decision Tree with
Adaboost trained on all features with and without
normalization. In the confusion matrices, NS means
not stressed and S means stressed.

J48 Decision J48 with SVM
Tree Adaboost

Not Normalized 82.33% 88.00% 88.17%
Normalized 87.67% 90.17% 89.17%

Table 2: Accuracies of three different classifiers
trained with normalized and unnormalized features.

be detected with high accuracy and public speaking causes
stress). In [34], we find that several of the features used to
discriminate stress here are also discriminatory of speaking.
In addition, classification rates of >95% can be obtained for
mental arithmetic while standing using both RIP and ECG
features.
Classification Accuracy when Using Only Selected
Features: Figures 7 and 8 shows the accuracy of a classi-
fier trained using the 13 most distinguishing features chosen
by a correlation-based feature selection algorithm [18]. The
selected RIP features were minute ventilation, mean and me-
dian of inspiration duration, quartile deviation of respiration

duration, median of IE ratio, and median and 80th percentile
of stretch. For ECG, the selected features were Heart Rate

Power in Bands 1 and 3, and mean, median and 80th per-

centile of RR intervals. In addition, the 80th percentile of
RSA was also selected. Using a smaller set of features does
not reduce performance significantly. In fact, sometimes ac-
curacy improves (see Figures 7 and 8). Therefore we use the
smaller feature set for implementation on the mobile phone
for real-time detection of stress level in the field.

Figure 7: Best possible accuracies of classifiers
trained on features computed over all and individual
stressors. Accuracies are shown for using ECG fea-
tures alone, RIP features alone, both ECG and RIP
together, and using a smaller set of features selected
by a feature selection algorithm.

Figure 8: ROC curves for the best classifiers when
using all 35 features, 13 selected features, only the
9 ECG features, and only the 22 RIP features. The
curves show that performance of classifiers using all
features and a subset of features are comparable
with Area Under ROC Curve (AUC) being 0.964
and 0.967 respectively (with 1 being the best pos-
sible value). Also, RIP features have similar dis-
criminatory power as ECG features (AUC for ROC
curves being 0.924 and 0.926 respectively).

5. PERCEIVED STRESS MODEL
The perceived stress model maps physiological stress to

perceived stress. The perceived stress model considers the
value of perceived stress as hidden states in a Hidden Markov
Model (HMM) that transitions among “stressed” and “non-
stressed” states at each minute, treating the output of the
physiological classifier as observables. We then estimate the
probability of the current minute being stressed as a linear
function of the observation from the physiological classifier
for the current minute and the probability of the previous
minute being stressed. Each time the physiological clas-
sifier marks a minute of data as “stressed,” the perceived
stress score of the participant is increased by an accumula-
tion factor. With each passing minute, this score decays at
an individual specific exponential rate. To account for wide
between-person differences, the model allows the accumula-
tion and decay rates to be personalized to each subject using
their self-report ratings. We describe the model below, and
then evaluate its performance on the lab data.

5.1 Model Definition
Let sk ∈ {0, 1} denote the perceived stress at discrete time

k (in our case, time is measured in minutes), with sk = 1
denoting the subject is perceiving stress, and sk = 0, the

subject is not perceiving stress. Let x(k) ∈ {0, 1} be the
physiological stress, i.e., the output of the classification al-
gorithm. Our goal is to estimate the rating of perceived
stress, which we model as πk(i) = Pr [sk = i|x0, . . . , xk], for
i ∈ {0, 1} (with appropriate scaling). To do so, we use a
Hidden Markov Model (HMM), with hidden states sk, ob-
servations xk, transition and emission probabilities given by

a(i, j) = Pr [sk = i|sk−1 = j] ,

b(i, j) = Pr [xk = i|sk = j] ,
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and prior probability a0(i) = Pr [s0 = i], as the starting
point.

