
Continuous Iterated Density Estimation Evolutionary Algorithms
Within The IDEA Framework

(Full (Technical Report) Version)

Peter A.N. Bosman Dirk Thierens
peterb@cs.uu.nl Dirk.Thierens@cs.uu.nl

Department of Computer Science, Utrecht University

P.O. Box 80.089, 3508 TB Utrecht, The Netherlands

Abstract

In this paper, we formalize the notion of
performing optimization by iterated density
estimation evolutionary algorithms as the
IDEA framework. These algorithms build
probabilistic models and estimate probabil-
ity densities based upon a selection of avail-
able points. We show how these probabilis-
tic models can be built and used for differ-
ent probability density functions within the
IDEA framework. We put the emphasis on
techniques for vectors of continuous random
variables and thereby introduce new contin-
uous evolutionary optimization algorithms.

1 Introduction

Genetic algorithms (GAs) [11, 14] and many variants
thereof combine the material within a subset of the
solutions. Often this is done by exchanging values
for problem variables, followed by individual adapta-
tion of these values. Another approach is to identify
a subset of the solutions as being representative of
some probability distribution. Estimating this prob-
ability distribution and sampling more solutions from
it, is a global statistical type of inductive iterated
search. Algorithms of this sort have been proposed us-
ing different types of probabilistic models for discrete
spaces [1, 2, 3, 12, 13, 17, 19, 21], as well as in a limited
way for continuous spaces [4, 10, 22, 23]. An overview
of this field has been given by Pelikan, Goldberg and
Lobo [20].

Our goal in this paper is to formalize the notion of
building and using probabilistic models in evolution-
ary optimization algorithms and to apply the search
for good probability density models to continuous
spaces. Mühlenbein, Mahnig and Rodriguez [17] first

presented a general framework for this type of algo-
rithm, named EDA (Estimation of Distribution Algo-
rithm). In this paper, we make certain steps of the
EDA more explicit within a new framework, named
IDEA (Iterated Density Estimation Evolutionary Al-
gorithm). We do not introduce any new way of link-
age information processing or other means of exploit-
ing problem structure, but show how we can adjust
the existing techniques to be used in the continuous
case. By specifying earlier proposed search algorithms
within the new framework along with certain deriva-
tions of a few probability density functions, we define
new evolutionary optimization algorithms. Using a set
of test functions, we validate their performance. So
far, we are able to give better results on a set of hard
continuous function optimization problems than other
approaches.

The remainder of this paper is organized as follows.
In section 2, we provide a background in probability
theory and introduce some notation. In section 3, we
formalize the IDEA framework. Subsequently, in sec-
tions 4 and 5, algorithms to build probabilistic models
and derivations of probability density functions to use
within the framework are given. Our experiments are
presented in section 6. Topics for further research are
discussed in section 7 and our final conclusions are
drawn in section 8.

2 Probability theory background and
notation

In probability theory, a classic distinction is made be-
tween the discrete and the continuous case. We shall
restrict this introduction to the continuous case. We
write discrete random variables as Xi and continuous
random variables as Yi. When we do not distinguish
between the continuous and the discrete case, we use
random variables Zi. We write vectors of random vari-
ables as Z or Zj .

Let L = {0, 1, . . . , l − 1}, dA = d{yi|i ∈ A} and
f(A) = f0,1,...,|A|−1(y0, y1, . . . , y|A|−1). The multivari-
ate joint probability density function (pdf) f(L) for l
continuous random variables Y = (Y0, Y1, . . . , Yl−1)
can be written as:

∫ b0

a0

∫ b1

a1

. . .

∫ bl−1

al−1

f(L)dL = P (Y ∈ A) (1)

such that
∫

f(L)dL = 1, f(·) ≥ 0, and

A =

(
l−1∏
i=0

[ai, bi]

)
⊆ R

l

We write P (Yi) for fi, making P (Yi) a (density) func-
tion. In the discrete case, we write P (Xi)(k) =
P (Xi = k). Estimating the joint distribution over Z =
(Z0, Z1, . . . , Zl−1) of given sample points, can be done
by specifying a pdf as in equation 1. However, we may
also regard subsets of variables in a non–joint fashion
such as P ′(Z) = P (Z1Z9)P ({Zj |j ∈ L − {1, 9}}). A
complete probability density P (Z) is therefore defined
by its probability density structure (pds) as well as a
pdf for each element of this pds. In graphical mod-
els literature, a pds is also called a factorization. The
definition of conditional probability is:

P ({Yj |j ∈ A}|{Yj |j ∈ B}) =
P ({Yj |j ∈ A ∪ B})

P ({Yj |j ∈ B}) (2)

We define π(·) to be a function that returns a vector
π(i) = (π(i)0, π(i)1, . . . , π(i)|π(i)|−1) of parent variable
indices and let ω = (ω0, ω1, . . . , ωl−1)be a vector of
ordering variable indices. We write P̂ (·) as an approx-
imation to the true density P (·). Using equation 2,
the pds can be uniquely specified by a pair (π,ω):

P̂π,ω(Z) =
l−1∏
i=0

P̂ (Zωi
|{Zj |j ∈ π(ωi)}) (3)

such that ∀i∈L〈ωi ∈ L ∧ ∀k∈L−{i}〈ωi �= ωk〉〉
∀i∈L〈∀k∈π(ωi)〈k ∈ {ωi+1, ωi+2, . . . , ωl−1}〉〉

The above constraints enforce that there are no cyclic
dependencies. Scanning the variables in the order
Yωl−1 , Yωl−2 , . . . , Yω0 ensures that the parent variables
that a variable is conditioned on, will already have
been regarded. The pds of P (Y0, Y2, Y3)P (Y1|Y0) =
P (Y1|Y0)P (Y0|Y2, Y3)P (Y2|Y3)P (Y3) can for example
be specified as ω0 = 1, ω1 = 0, ω2 = 2, ω3 = 3,
π(0) = (2, 3), π(1) = (0), π(2) = (3), π(3) = ∅.

