
IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. ?, NO. ?, ? ? 1

Continuous K-Means Monitoring with Low
Reporting Cost in Sensor Networks

Ming Hua, Man Ki Lau, Jian Pei, Senior Member, IEEE , and Kui Wu, Senior Member, IEEE

Abstract—In this paper, we study an interesting problem: continuously monitoring k-means clustering of sensor readings in a large
sensor network. Given a set of sensors whose readings evolve over time, we want to maintain the k-means of the readings continuously.
The optimization goal is to reduce the reporting cost in the network, that is, let as few sensors as possible report their current readings
to the data center in the course of maintenance.
To tackle the problem, we propose the reading reporting tree, a hierarchical data collection and analysis framework. Moreover, we
develop several reporting cost effective methods using reading reporting trees in continuous k-means monitoring. First, a uniform
sampling method using a reading reporting tree can achieve good quality approximation of k-means. Second, we propose a reporting
threshold method which can guarantee the approximation quality. Last, we explore a lazy approach which can reduce the intermediate
computation substantially. We conduct a systematic simulation evaluation using synthetic data sets to examine the characteristics of
the proposed methods.

Index Terms—Sensor networks, clustering, k-means, low reporting cost

�

1 INTRODUCTION

Recently, more and more large wireless sensor networks
have been used in many applications such as environ-
ment surveillance, manufacturing management, business
asset administration, automation in transportation and
health-care industry. Analyzing data collected from nu-
merous sensors is one of the prominent issues in wireless
sensor network applications. While a straightforward
approach can collect data continuously from wireless
sensor networks and conduct analysis in base stations,
the power consumption of sensors is the major bottle-
neck of wireless sensor network lifetime. Often, once
a wireless sensor node is deployed, it may be hard to
recharge or replace its battery. Once the battery is used
up, the sensor dies. With dead sensors, a wireless sensor
network is handicapped. When many sensors die, the
functionality of a sensor network degrades substantially.

The major power consumption for wireless sensors
comes from sending out messages. Therefore, given a
data analysis task, it is important to collect data from
large wireless sensor networks such that only as few
sensors as possible need to send out their readings while
the data analysis quality is satisfactorily retained. This

Authors are in the alphabetical order.

• M. Hua and J. Pei are with the School of Computing Science, Simon
Fraser University, 8888 University Drive, Burnaby, BC Canada V5A
1S6. E-mail: {mhua, jpei}@cs.sfu.ca

• M. Lau is with MacDonald, Dettwiler and Associates Ltd., 13800
Commerce Parkway, Richmond, BC Canada V6V 2J3. E-mail:
MALAU@mdacorporation.com

• K. Wu is with the Department of Computer Science, University of
Victoria, PO Box 1700 STN CSC, Victoria, BC Canada V8W 3P6. E-
mail: wkui@cs.uvic.ca

Manuscript received December 6, 2007; revised ???? ??, 200?.

motivates the energy-preserving approaches for data
collection and analysis on large sensor networks.

The latest sensor network techniques enable a sensor
to sense multiple measures simultaneously. For example,
an environmental surveillance sensor can detect temper-
ature, humidity, and density of carbon dioxide at the
same time. Therefore, more often than not, multidimen-
sional data analysis such as clustering is needed for
analyzing sensor network data.

K-means clustering [1], [2] is a popularly employed
method in analyzing multidimensional data. Consider
an l-dimensional space D1 × · · · × Dl. Let dist(p, q) be
the distance between two points p and q. Given a set
of n points S = {s1, . . . , sn} in the space and a positive
integer k, the k-means problem is to find k points (also
known as centers) c1, . . . , ck, which may or may not be
in S, minimizing

n∑
i=1

k
min
j=1

{dist(si, cj)}.

In other words, each point is assigned to the closest
center. The optimization objective is to minimize the sum
of distances between the points and the closest centers.

Continuously monitoring k-means clustering has
many important applications in data collection and anal-
ysis in large sensor networks.

As a concrete example, in underground structure mon-
itoring, such as a coal mine monitoring system [3], we
need to monitor not only the structure changes of un-
derground tunnels, but also potential gas or water leaks.
Equipped with gas sensors and accelerometers (sensors
measuring acceleration and gravity induced reaction
forces), a sensor node can report different measures
simultaneously, which can be used to detect potential

Digital Object Indentifier 10.1109/TKDE.2009.41 1041-4347/$25.00 © 2009 IEEE

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

Authorized licensed use limited to: SIMON FRASER UNIVERSITY. Downloaded on June 10, 2009 at 16:28 from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. ?, NO. ?, ? ? 2

dangers such as collapses. To reduce false alarms in
such a system, data correlation from different sensor
nodes must be carefully investigated. K-means cluster-
ing comes into the right place as a simple yet effective
approach for such a data analysis task. In this case, the
typical status of sensors and the extreme situations such
as collapsing, gas or water leaking are of interest. We
can set the number of clusters to a not-too-small value
such as 5 to 10 to capture the diversity of the distribu-
tion of sensor readings. By monitoring how the clusters
change over time, we can monitor the distribution of
the underground tunnel status. Rapid changes of cluster
size and/or readings may indicate incidents that need
human interaction. For example, in case of gas leaking or
local collapsing, the sensors surrounding will form a dis-
tinguishing and rapidly growing cluster due to the fast
changing values of gas density and/or acceleration. The
clustering approach can effectively avoid false alarms
since the changes of the cluster in size and collective
readings are more robust.

To save energy, as suggested by the methods to be de-
veloped in this paper, a sensor can take a low frequency
to report its readings when the readings do not change
much, but adaptively more active in reading reporting
when the readings evolve rapidly.

The problem of continuously maintaining k-means
clustering with low reporting cost is a novel and chal-
lenging task though there are extensive studies on k-
means clustering before. The existing work mainly im-
proves the performance of k-means clustering from two
aspects: reducing the number of scans and reducing the
number of points needed to be checked. Those methods
reducing the number of scans may not be applied to our
problem since they still need to read all points at least
once, which implies that all sensors need to report in our
application example.

The methods using sampling to reduce the number
of points accessed look promising. However, they do
not address the issue of continuously maintaining the
centers. Moreover, most of them are progressive: samples
have to be drawn repeatedly until the quality guarantee
is satisfied. In our application example, drawing samples
repeatedly in a sensor network also incurs extra commu-
nication cost.

In this paper, we propose interesting and effective
methods to tackle the problem. We make the following
contributions.

First, we propose the reading reporting tree, a hierar-
chical data collection and analysis framework for contin-
uous k-means monitoring for a large set of data points.
The framework uses a conceptual tree to aggregate data
points bottom up. We show that we can continuously
monitor k-means effectively with a constant approxima-
tion ratio using a reading reporting tree. Moreover, the
reporting cost can be reduced by a uniform sampling
method.

Second, to further reduce the reporting cost, we ob-
serve that substantial changes of centers must be caused

TABLE 1
Frequently used notions.

Notion Explanation
S a set of points
s a point in S
si the value of s at instant i
h the height of a reading reporting tree
t the facility factor

dsum() the sum of distances in a k-means clustering

by substantial changes of some data points. Thus, to
maintain k-means, we should pay more attention to
those points whose values change substantially. We
propose a reporting threshold method: only the points
whose value changes are over a threshold should report.
By setting the reporting threshold properly, we can
guarantee the approximation quality of k-means.

Third, to further reduce the reporting cost even within
the reading reporting tree, we explore a lazy method.
In many situations a user does not want to update
the k-means information if the centers do not change
substantially. Accordingly, a point can report only if the
change of its value may affect the centers substantially.
Moreover, the bottom-up clustering analysis may termi-
nate at an intermediate node of the reporting tree if the
centers at a higher level are not affected substantially.

Last, we conduct a systematic simulation evaluation
using synthetic data sets to examine the characteristics
of the proposed methods.

Table 1 provides a cheat sheet of the notions used
frequently in the paper.

The rest of the paper is organized as follows. In
Section 2, we formally define the problem and briefly
review the related work. In Section 3, we present a read-
ing reporting tree framework for continuous k-means
monitoring. A uniform sampling method is given in
Section 4, and a reporting threshold method is developed
in Section 5. In Section 6, we explore a lazy method. The
simulation evaluation is reported in Section 7. Section 8
concludes the paper.

2 PROBLEM DEFINITION AND RELATED
WORK

In this section, we define the problem formally and
review the related work.

2.1 Problem Definition

We consider a set of points S. At a time instant i, the
value of a point s ∈ S is si = (v1, . . . , vl). In other words,
a point in S can be regarded as a moving object in an
l-dimensional space.

In this paper, we are interested in k-means clustering
of the current values of the points at each time instant.
At an instant i, let c1, . . . , ck be k points which may or
may not be in S. The points in S can be partitioned into

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

Authorized licensed use limited to: SIMON FRASER UNIVERSITY. Downloaded on June 10, 2009 at 16:28 from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. ?, NO. ?, ? ? 3

k exclusive subsets S1, . . . , Sk according to their values
at instant i: a point s ∈ S is assigned to cluster Si if

dist(si, ci) = min
1≤j≤k

{dist(si, cj)}

where dist() is the distance function in question.
Definition 1 (K-means): Points c1, . . . , ck are the k-

means of S if they minimize

k∑
i=1

∑
s∈Si

dist(si, ci).