The posterior distribution of sk satisfies

πk(i) =

1
∑

j=0

a(i, j)b(xk, i)πk−1(j)

1
∑

i,j=0

a(i, j)b(xk, i)πk−1(j)

. (1)

By defining πk = [πk(0), πk(1)]
T , so both values of i are ac-

counted for in one common expression, we can rewrite (1) as
πk = B(xk)A

Tπk−1, where A is the transition matrix, and
B(xk) is a diagonal matrix containing the emission proba-
bilities. By observing that πk(0) = 1 − πk(1) for all k, we
can show that

πk(1) =
α1

kπk−1(1) + β1

k

α2

kπk−1(1) + β2

k

, (2)

where α1

k, α
2

k, β
1

k, and β2

k are functions of the transition and
emission probabilities, and of the output of the physiological
stress classifier, xk. In order to avoid overfitting and simplify
the model, we approximate (2) by a linear recursion. To do
so, we observe that, if xk is fixed (say, xk = j, for all k and
j ∈ {0, 1}), (2) has a unique stable equilibrium point (as a
consequence of the Perron-Frobenius theorem). Let π̄j be
these two points for j ∈ {0, 1}. We can linearize (2) around
the two equilibrium points to obtain

π̂k = α
j(π̂k−1 − π̄

j) + π̄
j
,

where π̂k approximates πk(1) and j = xk. We know that
both of these recursions are stable because (2) is stable. To
further simplify the model, we reduce the number of param-
eters to be estimated to two. We identify π̄0 with 0 (by
translating the coordinate system) to represent that if the
physiological classifier produces a long string of 0’s, then
the stress rating is assumed to be 0. In addition, we set
α0 = α1 = α (assuming a common slope for both linear ap-
proximations) and (1− α)π̄1 = β to obtain the final model

π̂k = απ̂k−1 + βxk.

The value of π̂k is initialized to the average rating of stress
reported in the first self-report considered in the analysis
(we eliminated the self-reports before the baseline period).
This average is over the ratings provided by the subject for
all stress related questions (with appropriate reverse coding
of positive questions).

The α parameter models the decay of perceived stress in a
person’s mind while the β parameter models the accumula-
tion of perceived stress, due to repeated exposures to stres-
sors. Trough this, we attempt to describe the fact that, if if
the stress classifier outputs“stress” right before a self-report,
we expect that with high likelihood, the answers to that self-
report to indicate stress, and similarly, if a strong stressor
caused the classifier to indicate stress for several consecu-
tive minutes, we expect a self-report to indicate stress, even
several minutes after the stressor has ended.

For the lab data, we take the initial time, k1, to be the
time of the second self-report, and the initial condition π̂k1

as the value of the perceived stress obtained from the self-
report at that time. We discard the first self-report because
it was taken before the baseline period, and factors such as
physical activity before the start of the lab session might
confound the physiological classifier.

Figure 9: The probability density across 21 partici-
pants for ρ, the linear correlation coefficient between
the output of the perceived stress model and self-
reported rating of stress in the lab. The median
correlation is 0.72.

We use the lab data to estimate the model parameters
(α and β), using the least squares method. Let k̄i, i =
1, . . . ,m, with k̄1 = k1, be the times at which self-reports
were taken, and s∗i the value of perceived stress, estimated
from the responses. We define the cost function

J(α, β) =
m
∑

i=1

(

π̂k̄i
− s

∗

i

)2

.

The optimum values of α and β for each subject can be
found using any suitable optimization method.

5.2 Evaluation of the model on the lab data
Unlike the physiological classifier which was trained and

tested on labeled data, the perceived stress model is not a
classifier. Rather, it aims to predict the self-reported rat-
ing of stress. Hence, to evaluate the model on the lab data,
we compute the values of π̂k at each time k̄i, for each sub-
ject, and then compare these values to those obtained from
the self reports by computing their correlation coefficient.
Figure 9 shows a histogram of the correlation coefficients
obtained from comparing the perceived stress model, with
the optimal values of α and β, and self-reports, for 21 partic-
ipants. We find that the median correlation is 0.72, denoting
reasonable agreement, given a large number of participants.

6. STRESS FROM SELF-REPORT
Self-reports provide subjective stress ratings on a scale of

0 (not stressed) to 3 (stressed) rather than a clear binary
classification of stress. Converting self-reported stress to
a binary stress state is not an obvious process. Participant
self-reports are subjective and thus exhibit between-person
differences. For example, in the lab, the mean self-reported
stress rating after exposure to stressors was .97 (actually
corresponding to not stressed) with a standard deviation of
.48 (min: 0.17, max: 2.25). Even when accounting for each
individual’s baseline stress levels, the mean percent differ-
ence of self-reported stress from the baseline was 100% with
a standard deviation of 60% (min: 0, max: 218%). These
wide between-person differences must be accounted for be-
fore we can use field self-reports as ground truth.