A well known distance metric from P̂π,ω(Y) to
P̂π′,ω′(Y) is the Kullback–Leibler (KL) divergence,
which is also called relative entropy [15]:

D(P̂π,ω(Y)||P̂π′,ω′(Y)) = (4)∫
P̂π,ω(Y)ln

(
P̂π,ω(Y)
P̂π′,ω′(Y)

)
dL

The full joint probability distribution is modelled by
the pds (π+,ω+) that satisfies ∀i∈L〈ω+

i = i∧ π+(i) =
(i + 1, i + 2, . . . , l − 1)〉, implying P̂ (Y) = P̂π+,ω+(Y).
Let S ⊆ L. Using

∫
P̂ (Y)ln(P̂ ({Yj |j ∈ S}))dL =∫

(
∫

P̂ (Y)dL−S)ln(P̂ ({Yj |j ∈ S}))dS =
∫

(P̂ ({Yj |j ∈
S})ln(P̂ ({Yj |j ∈ S}))dS , the KL divergence from any
pds (π,ω) to (π+,ω+), can be written as follows:

D(P̂π+,ω+(Y)||P̂π,ω(Y)) = (5)∫
P̂ (Y)ln(P̂ (Y)) − P̂ (Y)ln(P̂π,ω(Y))dL =∫

P̂ (Y)ln(P̂ (Y))dL −
∫

P̂ (Y)ln(P̂π,ω(Y))dL =

−h(Y) −
l−1∑
i=0

∫
P̂ (Y)ln(P̂ (Yωi

|{Yj |j ∈ π(ωi)}))dL =

−h(Y)−
l−1∑
i=0

(∫
P̂ (Y)ln(P̂ ({Yj |j = ωi ∨ j ∈ π(ωi)}))dL

−
∫

P̂ (Y)ln(P̂ ({Yj |j ∈ π(ωi)}))dL
)

=

−h(Y) +
l−1∑
i=0

h(Yωi
|{Yj |j ∈ π(ωi)})

In equation 5, h({Yj |j ∈ S}) stands for the multivari-
ate differential entropy and h({Yj |j ∈ A}|{Yj |j ∈ B})
stands for the conditional differential entropy, which
were defined by Shannon [24]:

h({Yj |j ∈ S}) = −
∫

f(S)ln(f(S))dS (6)

h({Yj |j ∈ A}|{Yj |j ∈ B}) = (7)

h({Yj |j ∈ A ∪ B}) − h({Yj |j ∈ B})

As the expression h(Y) in equation 5 is constant, an
algorithm that searches for a pds can use the KL di-
vergence by minimizing the sum of the conditional en-
tropies imposed by (π,ω). This will cause the pds
search algorithm to search for a pds as close as possi-
ble to (π+,ω+) subject to additional constraints.

3 The IDEA framework

Assume we have a function optimization problem with
cost function C(Z) which without loss of generality
we seek to minimize. Let P θ(Z) denote a probability
distribution that is uniform over all vectors Z with
C(Z) ≤ θ and equals 0 for all other vectors. In the
discrete case, P θ(Z) can be denoted by:

P θ(X) =
{ 1

|{X′|C(X′)≤θ}| if C(X) ≤ θ

0 otherwise
(8)

Sampling from P θ(Z) gives more points Z ′ with
C(Z ′) ≤ θ. Moreover, a single sample from P θ∗

(Z)
with θ∗ = minZ{C(Z)}, gives us an optimal solu-
tion vector Z∗. This rationale was first posed by De
Bonet, Isbell and Viola [3] and has been formalized
in the Iterated Density Estimation Evolutionary Algo-
rithm (IDEA) by Bosman and Thierens [4]:

IDEA(n, τ , m, sel(), rep(), ter(), sea(), est(), sam())
1 Initialize an empty set of samples

P ← ∅
2 Add n random samples and evaluate them

for i ← 0 to n − 1 do
2.1 P ← P ∪ NewRandomVector(Zi)
2.2 c[i] ← C(Zi)

3 Initialize the iteration counter
t ← 0

4 Iterate estimating densities and sampling
while ¬ter() do
4.1 Select �τn� samples

{Z(S)i | i ∈ Nτ} ← sel()
4.2 Set θt to the worst selected sample cost

θt ← c[Z(S)k] such that
∀i∈Nτ

〈c[Z(S)i] ≤ c[Z(S)k]〉
4.3 Search for a pds

(π,ω) ← sea()
4.4 Estimate the density functions

{P̂ (Zωi
|{Zj |j ∈ π(ωi)})|i ∈ L} ← est()

4.5 Initialize an empty set of new samples
O ← ∅

4.6 Sample m new samples from P̂ (·)
for i ← 0 to m − 1 do
4.6.1 O ← O ∪ sam()

4.7 Replace a subset of P with a subset of O
rep()

4.8 Evaluate the new samples in P
for each new Zi ∈ P do
4.8.1 c[i] ← C(Zi)

4.9 Update the generation counter
t ← t + 1

5 Denote the required iterations by tend
tend ← t

In the IDEA framework, we have that Nτ =
{0, 1, . . . , �τn� − 1}, τ ∈ [1

n , 1], sel() is the selection
operator, rep() replaces a subset of P with a subset
of O, ter() is the termination condition, sea() is a pds
search algorithm, est() estimates the density functions
and sam() generates a single sample using the esti-
mated densities.