Some problems highly related to k-means are NP-
hard, including the Minimum Sum-of-Squares Cluster-
ing (MSSC) problem and the Clustering to Minimize
Sum of Diameters (CMSD) problem. For example, in
the MSSC problem, a set of objects are partitioned into
k clusters so that the sum of squared distances from
the objects to the cluster mean is minimized. Formally,
given a set of objects X = {X1, · · · , Xn} where Xi =
(Xi1 , · · · , Xis

) ∈ RS is a vector in Euclidean space RS ,
and an integer k ≤ n, the MSSC problem is to find a
partition of X into k disjoint subsets C1, · · · , Ck, such that∑k

i=1

∑
x∈Ci

‖x − x̄i‖2 is minimized, where ‖.‖ denotes
the Euclidean norm and x̄i = 1

|Ci|
∑

x∈Ci
x is the mean

of partition Ci (1 ≤ i ≤ k). The MSSC problem is proved
NP-complete in [4].

As another example, the CMSD problem aims to
partition the vertices of a complete graph with non-
negative edge weights into k subsets, so that the sum
of the diameter of the subgraph regarding each subset
is minimized. Formally, given a complete graph G(V, E)
where V is a set of vertices and E is the set of edges in G,
a non-negative weight w(u, v) for each edge (u, v) ∈ E
where u, v ∈ V , and an integer k ≤ |V |, the CMSD prob-
lem is to partition V into k subsets V1, · · · , Vk such that∑k

i=1 Diameter(Vi) is minimized, where Diameter(Vi) is
the largest weight of the edges in the complete subgraph
of G induced on Vi. It is shown in [4] that when edge
weights do not satisfy the triangle inequality, the CMSD
problem is NP-complete for any fixed k ≥ 3.

However, no proof of NP-hardness has been achieved
to date [5] for k-means. On the other hand, no polyno-
mial time algorithm has been found. Therefore, in this
paper, we focus on approximation methods as many
previous studies do.

We are interested in maintaining k centers over time.
We assume that most of the time the value of a point
evolves mildly over time. Abrupt big changes do happen
to points, but with a low probability. This assumption
is realistic for many applications such as surveillance
sensor networks monitoring environment in forest and
glaciers. This assumption is technically important since it
heuristically allows us to use the clusters at the previous
instants as the base for approximation to the new clusters
at a later instant.

Our goal is to reduce the reporting cost of data points
as much as possible, while the quality of the k-means
information is retained.

Definition 2 (Reporting cost): The reporting cost at an
instant t is the number of points whose current values
are reported in order to update the k-means information.

Different from many previous studies on k-means
where the cost measures focus on computation overhead,
in this paper, our focus is on how often a point has to
report its current value. Here, a point can determine
whether it should report based on the changes of its
value over time and the requests from the data center.
In other words, we model an intelligent data collection
unit such as a sensor as a point.

In this paper, we assume that a metric distance is used,
where the triangle inequality holds.

2.2 Related Work
Our study is highly related to the existing work on k-
means clustering on data streams from the clustering
theory point of view. It is also related to the previous
studies on clustering in sensor networks from the appli-
cation point of view. We provide a brief review here and
point out the differences.

2.2.1 k-means Clustering on Data Streams
Our study is related to data stream clustering. The values
of points evolve over time. Thus, the values of one point
over time can be modeled as a data stream.

A few studies have been conducted to investigate the
problem of data stream clustering, such as [6], [7], [8],
[9]. Different from our study where the number of points
is fixed and the interest is on maintaining k-means of the
current snapshot, most of the existing work on stream
clustering assumes that new data points keep arriving.
The task there is to maintain k-means of all data points
seen so far or in a sliding window.

Nevertheless, some critical techniques in stream clus-
tering can be borrowed to tackle the problem studied
in this paper. Particularly, Guha et al. [7] developed
a divide-and-conquer strategy, called Smaller Space, to
cluster data streams. The Smaller Space method divides
a data stream into chunks such that each chunk can be
held in main memory. It clusters a chunk to obtain a
set of cluster centers that are weighted by the number
of points in the clusters. To obtain the k-means of the
whole stream, it clusters the weighted centers in chunks.
Although the nature of the data streams in [7] and the
problem studied here are quite different, the idea of
this strategy can be extended and applied to tackle the
problem in this paper. We will discuss the details in the
next section.

2.2.2 Clustering in Sensor Networks
Since we use data sensor networks as a motivating
example of the problem studied here, our study is

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

Authorized licensed use limited to: SIMON FRASER UNIVERSITY. Downloaded on June 10, 2009 at 16:28 from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. ?, NO. ?, ? ? 4

also related to clustering in sensor networks. Most of
the previous studies on sensor network clustering fo-
cus on how to cluster sensors so that sensors having
similar readings or behavior are grouped together. The
main advantage of such clustering is that the sensor
readings within a cluster may be similar and can be
aggregated, so that the transmission cost can be re-
duced by limiting the number of outgoing messages
(e.g., [10], [11], [12] and Reactive Sensor Networks (RSN)
http://strange.arl.psu.edu/RSN/).

For example, Banerjee et al. [13] defined a sensor
cluster as a set of connected sensors in a sensor network
topology, with certain size constraints. Ideally, each node
should only belong to one cluster. Thus, there is low
overlapping among clusters. In order to find such clus-
ters, the algorithm first derives a rooted spanning tree
of the sensor network topology, and then partitions the
spanning tree according to the clustering criteria.

To lower down the communication cost in sensor
networks, Bandyopadhyay et al. [14] proposed a hierar-
chical clustering structure. A set of sensors are grouped
together, and one of them becomes a clusterhead. In data
collection, each sensor in the cluster sends its data to the
clusterhead, and the clusterhead reports the aggregated
data to the processing center. A distributed randomized
algorithm was proposed to cluster the sensors. Each
sensor takes a probability to become a clusterhead, and
broadcasts itself to other sensors within certain hops. The
sensors that are not clusterheads join the closest cluster-
head. The optimal parameters of the clustering which
minimize the communication cost are also derived. A
similar data collection framework is also used in [15].

The above algorithm can be used to build a hierar-
chical structure in a sensor network to minimize the
communication cost in data collection. However, as time
goes by, the status of each sensor may change, and
thus the so-built hierarchical structure may not always
be optimal. For example, some sensors may use more
energy to collect data, so they are dying faster than
the others. If we use such sensors as clusterheads, the
lifetime of the whole cluster decreases. To tackle the
problem, Younis et al. [16], [17] proposed Hybrid Energy-
Efficient Distributed clustering, which periodically recom-
putes the clusterheads based on the residual energy of
each sensor and its relationship to other sensors.

Meka et al. [18] defined a δ cluster as a set of sen-
sors whose communication graph is connected and the
distance of features between any pair of sensors in the
cluster is at most δ. Finding δ clustering is proved to
be NP -complete. An efficient distributed algorithm was
proposed to compute high quality approximate cluster-
ing. In the hierarchical clustering structure of a sensor
network, each cell represents a set of sensors. The sensor
closest to the centroid of a cell is elected as the leader of
the cell, and is called a sentinel node. The algorithm first
picks the sentinel node at the root, and lets it expand to
form a δ cluster. Then, the sentinel nodes at the lower
levels grow to form δ clusters recursively. This process

terminates when every node in the sensor network is
included in a δ cluster.

In [19], a method is proposed to dynamically explore
the spatial and temporal correlation of sensor readings,
and cluster sensors accordingly for energy preserving
data collection. The clustering algorithm continuously
responds to spatial correlation changes and dynamically
forms new clusters. The clustering criterion in [19],
however, is different from the one in this paper, and
the problem of k-means clustering has not been touched
in [19].

Specifically, there are two key differences between our
study and [19]. First, in this paper, we aim to cluster the
sensor readings as the current values of points instead
of sensor nodes in sensor networks. Second, we not
only compute the initial clustering, but also monitor the
clustering structure dynamically. Novel techniques are
developed to improve the efficiency.

Prior to our study, Bash et al. [20] proposed an ap-
proximately uniform random sampling method for data
collection in sensor networks. It tackles a problem differ-
ent from ours in this paper: a spatial sample may result
in a non-uniform sample of sensor nodes. To overcome
the problem, the major idea is to use geographic routing,
distributed computation of Voronoi regions and von
Neumann’s rejection method. Technically, the method
utilizes the topology of the sensor network in question.
Different from [20], the methods developed in this study
do not rely on any network topology information.

Our study is also broadly related to the previous work
on energy saving data collection [21], [22] and query
evaluation [23], [24], [25], [26] in sensor networks. The
major challenge is to collect the required data from sen-
sor networks with high quality, and reduce the commu-
nication cost as much as possible. For example, [27] pro-
poses an energy-efficient framework SAF to approximate
query and cluster nodes in a sensor network. The major
idea is to build models for readings of sensor nodes, and
use the models to predict the readings. Moreover, nodes
are clustered according to similarity. Different from the
problem studied here, the clustering algorithm in SAF
clusters sensor nodes according to the models of sensors
stored in the data center.

