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Abstract This paper presents continuous learning methods in a monopoly
pricing problem where the firm has uncertainty about the buyers’ preferences.
The firm designs a menu of quality-price bundles and adjusts them using only
local information about the buyers’ preferences. The learning methods define
different paths, and we compare how much profit the firm makes on these
paths, how long it takes to learn the optimal tariff, and how the buyers’ utilities
change during the learning period. We also present a way to compute the
optimal path in terms of discounted profit with dynamic programming and
complete information. Numerical examples show that the optimal path may
involve jumps where the buyer types switch from one bundle to another, and
this is a property which is difficult to include in the learning methods. The
learning methods have, however, the benefit that they can be generalized to
pricing problems with many buyers types and qualities.

Keywords pricing · learning · limited information · buyer-seller game ·
mechanism design

1 Introduction

In nonlinear pricing problem a monopolistic firm designs a menu of products to
serve a population of buyers with different valuations. The model can basically
be applied in any product pricing where the firm may sell multiple units or
versions with different quality attributes (Wilson 1993). The problem is also
an example of mechanism design (Rochet and Stole 2003), which has been
studied extensively in economics, game theory and recently computer science
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(Armstrong 1996; Nisan and Ronen 2001; Conitzer and Sandholm 2002). This
paper examines a situation where the firm has uncertainty about the buyers’
preferences and learns the optimal tariff by selling the product repeatedly. The
firm adjusts the quality-price bundles using only local information about the
buyers’ preferences.

The pricing problem was originally studied by Mussa and Rosen (1978),
Spence (1980) and Maskin and Riley (1984), who developed the conditions
and properties that characterize the optimal bundles. The multidimensional
pricing problem has been studied by Wilson (1993), Armstrong (1996), Rochet
and Chone (1998), Nahata et al (2002) and Basov (2005). See also Armstrong
(2006) and Stole (2007) for recent surveys on price discrimination. Many pa-
pers on pricing assume so-called single-crossing condition, which restricts the
shape of buyers’ possible utility functions. There are, however, few papers that
examine a model without it, e.g., (Araujo and Moreira 1999; Nahata et al 2004;
Berg and Ehtamo 2008). In this paper we assume the single-crossing condition
to illustrate the learning idea better and the learning methods can be applied
in the more general model as well.

Learning under limited information is currently under active research (Fu-
denberg and Levine 1999; Sandholm 2007). Learning in the pricing problem
has been studied by Braden and Oren (1994) and Brooks et al (2002); see
also the related field of dynamic pricing (Elmaghraby and Keskinocak 2003;
Garcia et al 2005; Lin 2006). Brooks et al (2002) study the one-dimensional
problem and the cost of learning for different kinds of tariffs. They find that
the complicated tariffs with more parameters take more time to learn but fi-
nally produce better profits. Our pricing model is more general and we study
continuous learning methods. One of these methods is the gradient method,
which has been studied by Bowling and Veloso (2002) and Hofbauer and Sig-
mund (2003). See also Raju Chinthalapati et al (2006) and Vengerov (2008)
for reinforcement learning models under competition.

This paper is based on the recent development by Ehtamo et al (2010) and
Berg and Ehtamo (2009, 2010). The adjustment approach was proposed by
Ehtamo et al (2010) in the one-dimensional problem with two buyer types.
The model was generalized to have multiple buyer types in Berg and Ehtamo
(2009), where it is explained how the bunching and exclusion problem can
be solved using only limited information about the buyers’ utility functions.
Both of these papers use discrete steps in the adjustment, which poses the
problem of choosing a good step size. This paper suggests a solution to this
problem by using continuous learning paths. This reduces the learning problem
to only choosing the adjustment direction. The learning methods are compared
in terms of the firm’s profit, the buyers’ utilities and the learning time. We
also compute the optimal path as a reference to measure how good the learn-
ing methods are that use only limited information. This makes it possible to
estimate the value of information.