The IDEA is a true evolutionary algorithm in the sense
that a population of individuals is used from which in-
dividuals are selected to generate new offspring with.
Using these offspring along with the parent individuals
and the current population, a new population is con-
structed. By referring to the iterations in the IDEA
as generations, the evolutionary characteristic is even
more obvious.

Note that in the IDEA algorithm, we have used the ap-
proximation notation P̂ θt

π,ω(Z) instead of the true dis-
tribution P θt

π,ω(Z). An approximation is required be-
cause the determined distribution is based upon sam-
ples and the underlying density model is an assump-
tion on the true distribution of the samples. This
means that even though it is possible that we might
achieve P̂ θt

π,ω(Z) = P θt
π,ω(Z), in general this is not the

case.

If we set m to (n−�τn�), sel() to taking the best �τn�
vectors and rep() to replacing the worst (n − �τn�)
vectors by the new samples, we have that θk+1 = θk −
ε with ε ≥ 0. This assures that the search for θ∗

is conveyed through a monotonically decreasing series
θ0 ≥ θ1 ≥ . . . ≥ θtend

. We call an IDEA with m, sel()
and rep() so chosen, a monotonic IDEA.

If we set m in the IDEA to n and set rep() to replace P
completely with O, we obtain the EDA by Mühlenbein,
Mahnig and Rodriguez [17]. In the EDA however, the
probability plateau θt cannot be enforced. Note how
EDA is thus an instance of IDEA.

In order to define algorithms in the IDEA framework,
we require to have a pds search algorithm sea(). Algo-
rithm est() will then estimate the probability density
functions and algorithm sam() will use them to sample
a new point. When l goes up, using the full joint pds
will pose problems for an IDEA. Estimating probabil-
ity densities in highly dimensional spaces can require
a large amount of time as well as many samples to
justify the estimation. Therefore, the assumption that
the cost function is built up of bounded lower order
interactions between the problem variables is usually
made. Such an assumption justifies using a sea() al-
gorithm that searches for a pds subject to constraints
such as ∀i∈L〈|π(i)| ≤ κ〉.

4 Probability density structure search
algorithms

The probabilistic models used in previously proposed
algorithms range from lower order structures to struc-
tures of unbounded complexity. It has been empiri-
cally shown by Bosman and Thierens [5] that struc-
tures of a greater complexity that allow for interac-
tions between multiple variables, are indeed required
to solve higher order building block problems. We
shortly go over a few of these algorithms and deter-
mine the pds search method that is used.

The PBIL by Baluja and Caruana [1], the cGA
by Harik, Lobo and Goldberg [13], the UMDA by
Mühlenbein and Paaß [18], and all known approaches
in the continuous case prior to IDEA [10, 22, 23], use
the univariate distribution. This pds causes the IDEA
to process the variables independently of each other.
Constraining the pds to this structure, it can be mod-
elled by ∀i∈L〈π(i) = ∅ ∧ ωi = i〉, giving:

P̂ (Z) =
l−1∏
i=0

P̂ (Zi) (9)

In the approach by De Bonet, Isbell and Viola [3],
known as MIMIC, the pds is a chain. In addition to
the constraints from equation 3, this imposes the con-
straints π(ωl−1) = ∅ ∧ ∀i∈L−{l−1}〈π(ωi) = (ωi+1)〉,
giving:

P̂ (Z) =

(
l−2∏
i=0

P̂ (Zωi
|Zωi+1)

)
P̂ (Zωl−1) (10)

The KL divergence from this pds to (π+,ω+) is mini-
mized by minimizing (

∑l−2
i=0 h(Zωi

|Zωi+1)) + h(Zωl−1)
over all feasible (π,ω). The search algorithm in
MIMIC, which we refer to as chain–search, first
finds Zωl−1 such that h(Zωl−1) is minimal. Then,
it iteratively selects Zωi

for decreasing i, such that
h(Zωi

|Zωi+1) is minimal. This greedy approximation
algorithm runs in O(l2) time.

If the chain constraints are relaxed to tree constraints,
the KL divergence can be minimized in O(l2) time us-
ing an algorithm by Chow and Liu [7], whereas the
chain–search is approximate. This is the approach
by Baluja and Davies [2]. The algorithm, which we
refer to as tree–search, first randomly selects a root
Zωl−1 and sets it as the parent of all other vari-
ables. It then iteratively selects Zωi

for decreasing
i, such that h(Zωi

) − h(Zωi
|Zparent[ωi]) is maximal.

The parent of each Zj , j ∈ L−{ωi, ωi+1, . . . , ωl−1}, is

then set to arg maxk∈{parent[j],ωi}{h(Zj)−h(Zj |Zk)}.
The tree pds imposes the additional constraints
π(ωl−1) = ∅ ∧ ∀i∈L−{l−1}〈|π(ωi)| = 1 ∧ π(ωi)0 ∈
{ωi+1, ωi+2, . . . , ωl−1}〉, giving:

P̂ (Z) =

(
l−2∏
i=0

P̂ (Zωi
|Zπ(ωi)0)

)
P̂ (Zωl−1) (11)