3 READING REPORTING TREES

Definition 3 (Reading reporting tree): Given a set of
points S, a reading reporting tree, as shown in Figure 1,
is a tree satisfying the following requirements:

• The root node of the tree collects data and maintains
the k-means information.

• Each data point is a leaf node in the tree.
• An internal node is called a data collection node if it

is the parent of some leaf nodes. A data collection
node has a fan-out of t2k, where t is a facility factor.

• An internal node is called an aggregation node if it
is not a data collection node. An aggregation node
has a fan-out of t.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

Authorized licensed use limited to: SIMON FRASER UNIVERSITY. Downloaded on June 10, 2009 at 16:28 from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. ?, NO. ?, ? ? 5

root
fan−out t

fan−out t

s

fan−out

...

... sn

...

...s1 t 2k

t 2k

Fig. 1. A reading reporting tree.

• The tree is balanced. That is, the paths from the root
node to all leaf nodes have the same length.

Without loss of generality, we assume that the number
of data points is |S| = thk, where h > 0 is the height of
the reading reporting tree, that is, a path from the root
to a leaf has h nodes inclusively. In other words, the
reading reporting tree is full. In such a situation, h =
logt

|S|
k . When a reading reporting tree is not full, we can

easily reduce the height of the tree by 1 and increase the
fan-outs of the data collection nodes so that each data
collection node has a fan-out of at least t2k. The major
results in this paper still hold.

To compute the k-means information, straightfor-
wardly, we can adopt the hierarchical L-search method [28].
The method works as follows.

1) Each point reports the current value to the parent
node in the reading report tree, which is a data
collection node.

2) A data collection node runs a k-means algorithm
and clusters the t2k points collected from its chil-
dren into t · k centers. Each center carries a weight
w which is the number of points assigned to it.
Virtually, we treat the center as a set of w points at
the identical location as the approximation of the
cluster. The weights will be used in the next step.
The data collection node reports the centers and
the weights to the parent, which is an aggregation
node.

3) An aggregation node runs a k-means algorithm
and clusters the t2k centers collected from its t chil-
dren into t ·k centers. When the k-means algorithm
is applied, a center c of weight w from a child is
treated as w points at the location of c. Again, each
center generated in the aggregation node carries
a weight which is the sum of the weights of the
centers from the children nodes assigned to it. The
aggregation node reports the centers computed and
their weights to its parent.

4) The computation is conducted in a bottom-up way
in the reading reporting tree. The root node gen-
erates k centers from the t2k weighted centers
received from its children.

Extending the ideas in [28], the above hierarchical L-
search algorithm generates a good approximation of the

k-means.
Theorem 1 (Quality – hierarchical L-search): The hierar-

chical L-search algorithm has an approximation factor
of αL−search = 2h−2bh−1, where h is the height of
the reading reporting tree, and b is the approximation
factor of the k-means clustering algorithm used in the
internal nodes (including the data collection nodes and
the aggregation nodes) of the reading reporting tree.

The proof of the theorem is provided in Appendix A.
The advantage of the hierarchical L-search method

is that it can be used at anytime, and has a constant
approximation factor (as long as a k-means method with
a constant approximation factor is used in each node in
the reading reporting tree). However, the disadvantage is
that the reporting cost is high: every point has to report
its current value.

Proposition 1 (Cost – hierarchical L-search): The hier-
archical L-search algorithm has the reporting cost of
O(|S|), where S is the set of points.

Can we reduce the reporting cost but still retain the
good quality of k-means clustering? This is the topic of
the rest of this paper.

4 A UNIFORM SAMPLING METHOD

Suppose the initial k-means information is obtained
at the root node by running the hierarchical L-search
method once. After a period, the values of some points
may change. Now, let us consider how to update the
k-means information.

To reduce reporting cost, instead of asking each point
to report, an intuitive method is to derive the k-means
information from a uniform sample of all points. With a
large enough uniform sample, we can ensure the quality
of the approximation with a high probability.

Technically, in the uniform sampling method, each point
takes a probability of p to report. Then, the hierarchical
L-search is run on the uniform sample. The k-means
derived from the sample are used as the approximation
of the k-means on all points.

Let O be a set of points and C be a set of points as
the centers. The sum of distances of O using C is defined
as

dsum(O, C) =
∑
o∈O

min
c∈C

{dist(o, c)}

Let X be a uniform sample of the points in S. Let CS

be the centers of the exact k-means (that is, the optimal
centers) on S, and CX be the centers of the exact k-means
on X . In the uniform sampling method, the hierarchical
L-search method is used to approximate CX , and the
approximation of CX is used as the approximation of
CS .

To measure the approximation quality, we assign the
points in S into clusters using the centers in CX . Then,
the sum of distances using CX is

dsum(S, CX) =
∑
o∈S

min
q∈CX

{dist(o, q)}

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

Authorized licensed use limited to: SIMON FRASER UNIVERSITY. Downloaded on June 10, 2009 at 16:28 from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. ?, NO. ?, ? ? 6

The sum of distances of the k-means is

dsum(S, CS) =
∑
o∈S

min
q∈CS

{dist(o, q)}

We have the following result.
Theorem 2 (Uniform sampling method): For any δ (0 <

δ < 1) and ε (0 < ε < 1), in the uniform sampling
method, if the sample size

|X| ≥ 3 ln 2
δ

dsum(S, CS)ε2
|S|

then
dsum(S, CX) ≤ 1 + ε

1 − ε
dsum(S, CS) (1)

with a probability at least (1−δ). Moreover, the uniform
sampling method has a constant approximation factor
with a high probability with respect to the hierarchical
L-search method.

The proof of Theorem 2 is given in Appendix B.
Theorem 2 shows that using a reading reporting tree,

a uniform sampling method can achieve good quality
provided that the sample size is large enough. Appar-
ently, the sampling rate in the uniform sampling method
should be at least 3 ln 2

δ

dsum(S,CS)ε2 . Thus, the reporting cost
of the uniform sampling method is as follows.

Proposition 2: In the uniform sampling method, the
expected number of points reporting at an instant is

Costuniform−samp ≥ 3 ln 2
δ

dsum(S, CS)ε2
|S|

where S is the set of data points.
One drawback of the uniform sampling method is

that, as shown in Theorem 2, the required sample size
depends on dsum(S, CS), which is unknown to users.
Although a loose upper bound of dsum(S, CS) can be
easily obtained by randomly choosing k points in the
data space as the centers and calculating the sum of
distances of the points to the centers, such an estimation
is ineffective in practice. In implementation, we can
choose a sample size based on the k-means estimation
at the last instant due to the assumption that the data
changes are often mild.

5 A REPORTING THRESHOLD METHOD

The uniform sampling method treats each point the
same: each point reports with the same probability. How-
ever, if the values of many points may evolve mildly,
their values may be relatively stable and thus may have
little effect on the changes of the centers. Can we take the
advantage of this relative stability to reduce reporting
cost?

Here, we propose a simple reporting threshold method
which works as follows. Let Δ > 0 be a change threshold.
Suppose at instant i0, a point s reports the current value
si0 (to its parent). At an instant i > i0 such that s does
not report at any instant between i0 and i, s reports again
if and only if dist(si, si0) ≥ Δ, where si is the value of s

j x
dj x

d’

cj
c’
j<=

<=oj x
~
oj x

Fig. 2. The relation between djx
and d′

jx
.

at instant i. In other words, a point reports again only if
its value changes at least Δ from the value it reports last
time. As the initialization step, we run the hierarchical L-
search method at instant 1 such that every point reports.

At a data collection node, for each point s, a last re-
ported value õ is maintained. Apparently, dist(o, õ) < Δ,
where o is the current value of s. Otherwise, the point
should update its value. The reporting threshold method
uses õ to calculate the k-means as the approximation
of the current k-means. Like the hierarchical L-search
method, the data collection and clustering procedure
runs bottom-up in the reading reporting tree.

Now, let us examine the clustering quality of the
reporting threshold method. For the set of points S =
{s1, . . . , sn}, let oi and õi (1 ≤ i ≤ n) be the real
value of point si and the value reported for clustering,
respectively. The reporting threshold method ensures
dist(oi, õi) < Δ.

Lemma 1: Let ds be the sum of distances of the exact
k-means on o1, . . . , on and d̃s be the sum of distances of
the exact k-means on õ1, . . . , õn. Then, d̃s < ds + 2nΔ,
where Δ is the reporting threshold.

Proof: Let c1, . . . , ck be the centers in the exact k-
means on o1, . . . , on, and c̃1, . . . , c̃k be the centers in the
exact k-means on õ1, . . . , õn.

For each center cj , let oj1 , . . . , ojl
be the values

assigned to cj . We can calculate the corresponding
center c′j of õj1 , . . . , õjl

. That is, we form clusters of
õ1, . . . , õn synchronizing with o1, . . . , on in partitioning.
Since dist(oi, õi) < Δ, dist(cj , c

′
j) < Δ.