We take a machine learning approach to this problem by
training a self-reported stress classifier that takes as input
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an individual’s subjective self-reports and classifies each into
one of two states, not stressed or stressed. To train the
classifier, we compute features over the lab self-reports. We
use the lab data to train this classifier because we know
ground truth - which self-reports were given after stressors
(when the user was stressed) and which were not (when the
user was not stressed).

Two types of features were computed, momentary fea-
tures and aggregate features. Momentary features are fea-
tures associated with a single self-report from a single in-
dividual (e.g., mean, standard deviation, etc. of responses
to questions associated with stress). Aggregate features are
features computed across all self-reports provided by an in-
dividual (e.g., mean, standard deviation, etc. of momentary
stress across self-reports from the individual). Thus, aggre-
gate features provide a sense of how a particular individual
answers self-reports. In addition to commonly used statis-
tical features (mean, standard deviation, minimum, maxi-
mum, interquartile range, etc.), z-scores and histogram bin
counts over momentary and aggregate features were com-
puted. The histogram features provide characteristics of
the distribution of the features. The z-scores provide the
distance of a feature from its mean in terms of standard devi-
ations (computed by subtracting the mean from the feature
and dividing it by the standard deviation).

Feeding these features to WEKA, we found a J48 decision
tree over these features correctly classified 84% (258/307) of
self-reports from the lab using just one feature, the z-score
of momentary self-reported stress. This feature is sufficient
because it incorporates both global and local characteristics
of self-reports in a single measure. If the z-score for the
self-report is greater than .6, the self-report is classified as
stressed. Intuitively, this means that if self-reported stress
is greater than 60% of the deviation from the participant’s
global mean, the participant was stressed when completing
the self-report.

7. APPLYING STRESS MODELS TO THE

FIELD DATA
In this section, we apply the three stress models (physio-

logical, perceived, and self-report) to data collected on two
separate days in the natural environment. We first screen
and clean the data to obtain valid minutes of measurements.
Next, we evaluate the correlation between the stress rat-
ing obtained from the perceived stress model and that from
self-reports. Finally, we use the three stress models to de-
termine the percent of time that participants were found to
be stressed in the field from each model.

7.1 Screening & Cleaning of Field Data
The data collected in the field are subject to several sources

of noise, confounds, and losses. In addition to removal of
outliers, several minutes of data had to be removed as de-
scribed here. First, all minutes of data corresponding to the
time when a self-report was completed are removed, as self-
report prompts affect physiological signals even in the lab
(see Section 4.1.1 and Figure 5). Second, all minutes of data
that occur concurrently with significant motion (as detected
by the accelerometer) are removed, as motion and physi-
cal activity overwhelm the physiological response to stress.
Third, we remove two minutes following physical activity,
since we find that physiology returns to baseline within two

minutes after activity3. Figure 10 shows that a significant
portion of the field data must be removed due to physical
activity. Fourth, all minutes of ECG data that have less
than 30 valid R-R intervals or less than 66% of RIP samples
are removed since features can not be computed reliably for
these minutes.

From a total of 422 hours of data collected in the field,
37% had to be removed due to confounding from physical
activity. An additional 29.45% of data were removed due
to poor quality or losses in the wireless transmission. The
stress models are applied to the remaining 33.55% of data
(i.e., 142 hours) of valid data. Finally, out of 21 subjects, 4
subjects are eliminated from the analysis because of missing
sensor data (ECG or RIP), excessive noise, and missing self-
reports, leaving 17 subjects for the field evaluation.

Figure 10: RR intervals (red asterisks) measured
in the field from a specific participant. A signif-
icant portion of the day cannot be classified due
to physical activity (vertical gray lines), outliers
(blue crosses), or data loss from system malfunction
(white areas).