If the tree constraints are relaxed further to directed
acyclic graph (dag) constraints, the only additional
constraint is ∀i∈L〈|π(i)| ≤ κ〉, giving equation 3. Min-
imizing the KL divergence then comes down to min-
imizing the sum of conditional entropies from equa-
tion 5. The BMDA by Pelikan and Mühlenbein [21]
uses the special case pds with κ = 1, as does the
BOA by Pelikan, Goldberg and Cantú–Paz [19]. In
addition, a search algorithm for the case of κ > 1
is also incorporated in the BOA. In the LFDA by
Mühlenbein and Mahnig [16], this distinction is not
made. In the case of κ = 1, there is a polynomial al-
gorithm by Edmonds [9] to find the optimal pds. In
the case of κ > 1, the problem of minimizing the KL
divergence is NP–complete. The search algorithm in
the BOA and LFDA for that case, which we refer to
as graph–search, is greedy and approximate, like the
chain–search. Starting from a pds with ∀i∈L〈π(i) = ∅〉,
variables Zωj

and Zωk
are iteratively selected for the

purpose of enforcing ωk ∈ π(ωj). This selection is
constrained to finding a dag where arcs (v0, v1) imply
v0 ∈ π(v1). The selection of ωk and ωj each itera-
tion, is such that the sum of conditional entropies from
equation 5 is decreased the most and the constraints
of equation 3 are not violated.

There are still other special case algorithms, such as
the ECGA by Harik [12] that regards only marginal
product probability models

∏
i P̂ (Si),

⋃
i Si = L,

∀i,j〈Si ∩ Sj = ∅〉. Like the LFDA, the ECGA uses
minimum discription length as a search metric. This
metric has the advantage that the resulting pds will
not be overly complex. In the case of the graph–
search algorithm using the KL divergence, this can
only be influenced by setting κ because the KL diver-
gence merely gives a distance measure from a certain
pds to (π+,ω+). In this paper, we only regard the four
described algorithms in combination with the KL di-
vergence metric. Details on their implementation can
be found elsewhere [4, 6]. We close this section by
remarking that we can also use the full joint proba-
bility distribution (π+,ω+) as the pds. However, as
noted in section 3, this is only useful in the case of low
dimensional problems and a global pdf.

5 Probability density functions

Next to the pds search algorithms from section 4, we
require to specify a pdf to use that underlies the IDEA.
It follows from sections 2 and 3 that in order to mini-
mize the KL divergence and generate new samples, we
require to know the multivariate differential entropy
as well as the conditional variant of the pdf. In this
section, we specify a few well known probability den-
sity functions along with the required information for
them to be used within the IDEA framework. In the
continuous case, we also give an example of a joint
density over two variables.

We assume that the discrete domain contains nd inte-
gers {0, 1, . . . , nd−1} and that we have n+1 variables
Z0, Z1, . . . , Zn and N samples z

(S)i
0 , z

(S)i
1 , . . . , z

(S)i
n , i ∈

N = {0, 1, . . . , N − 1}. Also, we let N = {1, 2, . . . , n},
n = (1, 2, . . . , n), x = (x1, x2, . . . , xn) and write
e0 � (e1, e2, . . . , em) = (e0, e1, e2, . . . , em).

In the case of discrete data, estimating the probability
that a certain variable takes on a certain value can be
done by counting frequencies in the sample set:

m(ν,λ) = (12)

N−1∑
q=0

{
1 if ∀i∈{0,1,...,|λ|−1}〈x(S)q

νi = λi〉
0 otherwise

The conditional pdf and the multivariate differential
entropy can then be stated as follows1:

p(x0|{xi|i ∈ N}) =
m(0 � n, x0 � x)

m(n,x)
(13)

H({Xi|i ∈ N}) = (14)

−
nd−1∑
x1=0

nd−1∑
x2=0

. . .

nd−1∑
xn=0

m(n,x)
N

ln
(

m(n,x)
N

)

The histogram distribution, for which an example is
depicted in figure 1, is simply a continuous version of
the discrete case. Assume that we have r bins and
that ∀i∈N 〈∀k∈N 〈mini ≤ y

(S)k
i < maxi〉〉. Let βi =

(maxi − mini)/r, ϕ(x, i) = (x − mini)/βi and j =
(j1, j2, . . . , jn). We now define a frequency count:

bn[j] = (15)

|{Y (S)k
1 |k ∈ N ∧ ∀q∈N 〈jq ≤ ϕ(y(S)k

q , q) ≤ jq + 1〉}|
1We write p(·) and H(·) in the discrete case instead of

f (·) and h(·).

Figure 1: The joint histogram distribution.

The conditional pdf and the multivariate differential
entropy can then be stated as follows:

f(y0|{yi|i ∈ N}) = (16)

b0�n[(ϕ(y0, 0), ϕ(y1, 1), . . . , ϕ(yn, n))]
bn[(ϕ(y1, 1), ϕ(y2, 2), . . . , ϕ(yn, n))]

h({Yi|i ∈ N}) = −
∏n

i=1(maxi − mini)
rn

× (17)

r−1∑
j1=0

r−1∑
j2=0

. . .

r−1∑
jn=0

bn[j]
N

ln
(

bn[j]
N

)

A widely used parametric continuous pdf is that of
the normal distribution, for which an example is de-
picted in figure 2. Let y = (y1, y2, . . . , yn), µ =
(µ1, µ2, . . . , µn) = (E[y1], E[y2], . . . , E[yn]) and Σ =
E[((y0�y)− (µ0�µ))T ((y0�y)− (µ0�µ))]. By using
the notation σ′

ij = (Σ−1)(i, j), the conditional pdf and
the entropy can be stated as follows:

f(y0|{yi|i ∈ N}) =
1

σ̃0

√
2π

e
−(y0−µ̃0)2

2σ̃2
0 (18)

where

{
σ̃0 = 1√

σ′00

µ̃0 = µ0σ′
00−

∑ n
i=1(yi−µi)σ

′
i0

σ′00

h({Yi|i ∈ N}) = (19)

1
2
(n + ln((2π)n(det E[(y − µ)T (y − µ)])))

The non–parametric normal kernels pdf, for which an
example is depicted in figure 3, places a normal pdf
from equation 18 over every available sample point.
Let si be a fixed standard deviation. The conditional
pdf and the entropy can then be stated as follows:

-10
-5

0
5

10
Y0 -10

-5

0

5

10

Y1

0
2e-05
4e-05
6e-05
8e-05

0.0001
0.00012
0.00014
0.00016

f(Y0,Y1)

Figure 2: The joint normal distribution.