Let djx
= dist(ojx

, cj) and d′jx
= dist(õjx

, c′j). As
illustrated in Figure 2, |djx

− d′jx
| < 2Δ.

Let ds′ =
∑n

i=1 d′
i. Then, ds′ ≤ ds+2nΔ. Clearly, ds′ ≥

d̃s since d̃s is the optimum on c̃1, . . . , c̃k. Thus, we have
d̃s < ds′ ≤ ds + 2nΔ. The lemma is proved.

Theorem 3 (Quality–reporting threshold): The reporting
threshold method has an approximation factor of
2h−2bh−1 to the optimum k-means solution, where h is
the height of the reading reporting tree, and b is the ap-
proximation factor of the k-means clustering algorithm
used in the internal nodes of the reading reporting tree.

Proof: According to Theorem 1, the hierarchical
L-search method introduces an approximation factor
2h−2bh−1. The reporting threshold method uses the hier-
archical L-search method to approximate the optimum k-
means solution on the values reported. Lemma 1 shows
that the exact k-means on the stored values approximate

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

Authorized licensed use limited to: SIMON FRASER UNIVERSITY. Downloaded on June 10, 2009 at 16:28 from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. ?, NO. ?, ? ? 7

the exact k-means on the real current values by an ab-
solute error bound 2nΔ. 2nΔ is a constant and does not
affect the approximation factor of the reporting threshold
method. Thus, we have the theorem.

The above theoretical analysis shows that the report-
ing threshold method only introduces an error bounded
by a constant (when the set of points and the threshold
are fixed). Moreover, we can control the error bound by
setting the reporting threshold.

How much can be saved in reporting cost by the
reporting threshold method?

Theorem 4 (Cost–reporting threshold): Let S be the set
of points. Under the assumptions that (1) the values
of points are independent from each other; and (2) the
changes of values of points follow a normal distribution
with a mean of μ and a standard deviation of σ, in
the reporting threshold method, the expected number
of points reporting at an instant is

(1 − erf(
Δ

σ
√

2
))|S|

where

erf(x) =
2√
π

∫ x

0

e−t2dt =
2√
π

∞∑
n=0

(−1)nx2n+1

n!(2n + 1)

is the Gauss error function, and Δ is the reporting
threshold.

Proof: Consider a point s ∈ S. Suppose õ is the value
of s last reported. At the current instant, s has the current
value o. It reports again if and only if dist(o, õ) ≥ Δ.

Since the changes of the values follow a normal dis-
tribution, the probability Pr(dist(o, õ) < Δ) is the area
under the curve of the probability density function of
normal distribution so that μ − Δ < x < μ + Δ. That is,
Pr(dist(o, õ) < Δ) = erf(Δ

σ
√

2
).

Thus, Pr(dist(o, õ) ≥ Δ) = 1−Pr(dist(o, õ) < Δ) = 1−
erf(Δ

σ
√

2
). There are |S| points in total. The expectation

stated in the theorem follows.
One possible drawback of the reporting threshold

method is that it may be very sensitive to the threshold.
The data from sensors can be very noisy. Compared to
the uniform sampling approach, the negative effect of
noise can be enlarged in the reporting threshold method
if the threshold is not set properly.

6 A LAZY METHOD

All the methods we discussed so far are aggressive in
data collection and clustering: they conduct clustering at
every instant. Moreover, a k-means clustering procedure
is run at every internal node of the reading reporting
tree. In the situations where the values of points evolve
slowly, the k-means clusters change slowly and are
relatively stable. Instead of being aggressive, can we be
adaptive to the changes so that more reporting cost can
be saved even for the internal nodes?

Here we propose a lazy method. The central idea is
that, at each internal node of the reading reporting tree,

the k-means centers in a previous instant are reused as
much as possible unless the changes are large enough.

Technically, for each internal node u in the reading
reporting tree, at an instant, u reports the new centers
to its parent only if using the new centers results in
a change of at least τ in the sum of distances than
using the centers u reports last time, where τ is the
change threshold on the sum of distances. We describe
the details in two cases.

In the first case, let us consider a data collection node
u. Suppose s1, . . . , st2k are the children of u. Then, u
remembers the centers c1, . . . , ck and the sum of dis-
tances ds that it reports to the parent last time, as well
as the weights of the centers w1, . . . , wk, that is, wi

(1 ≤ i ≤ k) points are assigned to center ci in the k-
means partitioning.

When u receives the new values from the children, u
runs the k-means procedure to calculate the new centers
and the sum of distances dsnew. u also tries to greedily
assign the new readings to the old centers c1, . . . , ck

as follows. For each point o of the new readings, o is
assigned to the nearest center whose capacity is not full.
We assign points to centers in the distance ascending
order. A center ci is full once it is assigned wi points.
The sum of distances between the points to the assigned
centers ds′new is calculated. u reports the new centers to
its parent only if |dsnew − ds′new| ≥ τ .

Lemma 2: ds′new can be computed in time O(t2k2(k +
log t2k)).

Proof: Each data collection node has t2k children.
Sorting the leaf nodes in the distance ascending order
takes time O(t2k log t2k). When some centers are full,
those leaf nodes using some full center as the nearest
center need to update the distance to the nearest center,
and be inserted into the right position in the sorted list.
For such a leaf node, the cost is O(k + log t2k). Such
adjustments can happen at most O(t2k · k) times. Thus,
the overall complexity is O(t2k log t2k + t2k · k · (k +
log t2k)) = O(t2k2(k + log t2k)).

In the second case, let us consider an aggregation node
u. The children of u report to u the centers in the children
nodes with the corresponding weights. We only need to
treat each updated center c with weight w from a child
as w points at location c. The method in the first case
can be applied straightforwardly.

We can also use the observation in Lemma 1 to save
more. Let u be a data collection node, which has tk

children. If every child of u has a change of value less
than τ

tk , then the change of the sum of distances must
be also less than τ . Clearly, no children of u need to
report, and u does not need to run the k-means clustering
procedure.

Using the above observation, at an instant, a point
informs its parent if its value changes at least τ

t2k . Then,
the parent informs its children to update the values if it
receives the change notification from at least one child.
Once the new values arrive, a k-means clustering is
conducted and if the change in the sum of distances is

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

Authorized licensed use limited to: SIMON FRASER UNIVERSITY. Downloaded on June 10, 2009 at 16:28 from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. ?, NO. ?, ? ? 8

at least τ , an update is reported to the parent.
We claim that the lazy method has a good approxima-

tion quality as follows.
Theorem 5 (Quality – lazy method): The lazy method

has an approximation factor of 2h−2bh−1 to exact k-
means, where h is the height of the reading reporting
tree, and b is the approximation factor of the k-means
clustering algorithm used in the internal nodes of the
reading reporting tree.

Proof: At each internal node in the reading reporting
tree, when the node reports, the approximation factor b
is satisfied. When the node does not report, that is, the
lazy method uses threshold τ to save communication,
we have d̃s ≤ b · ds + τ where ds is the optimum sum of
distances and d̃s is the approximation using the centers
of some previous instant. In other words, the approxi-
mation factor b still holds. According to Theorem 1, the
approximation factor 2h−2bh−1 is achieved at the root of
the reading reporting tree.

The lazy method can be viewed as pushing the report-
ing threshold method into every internal node.

Theorem 6 (Cost – lazy method): Let S be the set of
points. Under the assumptions that (1) the values of
points are independent from each other; and (2) the
changes of values of points follow a normal distribution
with a mean of μ and a standard deviation of σ, in the
lazy method, the expected number of points reporting
at an instant is

|S|
t2k

(erf(
τ

t2kσ
√

2
))t2k

where erf(x) is the Gauss error function, and τ is the
change threshold on the sum of distances.

Proof: Using the same idea in the proof of Theorem 4,
we can show that erf(τ

t2kσ
√

2
) is the probability that a

point does not raise a change notification to its parent.
A point does not report if itself and all its siblings
do not raise a change notification. The probability is
(erf(τ

t2kσ
√

2
))t2k. The points are partitioned into |S|

t2k

groups at the leaf node level. Thus we have the formula
in the theorem.

The lazy method can be effective if the values of the
points are relatively stable, such as surveillance sensors
in forest. In such a situation, the lazy method can reduce
the cost of clustering procedures and communication. It
is change-driven – an internal node is triggered only
if the points that it manages detect some significant
changes.

7 SIMULATION EVALUATION

Table 2 summarizes the quality guarantees and the ex-
pected reporting cost in those methods. In this section,
we empirically evaluate the methods proposed in this
paper. Particularly, we test the algorithms in the aspects
of clustering quality, reporting cost, and scalability.

All the experiments were conducted on a PC com-
puter with a 3.0 GHz Pentium 4 CPU, 1.0 GB main

memory, and a 160 GB hard disk, running the Microsoft
Windows XP Professional Edition operating system, Our
algorithms were implemented in Microsoft Visual Studio
2005.

7.1 Simulation Setup

There are some existing synthetic data generation meth-
ods in sensor networks in literature. Yu et al. [29], [30]
developed a synthetic data generation framework for
sensor networks, for the purpose of statistics estimation
of data, data compression, and data estimation. Jindal
and Psounis [31], [32] provided methods to generate
data in sensor networks with various degrees of spatial
correlation. Other synthetic data generation methods
include [29] and [33].