7.2 Evaluation of Perceived Stress Model on
Field Data

For evaluating the perceived stress model on lab data, we
evaluated how the perceived stress model matched each in-
stance of self-report for individual subjects (see Figure 9).
For evaluating the perceived stress model on the field data
we can not use the same approach. This is due to excessive
loss in the data collected in the field; in fact, the average
length of consecutive valid data is < 4 minutes. Hence,
the model does not get a sufficient number of valid minutes
to match each individual self-report rating collected in the
field. For the same reason, we can not personalize the per-
ceived stress model using the self-report rating collected in
the field. Therefore, we use α and β determined for each
subject from their lab data. We expect the model to get
better when it is calibrated from self-reports collected in the
field since there may exist lab-to-field variability in provid-
ing self-report ratings.

3If subjects undergo intense physical activity, then it may
take longer than 2 minutes for the physiology to return to
baseline [15].
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Figure 11: Agreement between self-report rating of
stress and that predicted by the perceived stress
model. The horizontal axis represents the value of
the perceived stress, averaged over both days, and
the vertical axis is the averaged self-report rating.
Each of the 17 subjects have one data point in this
graph.

For evaluation, we compare the average rating of stress
provided by each subject over two days in the field and
compare it to the average rating produced by the perceived
stress model on the same subject. Figure 11 shows that we
obtain a correlation of 0.71 between self-reported stress and
the output of the perceived stress model.

7.3 Three Measures of Stress in the Field
The three models of stress presented in this paper — phys-

iological (Section 4), perceived (Section 5), and self-report
(Section 6) — provide three distinct measures of stress. We
present a summary measure from each model, namely, per-
centage of time that the subjects were found to be stressed in
the field across both days. We apply the self-report classifier
on the z-score over each momentary measure of self-report
to classify it into a stress state. To classify each minute of
perceived stress rating, we first apply the correlation coef-
ficient (from Figure 11) to scale it, then compute z-score
for each minute, and then apply the self-report classifier to
obtain a stress state for each minute.

The physiological classifier shows that the subjects were
physiologically stressed 35.14% of the time, which excludes
physiological activation due to motion or activity. The per-
ceived stress model, which is a more robust and aggregate
measure of stress, shows that subjects were stressed 26.61%
of the day. Finally, self-report shows that subjects reported
themselves to be stressed 28.08% of the time.

8. CONCLUSIONS AND FUTURE WORK
In this work, we proposed, developed, and evaluated the

first continuous classifier of perceived stress that can be read-
ily used in natural environments without pre-calibration.
This innovation was made possible because of the develop-
ment of a novel wearable sensing suite which we used to col-
lect measurements from a rigorous lab stress protocol that
has been repeatedly validated in behavioral science.

Through several innovations, our approach both improves
the accuracy and simplifies the adoption of stress inferenc-

ing in natural environments. First, we correct for between-
person differences using a self-calibrating normalization and
a population-level model, removing the need for pre-calibration
in a controlled setting. Second, we found that respiration
features were highly discriminatory of physiological stress,
allowing the use of a single, unobtrusive respiration band to
capture stress. Third, we developed a new model that maps
physiological stress to perceived stress. It is the first model
to incorporate the prolonged psychological effect of stressors
on the individual. The output of this model was correlated
with stressors in the lab and had good concordance with
self-report ratings collected in the field.

Although this work represents an important step forward,
there is still significant work to be done to build a robust,
highly accurate (99+%) classifier of perceived stress. First,
improvements in wearable sensors are needed to limit the
amount of data lost or corrupted. Second, new methods
must be developed to control for the effect of physical activ-
ity on physiological signals. Otherwise, significant portions
of daily life (37% in our field study) can not be classified.
Third, this work only used two sensing modalities, ECG and
respiration. The introduction of features from other modal-
ities, e.g., skin response, pulse transit time, oxygen level in
the blood, body temperature, etc. can further improve the
accuracy of our models. Fourth, the models proposed in
this work provide a binary classification of stress. However,
people experience stress at multiple strengths. A more real-
istic model would incorporate multiple levels or a continuous
measure of stress. Fifth, the perceived stress model proposed
in this paper is only a first step in this direction. More pow-
erful models can be investigated that can more accurately
capture the accumulation, decay, and superposition of mul-
tiple overlapping stressors. Finally, the time or amount of
data needed to self-calibrate both the physiological and per-
ceived stress models in the field can be investigated.
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