-10
-5

0
5

10
Y0 -10

-5

0

5

10

Y1

0
0.001
0.002
0.003
0.004
0.005
0.006
0.007
0.008
0.009

f(Y0,Y1)

Figure 3: The joint normal kernels distribution.

f(y0|{yi|i ∈ N}) =
N−1∑
i=0

νi
1

s0

√
2π

e
−(y0−y

(S)i
0)2

2s2
0 (20)

where νi =
e
−∑ n

j=1

(yj−y
(S)i
j

)2

2s2
j

∑N−1
k=0 e

−∑ n
j=1

(yj−y
(S)k
j

)2

2s2
j

h({Yi|i ∈ N}) =
1
2
ln

N2(2π)n

n−1∏
j=0

s2
j

− (21)

∫
f(y)ln

N−1∑

i=0

e
−∑ n−1

j=0

(yj−y
(S)i
j

)2

2s2
j

 dy

Each pdf has its own characteristics and complexity.
Using histograms, we can arbitrarily well estimate the
density of a set of sample points by increasing r. This
however comes at the expense of an exponential run-
ning time in rκ and loss of generalization. To this end,
the normal pdf is very efficient. Because of its high
level of generalization, even when using (π+,ω+), the
running time is polynomial. For the normal kernels
distribution, the running time is still polynomial, but
substantially greater than when using the normal pdf.

For the derivation of equations 12, 13, 14, 15, 16, 17,
18 and 20, as well as a more extensive description of
the described density functions, see previous work [4,
6]. For the derivation of equations 19 and 21, see for
instance [8].

6 Experiments

The continuous function optimization problems we
used for testing are the following:

C0

∑l−1
i=0(Yi − 1)2 [−5, 5]l

C1

∑l−1
i=0�Yi + 0.5�2 [−5, 5]l

C2
1

4000

∑l−1
i=0(Yi − 100)2−∏l−1

i=0 cos(Yi−100√
i+1

) + 1 [−600, 600]l

C3 −∑l−1
i=0 sin(Yi)sin20((i+1)Y 2

i

π) [0, π]l

C4 γi = 24
1000 (i + 2) − Yi [−3, 3]l

C5 γ0 = Y0, γi = Yi + γi−1 [−3, 3]l

C6 γ0 = Y0, γi = Yi + sin(γi−1) [−3, 3]l

Function C0 is the sphere model, C1 is the stepwise
version of the sphere model, C2 is Griewank’s function,
C3 is Michalewicz’s function and C4 is a test function
by Baluja, as well are C5 and C6. The Baluja functions
are all of the form 100/(10−5+

∑l−1
i=0 |γi|) and should be

maximized. All other functions should be minimized.

In all our testing, we used a monotonic IDEA. The
effectiveness of density estimation depends heavily on
the amount of available samples �τn�. We expect a
better performance if this amount goes up. Therefore,
we fix τ and increase n. To be more precise, we used
the rule of thumb by Mühlenbein and Mahnig [16] for
FDA and set τ to 0.3. Furthermore, we let n increase
from 25 up to 500 in steps of 25 and allowed each al-
gorithm at most 2 · 106 function evaluations. If all
of the solutions differed by less than 5 · 10−7, termi-
nation was enforced also. All results were averaged
over 20 runs. The si standard deviation parameters
for the normal kernels distribution were determined
as (α · rangei)/�τn� where rangei stands for the max-
imum sample value in the i–th dimension minus the
minimum sample value in the i–th dimension. In our
experiments, we used α = 1. This is the only exter-
nal parameter for the normal kernels distribution. The
normal distribution has no external parameters. The
histogram distribution is parameterized by the amount
of bins r. We initially ran tests for r = 2 and r = 5.

We point out that functions C0 through to C4 can be
optimized by determining a value for each variable sep-
arately. For functions C5 and C6, this is not the case.
We therefore only used the univariate distribution on

C0, l = 5
pdf nmin C evals RT
No 75 0.000000 1272.8 4.7
Hi2 100 0.000000 2592.1 2.7
Hi5 125 0.000000 2575.8 2.4
Ke 500 0.001216 11802.2 3.4

Figure 4: Results on C0 in 5 dimensions.

C0, l = 10
pdf nmin C evals RT
No 100 0.000000 2599.20 4.6
Hi2 125 0.000000 6333.40 2.1
Hi5 175 0.000000 5679.25 1.9
Ke 500 0.005410 18471.20 3.4

Figure 5: Results on C0 in 10 dimensions.

C0 through to C4 and used other search algorithms as
well on C5 and C6.