The existing methods are not suitable for our simula-
tion purpose, since the generated data may not reflect
the characteristics of clusters in sensor readings and
the temporal evolving behavior of clusters. Therefore,
we generate synthetic data sets to simulate the cluster-
evolving scenarios in sensor networks as follows1.

A data set contains n points in an l-dimensional space
D1×· · ·×Dl. The domain of each dimension is [0, 2000].
By default, n = 1, 280 and l = 2.

At instant 1, 98% of the points in the data set form
k (by default, k = 5) clusters with equal size and the
rest 2% of points are noise points that do not belong
to any cluster. The number of points in each cluster is
� 98%n

k �. The cluster centers are uniformly distributed in
space D1×· · ·×Dl. The cluster radius follows the normal
distribution N(20, 1). For each point s in a cluster with
center c and radius r, the reading of s in dimension Dj

(1 ≤ j ≤ l) follows the normal distribution N(c1
j , σ) in

range [c1
j −r, c1

j +r], where c1
j is the reading of center c in

dimension Dj at instant 1 and σ = N(20, 1). The noise
points are uniformly distributed in space D1 × · · · × Dl.

The sensor readings at instant i (i > 1) are generated
to simulate the following cluster-evolving scenarios.

LM (local move): for each point, the current reading de-
viates slightly from the reading of the same point at the
previous instant. Particularly, at instant i (i > 1), for each
point s, the reading of s in dimension Dj (1 ≤ j ≤ l) is
generated following the normal distribution N(si−1

j , 10),
where si−1

j is the reading of s in dimension Dj at instant
i − 1.
RS (radius shrinking): at the current instant, the radius
of each cluster shrinks compared to the radius of the
same cluster at the previous instant. Particularly, for each
point s, let si−1

j be the reading of s in dimension Dj

(1 ≤ j ≤ l) at instant i − 1 (i > 1). The distance between
s and the cluster center c is |si−1

j − ci−1
j |, where ci−1

j is
the reading of center c in dimension Dj at instant i − 1.
At instant i, the reading of center c does not change (that
is, ci

j = ci−1
j), while the reading of s in dimension Dj is

1. The data sets are available at http://www.cs.sfu.ca/∼jpei/
Software/SESER.rar

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

Authorized licensed use limited to: SIMON FRASER UNIVERSITY. Downloaded on June 10, 2009 at 16:28 from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. ?, NO. ?, ? ? 9

TABLE 2
The summary of the quality guarantees and expected reporting cost of the methods.

Method Approximation factor Reporting cost
Hierarchical L-search 2h−2bh−1 O(|S|)

Uniform sampling 2h−2bh−1 1+ε
1−ε

O(
3 ln 2

δ
dsum(S,CS)ε2

|S|)
Reporting threshold 2h−2bh−1 O((1 − erf(Δ

σ
√

2
))|S|)

Lazy 2h−2bh−1 O(
|S|
t2k

(erf(τ

t2kσ
√

2
))t2k)

changed to si
j = ci

j + (si−1
j − ci

j)α, where α ∈ (0, 1) is the
radius changing ratio. By default, α = 0.6.
RE (radius expanding): at the current instant, the radius
of each cluster enlarges compared to the radius of the
same cluster at the previous instant. The reading of each
point at instant i is generated in the same way as the
situation of radius shrinking. The only difference is that
the radius changing ratio α is greater than 1. By default,
α = 2.
RB (radius bumping): the radius of each cluster changes
from the previous instant, and some clusters merge into
each other. The data generation for the radius bumping
scenario for instant i is the same as that in the situation of
radius expanding. The only difference is that the radius
changing ratio α is large so that some clusters may
merge. By default, α = 6.
CC (center change): the center of each cluster moves.
Particularly, at instant i (i > 1), the reading of a center
c in dimension Dj (1 ≤ j ≤ l) is generated following
the normal distribution N(ci−1

j , 100), where ci−1
j is the

reading of c in dimension Dj at instant i − 1. For each
point s in the cluster with center c, the reading of s in
dimension Dj at instant i is changed to si

j = ci
j +(si−1

j −
ci−1
j), where si−1

j is the reading of s in dimension Dj at
instant i − 1.
ME (membership exchange): many points leave the
clusters they belong to at the previous instant and join a
new cluster at the current instant. Particularly, at instant
i, we randomly select a cluster C as the dissolving
cluster. Each point s in C joins another cluster C ′ that is
randomly selected from the rest clusters. The reading of
s at instant i is generated in the same way as the existing
member points in C ′.

We test the approximation quality of each algorithm
in various cluster evolving situations. The height of the
reading report tree is set to 4, and the facility factor t = 4.
The number of clusters is 5.

So far there does not exist a polynomial time algorithm
to compute the optimal k-means. Thus, we use the
popularly adopted randomized algorithm to compute
an approximation of the optimal results. That is, as the
baseline method, we run the k-means algorithm offline
on the whole data set, and obtain the sum of distance
as the benchmark. The clustering results in the proposed
methods are compared with the benchmark values. Pre-
vious studies have shown that the offline method can
often achieve very good approximation to the optimal
results, and has a theoretically provable approximation

ratio 2 [34].
The error rate of each algorithm is defined as

Error rate =
̂dsum − dsum

dsum · k
where dsum is the sum of distances computed by the
offline k-means algorithm and ̂dsum is the sum of dis-
tances computed by an approximation algorithm pro-
posed in this paper. k is the number of clusters.

7.2 Clustering Quality
In this subsection, we report the results on testing the
clustering quality of our methods. Since the k-means
algorithms are randomized algorithms in nature, we run
each of our experiments 5 times, and report the median
of the results. Choosing the median is to avoid the ill-
effect of some extreme outlier values.

We compare four methods: the reporting threshold
method (RT), the uniform sampling method (US), the
lazy reporting threshold method (lazyRT) and the lazy
uniform sampling method (lazyUS). The lazy uniform
sampling method is to combine the lazy method with
the uniform sampling: if k-means clustering has to be
conducted in an internal node in a reading reporting tree,
a uniform sample is draw from its children to derive the
clustering information.

7.2.1 Clustering Quality of the Four Algorithms
The error rates of the four methods in various situations
of cluster changes are reported in Figure 3. Since the
trends of the error rates in the situations of radius shrink-
ing (RS), radius expanding (RE), and radius bumping
(RB) are similar, we only show the curves of the radius
expanding (RE) situation as the representative and omit
the curves of (RB) and (RS) to make the figures more
legible.

Figure 3(a) reports the error rates of the reporting
threshold method. Generally, as the change threshold
increases, fewer points will report their values, and thus
the error rates are expected to increase. However, in the
situations of local move (LM) and membership exchange
(ME), the error rates drop slightly when the change
threshold is greater than 12 (there are very few new
point values reported, and the clustering is mainly based
on the previous data). The reason is that, the sum of
distances is stable in those two situations, therefore,
computing the clustering using most of the previous

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

Authorized licensed use limited to: SIMON FRASER UNIVERSITY. Downloaded on June 10, 2009 at 16:28 from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. ?, NO. ?, ? ? 10

 0
 2
 4
 6
 8

 10
 12
 14
 16

 4 8 12 16 20

E
rr

or
 r

at
e

(%
)

Change threshold

RE
CC
LM
ME

(a) Error rate of RT.

 0

 5

 10

 15

 20

 10 30 50 70 90

E
rr

or
 r

at
e

(%
)

Sample rate (%)

LM
RE
CC
ME

(b) Error rate of US.

 0

 5

 10

 15

 20

 200 400 600 800 1000

E
rr

or
 r

at
e

(%
)

Sum of distance change threshold

CC
ME
LM
RE

(c) Error rate of lazy RT.

 0

 5

 10

 15

 20

 200 400 600 800 1000

E
rr

or
 r

at
e

(%
)

Sum of distance change threshold

CC
ME
LM
RE

(d) Error rate of lazy US.

Fig. 3. Approximation quality in different situations of cluster changes.

 0

 5

 10

 15

 20

 2 3 4 5 6 7 8 9 10

E
rr

or
 r

at
e

(%
)

Parameter k

US
Lazy US
Lazy RT

RT

(a) Error rate vs. k.

 0
 5

 10
 15
 20
 25
 30
 35

 2 3 4 5 6 7 8 9 10

E
rr

or
 r

at
e

(%
)

Facility factor

RT
Lazy US
Lazy RT

US

(b) Error rate vs. facility factor.

 0

 5

 10

 15

 20

 3 4 5 6 7

E
rr

or
 r

at
e

(%
)

Height of the reading reporting tree

US
RT

Lazy US
Lazy RT

(c) Error rate vs. height.

 0

 2

 4

 6

 8

 10

 2 3 4 5 6 7 8 9 10

E
rr

or
 r

at
e

(%
)

Number of dimensions

RT
Lazy US

US
Lazy RT

(d) Error rate vs. dimensionality.

Fig. 4. Approximation quality with respect to parameters of the reading reporting tree and the dimensionality.

 0

 20

 40

 60

 80

 100

 4 8 12 16 20

N
um

be
r

of
 p

oi
nt

s
(%

)

Change threshold

CC
RE
ME
LM

(a) Efficiency of RT.

 0

 20

 40

 60

 80

 100

 10 30 50 70 90

N
um

be
r

of
 p

oi
nt

s
(%

)

Sample rate (%)

LM
RE
CC
ME

(b) Efficiency of US.

 0

 20

 40

 60

 80

 100

 200 400 600 800 1000

N
um

be
r

of
 n

od
es

 (
%

)

Sum of distance change threshold

CC
RE
ME
LM

(c) Efficiency of lazy RT.

 0

 20

 40

 60

 80

 100

 200 400 600 800 1000

N
um

be
r

of
 n

od
es

 (
%

)

Sum of distance change threshold

RE
CC
ME
LM

(d) Efficiency of lazy US.

Fig. 5. Reporting cost in different clustering evolving situations.

readings actually gives a good approximation of the real
clustering.

Figure 3(b) shows that the error rates of the uniform
sampling method are stable in general and decrease
slightly as the sample rate increases. This is because,
more point values are collected when the sample rate
is higher. In general, the error rates of the uniform
sampling method are higher than the error rates of the
reporting threshold method. The reason is, the reporting
threshold method uses both the previous readings of
those stable points and the updated current values of
those significantly changed points. Thus, more accu-
rate information is captured in the reporting threshold
method.

Figures 3(c) and 3(d) show the error rates of the lazy
reporting threshold method and the lazy uniform sam-
pling method, respectively. In general, when the sum of
distances change threshold becomes larger, fewer inter-
nal nodes report their changes, so the error rates become
higher. This trend is observed in the experiments, though
the increase of error rates is quite mild. The error rates
of the lazy methods are all below 10%, which illustrate
their effectiveness.

In summary, the four methods all provide good
approximation quality of the real clusterings in vari-
ous cluster evolving situations. The reporting threshold
method is more accurate than the uniform threshold
method since the reporting threshold method reuses the

information at the previous instant. The lazy methods
can provide high quality approximation in most clus-
tering evolving situations, except for the center change
case.

7.2.2 Effects of the Parameters of Reading Reporting
Trees on Quality

The four algorithms proposed in this paper use the
reading reporting tree framework. A reading reporting
tree takes three structural parameters: the number of
clusters k, the facility factor t, and the height of the
tree h. Moreover, it is well known that clustering is
sensitive to the dimensionality of data. In our case, the
dimensionality is the number of measures detected by a
point2.

We tested the clustering quality with respect to the
four parameters listed above. Here, we use the situation
of local move to report the results. The results on the
other situations of cluster evolving are similar.

We set the parameters for the algorithms as follows.
In the reporting threshold method, we set the change
threshold to 10. In the uniform sampling method, we
set sampling rate to 50%. In the two lazy methods, we
set the change threshold to 600.

2. In the applications of sensor networks, typically, this is a small
positive integer (e.g., about 3-5) in most of the state-of-the-art sensor
networks.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

Authorized licensed use limited to: SIMON FRASER UNIVERSITY. Downloaded on June 10, 2009 at 16:28 from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. ?, NO. ?, ? ? 11

Figure 4(a) shows the error rates of the four algorithms
with respect to different number of clusters k. It is
interesting that as k increases from 2 to 8, the error rates
also increase; but when k further increases from 9 to
10, the error rates drop down. The reason is, when k is
very small, each cluster contains a large set of points,
and is relatively stable. When the number of clusters
increases, the clusters become smaller and are easier to
be affected by the change of data. However, when the
number of clusters is large, most of the clusters are local.
Local changes in data cannot affect most clusters.

Figure 4(b) shows the error rates of the algorithms
with respect to different facility factors. We can observe
the a similar trend as in Figure 4(a). This is because,
when t is very small, there are very few point values in
each micro-cluster, therefore, the cluster centers reported
in the internal nodes are very close to the actual point
values. The approximation is accurate. As t increases,
the error rates also go up. This is because, the current
values of points are approximated by cluster centers in
the internal nodes of a reading report tree, which leads
to an accuracy loss. However, when t ≥ 7, the error
rates start to decrease, because when there are enough
points in each micro-cluster, the increasing number of
cluster centers led by a larger value of t becomes a good
approximation of other readings in the same cluster.

In Figure 4(c), the error rates decrease when the height
of the reading reporting tree increases. This is simply
because the number of points increases dramatically
when the height of the reporting becomes larger. With
more data, the clustering quality can be expected better.
Technically, the sum of distances in the actual clustering
also increases dramatically. This sum is used as the
denominator of the error rate calculation. In other words,
the approximation made by our methods are proportion-
ally stable with respect to the sum of distances in the
actual clustering. The results also translate to a highly
desirable conclusion: our methods have lower error rates
(that is, better approximation quality) on larger data sets.

Figure 4(d) shows the error rates with respect to
dimensionality up to 10. The error rates of our methods
are stable in general, though some exceptional points
do exist. The results clearly show that our methods
can handle the dimensionality high enough for a few
applications such as sensor networks detecting multiple
measures.

7.3 Reporting Cost
The major purpose of our four methods is to save report-
ing cost. In this subsection, we test the effect of reporting
cost reduction of all the four algorithms with respect
to different cluster evolving situations and structural
parameters of the reading reporting tree.

7.3.1 reporting cost in the Four Algorithms
We evaluated the reporting cost of the four algorithms
in terms of the number of points that report their current

values during the clustering process. The results are
shown in Figure 5.

Figure 5(a) shows the number of points reported with
respect to change threshold in the reporting threshold
method. As expected, when the change threshold in-
creases, fewer points will report their values. Among the
different cluster evolving situations, most points report
their values in the center change situation, since all the
point values change substantially in order to make the
cluster center change. In the local move situation, the
fewest points report their values, because a point does
not report its current value if the change between the
previous reading and the current reading is within the
change threshold. When the change threshold is 20, very
few points report their current values, but the error
rates are still lower than 10%, as shown in Figure 3(a),
which shows the effectiveness of the reporting threshold
method.

Figure 5(b) shows that the number of points reported
increases linearly as the sample rates increases. When
the sample rate is 10%, there are fewer than 200 points
reported, but the error rates are still lower than 10%, as
shown in Figure 3(b). If we compare the error rates of the
reporting threshold method and the uniform sampling
method, it is interesting to observe that when the number
of samples reported is similar in the two methods, the
error rates of the reporting threshold methods are lower
than the error rates of the uniform sampling method,
which again verifies the effectiveness of the reporting
threshold method.

In Figures 5(c) and 5(d), we plot the percentage of
number of internal nodes reported in the lazy report-
ing threshold method and the lazy uniform sampling
method. As the sum of distances change threshold in-
creases, fewer internal nodes report their centers. It is
clear that in the lazy methods, only a small portion of
internal nodes report their new centers, which verifies
the effectiveness of the lazy methods in reducing the
reporting cost.

In summary, the number of points reported in the
clustering can be controlled by different parameters in
the four algorithms. Reducing the number of reporting
points can reduce the reporting cost. Moreover, our ex-
perimental results show that the approximation quality
is not affected significantly while the number of report-
ing points can be reduced substantially. This property
clearly shows the effectiveness of our methods.

8 CONCLUSIONS

In this paper, we tackled a novel and interesting prob-
lem: continuously monitoring k-means with low report-
ing cost. We proposed a reading reporting tree structure
and developed a set of methods. Our methods reduce
the number of points that need to report, and thus save
the reporting cost.

As future work, it is interesting to exploit our methods
in applications like data collection in sensor networks.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

Authorized licensed use limited to: SIMON FRASER UNIVERSITY. Downloaded on June 10, 2009 at 16:28 from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. ?, NO. ?, ? ? 12

In such applications, in addition to reporting cost, there
are other types of cost which have not been included in
our model. For example, sensing different measures may
have different cost. Integrating those types of cost in a
comprehensive model is interesting and challenging.

ACKNOWLEDGEMENT

We sincerely thank the anonymous reviewers and Pro-
fessor Diane J. Cook for their constructive suggestions
which help to improve the quality of the paper.

The research of Ming Hua, Man Ki Lau and Jian
Pei was supported in part by an NSERC Discovery
Grant and an NSERC Discovery Accelerator Supple-
ments Grant. All opinions, findings, conclusions and
recommendations in this paper are those of the authors
and do not necessarily reflect the views of the funding
agencies. The research of Kui Wu was supported in
part by an NSERC discovery grant and a CFI new
opportunity grant.

REFERENCES
[1] S. Lloyd, “Least squares quantization in pcm,” IEEE Transactions

on Information Theory, vol. 28, pp. 129–137, 1982.
[2] J. B. Macqueen, “Some methods of classification and analysis

of multivariate observations,” in Proceedings of the Fifth Berkeley
Symposium on Mathemtical Statistics and Probability, 1967, pp. 281–
297.