We tackled C0 and C1 in 5 and 10 dimensions using the
normal distribution, the histogram distribution with 2
and 5 bins and the normal kernels distribution. Ta-
bles 4, 5, 6 and 7 give an overview of the results. The
tables show the results for the smallest value of n for
which the average best cost was equal to the optimal
value within the demanded precision. If this value was
not found, the results for n = 500 are given. The ta-
ble shows the minimal value for n, the average cost
C, the average amount of function evaluations evals
and the relative time RT. Let FT(x) be the time to
perform x function evaluations and TT(x) the total
time spent while those x function evaluations were
performed. Then, RT(x) = (TT(x) − FT(x))/FT(x).
We determined RT as RT(106). The best results are
printed in boldface.

Functions C0 and C1 are quite simple. It seems that for
very smooth functions at least, the normal distribution
works well. The normal kernels distribution seems too
much cluster oriented to work well on these functions.
However, by increasing α, its effectiveness on smooth
functions will be increased. Empirical verification has
shown that for α ≈ 1.7, about 3400 evaluations are

C1, l = 5
pdf nmin C evals RT
No 75 0.000000 697.75 2.3
Hi2 50 0.000000 327.20 1.3
Hi5 50 0.000000 303.80 1.3
Ke 75 0.000000 864.70 2.2

Figure 6: Results on C1 in 5 dimensions.

C1, l = 10
pdf nmin C evals RT
No 50 0.000000 658.40 2.2
Hi2 75 0.000000 822.30 0.9
Hi5 75 0.000000 697.75 0.9
Ke 125 0.000000 2514.20 1.7

Figure 7: Results on C1 in 10 dimensions.

0

10000

20000

30000

40000

50000

60000

70000

80000

90000

50 100 150 200 250 300 350 400 450 500

F
un

ct
io

n
E

va
lu

at
io

ns
 (

A
ve

ra
ge

)

n

No
Hi2
Hi5
Ke

Figure 8: eval for C0 in 10 dimensions.

required to solve C0 with l = 10 to minimality.

The histogram distribution also seems to work well.
However, even though Hi2 requires at most the same
population size as Hi5, the amount of required evalu-
ations is larger. Judging by empirical results, we need
a larger amount of bins than merely two (or one) in
order for the amount function evaluations to scale up.
This can be seen in figures 8 and 9, which show the
average amount of evaluations.

We continue our testing with only r = 5 in the case of
the histogram distribution. Function C2 is less smooth
than the previous two, but not as rugged as C3. For
l = 5, function C2 gave some problems for all ap-
proaches and for l = 10 for the normal kernels and
the histogram approaches. The problem was that they
required a very large amount of function evaluations.
When the maximum of function evaluations is reached,
increasing n will give worse results. This is because the
search becomes slower and termination occurs before
convergence. Therefore, tables 10 and 11 show the
best average result, instead of the result for n = 500,
if the maximum of evaluations dominates termination
and the minimum of 0 has not been reached within the
demanded precision.

The normal kernels distribution does not give the best
approximate solution, which might be because of the
choice of α. Empirical verification has shown that for

0

20000

40000

60000

80000

100000

120000

140000

160000

50 100 150 200 250 300 350 400 450 500

F
un

ct
io

n
E

va
lu

at
io

ns
 (

A
ve

ra
ge

)

n

No
Hi2
Hi5

Ki

Figure 9: eval for C1 in 10 dimensions.

C2, l = 5
pdf nmin C evals RT
No 150 0.000639 1003228.00 1.2
Hi5 400 0.000000 849919.20 0.8
Ke 300 0.015769 197257.95 0.9

Figure 10: Results on C2 in 5 dimensions.

α ≈ 3, about 30000 evaluations are required to solve
C2 with l = 10 to minimality. The amount of eval-
uations on functions C0 and C1 were observed to be
just about the same as the other approaches, with the
exception of Hi2. In the case of C2, the amount of
function evaluations is the least for the normal kernels
distribution. The amount of evaluations needed by
the normal distribution becomes a lot larger when the
global smoothness of the optimization function is de-
creased. Figure 12 shows the least amount of function
evaluations for l = 10 on function C2, which is more
interesting than the average, because the average is
mostly dominated by the maximum we set.

The advantage of the normal kernels distribution be-
comes more evident when we look at the results on C3,
which is more epistatic than C2. An overview is given
in tables 13 and 14. For l = 5, the minimum found by
all methods is −4.687658 and for l = 10 the minimum
found by the normal kernels approach is −9.660152.
Because none of the methods were able to reach an

C2, l = 10
pdf nmin C evals RT
No 275 0.000000 62835.95 0.9
Hi5 450 0.001725 161894.40 0.5
Ke 200 0.178204 99182.00 0.8

Figure 11: Results on C2 in 10 dimensions.

0

10000

20000

30000

40000

50000

60000

70000

50 100 150 200 250 300 350 400 450 500

F
un

ct
io

n
E

va
lu

at
io

ns
 (

Le
as

t)

n

No
Hi5
Ke

Figure 12: Least amount of function evaluations for
C2 in 10 dimensions.

C3, l = 5
pdf n C evals RT
No 500 -4.646790 140882.45 0.6
Hi5 500 -4.668619 24087.20 0.5
Ke 500 -4.687645 10696.55 0.5

Figure 13: Results on C3 in 5 dimensions.

average of these minima within the demanded preci-
sion, the results are given for n = 500. The normal
distribution suffered again from the problem that the
maximum amount of function evaluations was already
reached for small values of n. In figure 15 the least
amount of function evaluations required over 20 runs
is shown for the 10 dimensional case. The advantage of
the normal kernels approach in more epistatic search
spaces is clear.