[3] M. Li and Y. Liu, “Underground structure monitoring with
wireless sensor networks,” in IPSN ’07: Proceedings of the 6th
international conference on Information processing in sensor networks.
New York, NY, USA: ACM, 2007, pp. 69–78.

[4] P. Brucker, “On the complexity of clustering problems,” Lecture
Notes in Economics and Mathematical Systems, vol. 157, pp. 45–54,
1978.

[5] S. Durocher, Geometric Facility Location under Continuous Motion,
ser. Ph.D. thesis. University of British Columbia, April 2006.

[6] C. C. Aggarwal, J. Han, J. Wang, and P. Yu, “A framework for
clustering evolving data streams,” in Proc.the 19th Int. Conf. on
Very Large Data Bases (VLDB’03), Berlin, Germany, September
2003.

[7] S. Guha, A. Meyerson, N. Mishra, R. Motwani, and
L. O’Callaghan, “Clustering data streams: Theory and practice,”
IEEE Transactions on Knowledge and Data Engineering, vol. 15,
no. 3, pp. 515–528, 2003.

[8] L. O’Callaghan, A. Meyerson, R. Motwani, N. Mishra, and
S. Guha, “Streaming-data algorithms for high-quality clustering,”
in ICDE ’02: Proceedings of the 18th International Conference on Data
Engineering. Washington, DC, USA: IEEE Computer Society, 2002,
p. 685.

[9] J. Beringer and E. Hüllermeier, “Online clustering of parallel data
streams,” Data Knowl. Eng., vol. 58, no. 2, pp. 180–204, 2006.

[10] M. Younis, M. Youssef, and K. Arisha, “Energy-aware routing
in cluster-based sensor networks,” in MASCOTS ’02: Proceedings
of the 10th IEEE International Symposium on Modeling, Analysis,
and Simulation of Computer and Telecommunications Systems (MAS-
COTS’02). Washington, DC, USA: IEEE Computer Society, 2002,
p. 129.

[11] S. Ghiasi, “Optimal energy aware clustering in sensor network,”
Sensor, vol. 2, pp. 258–269, 2002.

[12] S. Yoon and C. Shahabi, “The clustered aggregation (cag) tech-
nique leveraging spatial and temporal correlations in wireless
sensor networks,” ACM Trans. Sensor Networks, vol. 3, no. 1, p. 3,
2007.

[13] S. Banerjee and S. Khuller, “A clustering scheme for hierarchical
control in multi-hop wireless networks,” in INFOCOM, 2001, pp.
1028–1037.

[14] S. Bandyopadhyay and E. J. Coyle, “An energy efficient hier-
archical clustering algorithm for wireless sensor networks,” in
INFOCOM, 2003.

[15] W. B. Heinzelman, A. P. Chandrakasan, and H. Balakrishnan, “An
application-specific protocol architecture for wireless microsensor
networks,” Wireless Communications, IEEE Transactions on, vol. 1,
no. 4, pp. 660–670, 2002.

[16] O. Younis and S. Fahmy, “Distributed clustering in ad-hoc sensor
networks: A hybrid, energy-efficient approach,” in INFOCOM,
2004.

[17] ——, “Heed: A hybrid, energy-efficient, distributed clustering
approach for ad hoc sensor networks,” IEEE Trans. Mob. Comput.,
vol. 3, no. 4, pp. 366–379, 2004.

[18] A. Meka and A. K. Singh, “Distributed spatial clustering in sensor
networks,” in EDBT, 2006, pp. 980–1000.

[19] C. Liu, K. Wu, and J. Pei, “An energy-efficient data collection
framework for wireless sensor networks by exploiting spatiotem-
poral correlation,” IEEE Trans. Parallel Distrib. Syst., vol. 18, no. 7,
pp. 1010–1023, 2007.

[20] B. A. Bash, J. W. Byers, and J. Considine, “Approximately uniform
random sampling in sensor networks,” in Proceeedings of the
1st international workshop on Data management for sensor networks
(DMSN’04). New York, NY, USA: ACM, 2004, pp. 32–39.

[21] D. Chu, A. Deshpande, J. M. Hellerstein, and W. Hong, “Ap-
proximate data collection in sensor networks using probabilistic
models,” in ICDE, 2006, p. 48.

[22] A. Deshpande, C. Guestrin, S. Madden, J. M. Hellerstein, and
W. Hong, “Model-driven data acquisition in sensor networks,” in
VLDB, 2004, pp. 588–599.

[23] D. Q. Goldin, “Faster in-network evaluation of spatial aggrega-
tionin sensor networks,” in ICDE, 2006, p. 148.

[24] A. Manjhi, S. Nath, and P. B. Gibbons, “Tributaries and deltas:
Efficient and robust aggregation in sensor network streams,” in
SIGMOD Conference, 2005, pp. 287–298.

[25] X. Yang, H.-B. Lim, M. T. Özsu, and K.-L. Tan, “In-network
execution of monitoring queries in sensor networks,” in SIGMOD
Conference, 2007, pp. 521–532.

[26] A. Bhattacharya, A. Meka, and A. K. Singh, “Mist: Distributed in-
dexing and querying in sensor networks using statistical models,”
in VLDB, 2007, pp. 854–865.

[27] D. Tulone and S. Madden, “An energy-efficient querying frame-
work in sensor networks for detecting node similarities,” in
Proceedings of the 9th ACM international symposium on Modeling
analysis and simulation of wireless and mobile systems (MSWiM’06).
New York, NY, USA: ACM, 2006, pp. 191–300.

[28] S. Guha, N. Mishra, R. Motwani, and L. O’Callaghan, “Clustering
data streams,” in Proc. IEEE Symposium on Foundations of Computer
Science (FOCS’00), Redondo Beach, CA, 2000, pp. 359–366.

[29] Y. Yu, D. Ganesan, L. Girod, D. Estrin, and R. Govindan, “Syn-
thetic data generation to support irregular sampling in sensor
networks,” 2003.

[30] Y. Yu, D. Estrin, M. Rahimi, and R. Govindan, “Using more
realistic data models to evaluate sensor network data processing
algorithms,” in LCN ’04: Proceedings of the 29th Annual IEEE
International Conference on Local Computer Networks. Washington,
DC, USA: IEEE Computer Society, 2004, pp. 569–570.

[31] A. Jindal and K. Psounis, “Modeling spatially-correlated data
of sensor networks with irregular topologies,” in IEEE SECON
2005: Proceedings of the Second Annual IEEE Communications Society
Conference on Sensor and Ad Hoc Communications and Networks.
IEEE Computer Society, 2005, pp. 305–316.

[32] ——, “Modeling spatially correlated data in sensor networks,”
ACM Trans. Sen. Netw., vol. 2, no. 4, pp. 466–499, 2006.

[33] Y.-A. L. Borgne, M. Moussaid, and G. Bontempi, “Simulation
architecture for data processing algorithms in wireless sensor net-
works,” in AINA ’06: Proceedings of the 20th International Conference
on Advanced Information Networking and Applications - Volume 2
(AINA’06). Washington, DC, USA: IEEE Computer Society, 2006,
pp. 383–387.

[34] V. V. Vazirani, Approximation Algorithms. Springer, March 2004.
[35] D. Angluin and L. G. Valiant, “Fast probabilistic algorithms for

hamiltonian circuits and matchings,” in Proceedings of the ninth
annual ACM symposium on Theory of computing (STOC’77). New
York, NY, USA: ACM Press, 1977, pp. 30–41.

APPENDIX A
PROOF OF THEOREM 1
To prove Theorem 1, we need the following two lemmas.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

Authorized licensed use limited to: SIMON FRASER UNIVERSITY. Downloaded on June 10, 2009 at 16:28 from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. ?, NO. ?, ? ? 13

Lemma 3: Given a set of points S, let dsumopt(S) be the
sum of distances in the optimum k-means on S. Consider
an arbitrary partitioning of S into l exclusive subsets
S1, . . . , Sl. Let dsumopt(Si) be the sum of distances in
the optimum k-means on Si (1 ≤ i ≤ l). Then,

l∑
i=1

dsumopt(Si) ≤ dsumopt(S).

Moreover, let S′ be the set of weighted centers of
S1, . . . , Sl, that is, each point c ∈ S′ is a center in some Si

carrying a weight w where w is the number of points in
Si assigned to c. Let dsumopt(S′) be the sum of distances
in the optimum k means on S′, then

dsumopt(S′) ≤ dsumopt(S) +
l∑

i=1

dsumopt(Si).

Proof: Let CS be the set of optimum k centers on S.
Consider subset Si ⊆ S. Let dsumCS

(Si) be the sum of
distances of assigning points in Si to centers CS . Clearly,
dsumopt(Si) ≤ dsumCS

(Si). Otherwise, dsumopt(Si) is
not the optimum. Therefore,

l∑
i=1

dsumopt(Si) ≤
l∑

i=1

dsumCS
(Si) = dsumopt(S).

The first part is proved.
Consider a point p ∈ S′ with weight wp. Let copt(S′, p)

be the center to which p is assigned in the optimum
k-means on S′. The sum of distances in the optimum
k-means on S′ is∑

p∈S′
dist(p, copt(S′, p)) · wp.