Note that the histogram distribution also requires less
function evaluations. It is clear that the histogram
distribution can allow for more detail by increasing r,
which has somewhat of the same role as α in the case of
the normal kernels distribution. However, if we move
to functions that have interacting variables, allowing
for this in a pds results in a running time of O(rκ)
for the histogram distribution [4], which doesn’t scale
up as well as the other distributions. We therefore
disregard the histogram distribution from now on.

C3, l = 10
pdf n C evals RT
No 500 -9.428565 1346040.95 0.6
Hi5 500 -9.533540 708870.65 0.5
Ke 500 -9.659621 18120.20 0.5

Figure 14: Results on C3 in 10 dimensions.

0

100000

200000

300000

400000

500000

600000

50 100 150 200 250 300 350 400 450 500

F
un

ct
io

n
E

va
lu

at
io

ns
 (

Le
as

t)

n

No
Hi5
Ke

Figure 15: Least amount of function evaluations for
C3 in 10 dimensions.

C2, l = 100
Method C2 n RT

(10 + 50)–ES 399.07 — —
PBIL (Binary) 16.43 — —
PBIL (Gray) 366,77 — —

PBILC 4803 — —
IDEA NoU 9999999.865194 225 5.85
IDEA NoC 9999999.902504 250 20.81
IDEA NoG 9999999.962383 350 150.67
IDEA NoFC 9999999.876634 350 6.72

Figure 16: Results on C4 in 100 dimensions.

On functions C4, C5 and C6, we applied IDEAs
with the univariate distribution, the chain–search al-
gorithm, the exact graph–search algorithm for κ = 1
and a fixed chain that links the variables in the same
way as the functions are defined, so ωi = l − i − 1,
π(0) = ∅ and π(i) = i−1, i ≥ 1. This latter pds is the
best possible pds as it represents exactly the structure
of the problem, which gives an upper bound. The di-
mensionality of the problem is set to l = 100 and the
maximum amount of function evaluations is 200000.
Repeating earlier reported results [22], tables 16, 17
and 18 show that our approaches obtain better results.
In the table, NoU uses the univariate distribution, NoC

uses chain–search, NoG uses graph–search with κ = 1
and NoFC uses the fixed chain, all of which use the
normal pdf.

7 Discussion

The use of the normal kernels pdf is clearly dependent
on the value of α. It is intuitively clear that a larger α
results in an algorithm that is better applied to prob-
lems that are globally more smooth. Adapting the

C3, l = 100
Method C3 n RT

(10 + 50)–ES 2.91 — —
PBIL (Binary) 2.12 — —
PBIL (Gray) 2.62 — —

PBILC 4.76 — —
IDEA NoU 4.513876 150 6.57
IDEA NoC 5.296601 200 23.83
IDEA NoG 7.498911 275 56.75
IDEA NoFC 13.483005 350 7.82

Figure 17: Results on C5 in 100 dimensions.

C4, l = 100
Method C4 n RT

(10 + 50)–ES 7.56 — —
PBIL (Binary) 4.4 — —
PBIL (Gray) 5.61 — —

PBILC 11.18 — —
IDEA NoU 13.398891 250 0.96
IDEA NoC 14.851334 300 3.75
IDEA NoG 27.730714 550 5.00
IDEA NoFC 49.651935 450 1.08

Figure 18: Results on C6 in 100 dimensions.

value of α to the level of epistasis of the fitness land-
scape during a run might lead to very efficient EAs.

One fundamental flaw of the normal kernels pdf is
known to be its tendency to overfit a distribution.
This can be somewhat regulated by α, but not en-
tirely. Samples drawn from a single normal distribu-
tion can result in a normal kernels estimation far from
the smooth original. This is one of the reasons why a
normal mixture distribution based on M normal ker-
nels will most likely provide very useful properties and
prevent overfitting.

IDEAs take up more time as the allowed complexity of
the pds goes up. It is therefore important to be aware
of the running times of the parts of an algorithm on
top of the amount of function evaluations. To this end,
we have already used the notion of relative time RT.
Moreover, we note that all of the proposed search al-
gorithms as well as the estimation and sampling algo-
rithms are polynomial in all parameters for the normal
distribution as well as the normal kernels distribution.
This is not the case for the histogram distribution and
the mentioned distribution in the discrete case, as they
are exponential in O(rκ) where in the discrete case we
have r = 2. Given that we require quite a few bins
to efficiently optimize a problem using the histogram
distribution, methods based upon that distribution do
not scale up for higher order epistatic problems.

8 Conclusions

The IDEA framework allows for elegant modelling
of algorithms that perform evolutionary optimization
based on density estimation. We have shown how
this can be done for three different probability den-
sity functions in the continuous case as well as for one
pdf in the discrete case. The experiments indicate that
building and using probabilistic models in the case of
continuous optimization problems can be effective. By
using a pds in which variables are allowed to interact,
IDEAs can be constructed that perform very well on
continuous and epistatic problems.

References

[1] S. Baluja and R. Caruana. Removing the genetics
from the standard genetic algorithm. In A. Priedi-
tis and S. Russell, editors, Proceedings of the twelfth
International Conference on Machine Learning, pages
38–46. Morgan Kauffman publishers, 1995
.

[2] S. Baluja and S. Davies. Using optimal dependen-
cy–trees for combinatorial optimization: Learning the
structure of the search space. In D.H. Fisher, editor,
Proceedings of the 1997 International Conf. on Ma-
chine Learning. Morgan Kauffman publishers, 1997
.

[3] J.S. De Bonet, C. Isbell, and P. Viola. Mimic: Finding
optima by estimating probability densities. Advances
in Neural Information Processing, 9, 1996
.

[4] P.A.N. Bosman and D. Thierens. An algorithmic
framework for density estimation based evolutionary
algorithms. Utrecht University Technical Report UU–
CS–1999–46. ftp://ftp.cs.uu.nl/pub/RUU/CS/
techreps/CS-1999/1999-46.ps.gz, 1999
.

[5] P.A.N. Bosman and D. Thierens. Linkage informa-
tion processing in distribution estimation algorithms.
In W. Banzhaf, J. Daida, A.E. Eiben, M.H. Garzon,
V. Honavar, M. Jakiela, and R.E. Smith, editors, Pro-
ceedings of the GECCO–1999 Genetic and Evolution-
ary Computation Conference, pages 60–5.97. Morgan
Kaufmann Publishers, 1999
.

[6] P.A.N. Bosman and D. Thierens. IDEAs based
on the normal kernels probability density function.
Utrecht University Technical Report UU–CS–2000–
11. ftp://ftp.cs.uu.nl/pub/RUU/CS/techreps/CS-
2000/2000-11.ps.gz, 2000
.

[7] C.K. Chow and C.N. Liu. Approximating discrete
probability distributions with dependence trees. IEEE
Transactions on Inf. Theory, 14:462–467, 1968
.

[8] T.M. Cover and J.A. Thomas. Elements of Informa-
tion Theory. John Wiley & Sons Inc., 1991
.

[9] J. Edmonds. Optimum branchings. J. Res. Nat. Bur.
Standards, 71B:233–240, 1967. Reprinted in Math. of
the Decision Sciences, Amer. Math. Soc. Lectures in
Appl. Math., 11:335–345, 1968
.

[10] M. Gallagher, M. Fream, and T. Downs. Real–valued
evolutionary optimization using a flexible probability
density estimator. In W. Banzhaf, J. Daida, A.E.
Eiben, M.H. Garzon, V. Honavar, M. Jakiela, and
R.E. Smith, editors, Proceedings of the GECCO–1999
Genetic and Evolutionary Computation Conference,
pages 840–846. Morgan Kaufmann Publishers, 1999
.

[11] D.E. Goldberg. Genetic Algorithms In Search, Op-
timization, And Machine Learning. Addison–Wesley,
Reading, 1989
.

[12] G. Harik. Linkage learning via probabilistic modeling
in the ECGA. IlliGAL Tech. Rep. ftp://ftp-illigal.
ge.uiuc.edu/pub/papers/IlliGALs/99010.ps.Z, 1999
.

[13] G. Harik, F. Lobo, and D.E. Goldberg. The compact
genetic algorithm. In Proceedings of the 1998 IEEE
International Conference on Evolutionary Computa-
tion, pages 523–528. IEEE Press, 1998
.

[14] J.H. Holland. Adaptation in Natural and Artificial
Systems. Ann Arbor: Univ. of Michigan Press, 1975
.

[15] S. Kullback. Information Theory And Statistics. New
York: Dover, 1968
.

[16] H. Mühlenbein and T. Mahnig. FDA – a scalable
evolutionary algorithm for the optimization of addi-
tively decomposed functions. Evolutionary Computa-
tion, 7:353–376, 1999
.

[17] H. Mühlenbein, T. Mahnig, and O. Rodriguez.
Schemata, distributions and graphical models in evo-
lutionary optimization. J. of Heur., 5:215–247, 1999
.

[18] H. Mühlenbein and G. Paaß. From recombination of
genes to the estimation of distributions i. binary pa-
rameters. In A.E. Eiben, T. Bäck, M. Schoenauer, and
H.-P. Schwefel, editors, Parallel Problem Solving from
Nature – PPSN V, pages 178–187. Springer, 1998
.

[19] M. Pelikan, D.E. Goldberg, and E. Cantú-Paz. BOA:
The bayesian optimization algorithm. In W. Banzhaf,
J. Daida, A.E. Eiben, M.H. Garzon, V. Honavar,
M. Jakiela, and R.E. Smith, editors, Proceedings of
the GECCO–1999 Genetic and Evolutionary Compu-
tation Conf., pages 525–532. Morgan Kaufmann, 1999
.

[20] M. Pelikan, D.E. Goldberg, and F. Lobo. A survey
of optimization by building and using probabilistic
models. IlliGAL Tech. Rep. 99018. ftp://ftp-illigal.
ge.uiuc.edu/pub/papers/IlliGALs/99018.ps.Z, 1999
.

[21] M. Pelikan and H. Mühlenbein. The bivariate
marginal distribution algorithm. In R. Roy, T. Fu-
ruhashi, K. Chawdry, and K. Pravir, editors, Advances
in Soft Computing – Engineering Design and Manu-
facturing. Springer–Verlag, 1999
.

[22] M. Sebag and A. Ducoulombier. Extending
population–based incremental learning to continuous
search spaces. In A.E. Eiben, T. Bäck, M. Schoenauer,
and H.-P. Schwefel, editors, Parallel Problem Solving
from Nature – PPSN V, pages 418–427. Springer, 1998
.

[23] I. Servet, L. Trave-Massuyes, and D. Stern. Telephone
network traffic overloading diagnosis and evolution-
ary computation technique. In J.K. Hao, E. Lutton,
E. Ronald, M. Schoenauer, and D. Snyers, editors,
Proceedings of Artificial Evolution ’97, pages 137–144.
Springer Verlag, LNCS 1363, 1997
.

[24] C.E. Shannon. A mathematical theory of communi-
cation. Bell System Technical Journal, 27:379–423,
623–5.956, 1948
.