Since each weighted point p is a weighted center in
S1, . . . , Sl, for any point s ∈ S there exists a point ps ∈ S′

such that s is assigned to ps. Thus, the sum of distances
in the optimum k-means on S′ can also be written as∑

s∈S

dist(ps, copt(S′, ps)).

Let copt(S, s) be the center to which s is assigned
in the optimum k-means on S, and ps is the center
where s is assigned in some Si. According to the triangle
inequality, we have dist(copt(S, s), ps) ≤ dist(s, ps) +
dist(s, copt(S, s)).

Since ∑
s∈S

dist(s, ps) =
l∑

i=1

dsumopt(Si)

and ∑
p

dist(p, copt(S, p)) = dsumopt(S),

we have the second inequality in the lemma.
Lemma 4: In the hierarchical L-search method using

a reading reporting tree, each aggregation node in the
reading reporting tree which is a grand parent of a leaf
node finds O(k)-centers with an approximation factor of

2b2, where b is the approximation factor for the k-means
clustering algorithm used in the internal nodes of the
reading reporting tree.

Proof: According to the definition, each aggregation
node which is a grand parent of a leaf node has t
children, and each of its child collects t2k points. Let
Xi be the set of data points collected by the i-th child of
an aggregation node o.

Using the first item in Lemma 3, we know
t∑

i=1

dsumopt(Xi) ≤ dsumopt(∪t
i=1Xi).

Let dsumb(Xi) be the sum of distances in the k-means
solution on Xi found by a b-approximation algorithm.
Then,

t∑
i=1

dsumb(Xi) ≤ b · dsumopt(∪t
i=1Xi).

Let X ′ be the set of weighted centers at node o. Using
the second item in Lemma 3, we know

dsumopt(X ′) ≤ dsumopt(∪t
i=1Xi) +

l∑
i=1

dsumopt(Xi).

Then,

dsumb(X ′) ≤ b(dsumopt(∪t
i=1Xi) +

∑l
i=1 dsumopt(Xi))

≤ b(dsumopt(∪t
i=1Xi) + dsumopt(∪t

i=1Xi))
= 2bdsumopt(∪t

i=1Xi)

Since the clustering result of each aggregation node is
obtained by first clustering the data in its children and
then clustering the weighted centers to O(k) centers, the
approximation factor is 2b · b = 2b2.

Proof of Theorem 1: Let the approximation factor for
the clustering result at an aggregation node at the j-th
level is Aj . The path from such a node to a leaf node
has length j.

By the assumption that a b-approximation algorithm
is used in each internal node, we know that A1 = b.
From Lemma 4, we know that the approximation factor
follows a recurrence Aj = Aj−12b (j ≥ 2). Solving the
recurrence, we have Aj = 2j−1bj . Since the root node is
at level h− 1, the approximation factor at the root node
is 2h−2bh−1.

APPENDIX B
PROOF OF THEOREM 2
To prove Theorem 2, we need the following lemma.

Lemma 5: If the sample size |X| ≥ 3 ln 2
δ

dsum(S,CS)ε2 |S|,
then

Pr{|dsum(X, CS)−E[dsum(X, CS)]| > εE[dsum(X, CS)]} ≤ δ
(2)

and

Pr{|dsum(X, CX)−E[dsum(X, CX)]| > εE[dsum(X, CX)]} ≤ δ
(3)

where E[Y] is the expectation of variable Y .

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

Authorized licensed use limited to: SIMON FRASER UNIVERSITY. Downloaded on June 10, 2009 at 16:28 from IEEE Xplore. Restrictions apply.

14

Proof: Following with Chernoff-Hoeffding
bound [35], we have

Pr{|dsum(X, CS) − E[dsum(X, CS)]| > εE[dsum(X, CS)]}
≤ 2e−

ε2E[dsum(X,CS)]
3 ≤ δ

(4)
Since X is a uniform sample of S, we have

E[dsum(X, CS)] =
|X|
|S| dsum(S, CS)

Inequality 4 can be rewritten as
Pr{|dsum(X, CS) − E[dsum(X, CS)]| > εE[dsum(X, CS)]}

≤ 2e−
ε2

|X|
|S| dsum(S,CS)

3 ≤ δ

Thus, if |X| ≥ 3 ln 2
δ

dsum(S,CS)ε2 |S|, Equation 2 holds.
Similarly, following with Chernoff-Hoeffding

bound [35], we have
Pr{|dsum(X, CX) − E[dsum(X, CX)]| > εE[dsum(X, CX)]}

≤ 2e−
ε2

|X|
|S| dsum(S,CX)

3 ≤ δ

Thus, Equation 3 holds if |X| ≥ 3 ln 2
δ

dsum(S,CX)ε2 |S|.
Clearly, we have dsum(S, CX) ≥ dsum(S, CS). So,

3 ln 2
δ

dsum(S, CX)ε2
|S| ≤ 3 ln 2

δ

dsum(S, CS)ε2
|S|

Therefore, if |X| >
3 ln 2

δ

dsum(S,CS)ε2 |S|, Equation 3 holds
immediately.

Proof of Theorem 2: Since CX is the set of optimal cen-
ters in sample X , we have dsum(X, CX) ≤ dsum(X, CS).
Apparently,

E[dsum(X, CS)] =
|X|
|S| dsum(S, CS)

and
E[dsum(X, CX)] =

|X|
|S| dsum(S, CX)

Using Lemma 5, we have, when |X| ≥ 3 ln 2
δ

D(S,CS)ε2 |S|,
dsum(X, CS) ≤ (1 + ε)E[dsum(X, CS)]

= (1 + ε) |X|
|S| dsum(S, CS)

and
dsum(X, CX) ≥ (1 − ε)

|X|
|S| dsum(S, CX)

with a probability higher than (1 − δ). Thus, we have

(1 + ε)
|X|
|S| dsum(S, CS) ≥ (1 − ε)

|X|
|S| dsum(S, CX)

Inequality 1 follows with the inequality immediately.
The uniform sampling method uses the

hierarchical L-search method to approximate
dsum(S, CX). Theorem 1 indicates that the
approximation factor is 2h−2bh−1 where b is the
approximation factor of the k-means algorithm used in
each internal node of the reading reporting tree, and h
is the height of the tree. Therefore, the approximation
factor of the uniform sampling method is 2h−2bh−1 1+ε

1−ε
with a high probability (1 − δ) when the sample size is
large enough. The theorem is proved.

Ming Hua received her B.Sc. degree in Com-
puter Science from Fudan University, China, in
2004. She is currently a Ph.D. candidate in
School of Computing Science at Simon Fraser
University, Canada. Her research interests lie
in analyzing and mining uncertain data and its
applications.

Man Ki Lau received her B.Sc. and M.Sc. de-
grees in Computing Science from Simon Fraser
University in 2005 and 2007, respectively. Her
research interests include trustworthy database
indexing, data mining on large wireless sensor
networks and the related applications. She is
currently a software engineer in MacDonald,
Dettwiler and Associates Ltd., working on em-
bedded database systems.

Jian Pei received his Ph.D. degree in Computing
Science from Simon Fraser University, Canada,
in 2002. He is currently an Associate Professor
of Computing Science and the director of Col-
laborative Research and Industrial Relations in
School of Computing Science at Simon Fraser
University, Canada. His research interests can
be summarized as developing effective and ef-
ficient data analysis techniques for novel data
intensive applications. Currently, he is interested
in advanced techniques of data mining, data

warehousing, online analytical processing, database systems, and in-
formation retrieval, as well as their applications in web search, sensor
networks, health-informatics, bioinformatics, and business. His research
has been supported in part by the Natural Sciences and Engineering
Research Council of Canada (NSERC), the National Science Foun-
dation (NSF) of the United States, Microsoft, IBM, Hewlett-Packard
Company (HP), Business Objects, the Canadian Imperial Bank of Com-
merce (CIBC), and the SFU Community Trust Endowment Fund. He has
published prolifically in refereed journals, conferences, and workshops.
He is an associate editor of IEEE Transactions on Knowledge and Data
Engineering, and Intelligent Data Analysis. He has served regularly
in the organization committees and the program committees of many
international conferences and workshops, and has also been a reviewer
for the leading academic journals in his fields. He is a senior member
of the Association for Computing Machinery (ACM) and the Institute of
Electrical and Electronics Engineers (IEEE). He is the recipient of the
British Columbia Innovation Council 2005 Young Innovator Award, an
IBM Faculty Award (2006), the KDD’08 Best Application Paper Award,
and an IEEE Outstanding Paper Award (2007).

Kui Wu (M’02-SM’07) received the Ph.D. de-
gree in computing science from the University
of Alberta, Canada in 2002. He then joined the
Department of Computer Science, University of
Victoria, Canada, where he is currently an as-
sociate professor. His research interests include
mobile and wireless networks, sensor networks,
network performance modeling and evaluation,
and network security. He is a senior member of
IEEE and a member of ACM.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

Authorized licensed use limited to: SIMON FRASER UNIVERSITY. Downloaded on June 10, 2009 at 16:28 from IEEE Xplore. Restrictions apply.