The rest of the paper is organized as follows. In Section 2, we give an inter-
pretation of our approach, introduce the pricing problem and the simplifying
assumptions. In Section 3, we present the continuous learning methods using
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differential equations, the optimal path using the dynamic programming al-
gorithm and the criteria to compare the methods. The numerical simulations
are given in Section 4. The one-dimensional example illustrates the learning
paths and shows the firm’s profits and the buyers’ utilities over the learning
period. The second example demonstrates that the adjustment idea can also
be used in the more general multidimensional problem. Finally, Section 5 is
the discussion.

2 Pricing setting

2.1 Interpretation

Let us examine how a firm should price its product when the firm faces un-
known stationary demand, which means that the demand is fixed for the
learning period. This setting has two interpretations. First, the setting could
describe a firm producing a new product or a service. In the second interpre-
tation, the firm may have sold the product for some time but there has been
a demand shock. Thus, the firm needs to adjust its price schedule to the new
demand. The difference in these two situations is that the firm may have a
good approximative solution in the latter case, whereas in the former case the
initial price schedule may be far off from the optimal one.

We study how the firm can learn the optimal price schedule by selling
the product and observing the sales, and this is known as the online learning
scheme. We develop local adjustment methods under different informational
assumptions. The local adjustment means that we study continuous learning
paths, where the firm decides a direction of change and updates the bundles
a little to this direction. The local adjustment has the benefit that we do not
have to determine step lengths in the method. The choice of step lengths may
be problematic, because it affects how fast the optimal schedule is found. A
big step in the right direction may improve the profit considerably, but in
the wrong direction may decrease the profit as well. Also, the firm may have
reliable demand estimates only around the current price schedule, and thus
the local adjustment with small changes is justified.

We examine two informational assumptions: a complete information setting
and a setting where the firm only knows the buyers’ valuations locally around
the current price schedule. The complete information setting gives the optimal
price schedule and the optimal learning path, when the firm fully knows the
demand. This is the best path the firm can achieve, and we compute the
path by discretizing the quality-price space and using dynamic programming.
The limited information setting is the more interesting one, where the firm
makes the adjustment using only local information. There are many different
heuristics to do the adjustment, and we compare some of them against the
optimal path. We note that the learning methods are not comparable with the
optimal path, since its computation requires complete information.
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It is assumed that the buyers are myopic, see Fudenberg and Levine (1999),
and Ellison (1997), i.e., they maximize their utility each round and do not try
to affect the firm’s learning task. One explanation for myopicity is a model,
where the buyers are randomly chosen to act from a large population. The
population consists of groups of identical buyers, and each buyer behaves my-
opically since it is unlikely that they are chosen to act in the following rounds.
This way the buyers do not have the incentive to manipulate the firm’s pricing,
and the firm can learn about the buyers’ valuations by observing the buyers’
purchases.

2.2 Nonlinear pricing model

Let us formulate the multidimensional quality pricing model with discrete
buyer types. A monopolistic firm produces a product of quality q to a popu-
lation of buyers, where q is a k-dimensional vector of the product’s qualities.
The cost of producing a product with quality q is c(q), and the cost is assumed
to be smooth, increasing, and convex. The product line, i.e., the range of pos-
sible qualities, is assumed to be the positive quadrant, that is, q ∈ R

k
+, and

the zero vector represents no consumption and the corresponding cost is zero,
i.e., c(0, . . . , 0) = 0.

The population of buyers consists of n distinctive types, which are indexed
by i ∈ I = {1, . . . , n}. Each buyer i ∈ I consumes at most one unit of the
product and has a separable quasi-linear utility

Ui(q, p) = ui(q)− p, ∀i ∈ I, (1)

where p is the price of the product, and ui(q) is the buyer i’s maximum will-
ingness to pay for a product with quality q. The utility functions ui(q) are
smooth, single-humped functions, and ui(0, . . . , 0) = 0, ∀i ∈ I. A utility func-
tion represents a group of identical buyers, and we assume that the buyers in
a group always behave in the same way whenever they are called to act. Note
that the buyers’ preferences are linear in money, i.e., they enjoy a five dollar
discount from a low quality product and a high quality product the same.

We define a bundle as a vector of product’s qualities and the corresponding
price. The firm designs a bundle for each buyer i ∈ I and maximizes its profit

π(qi, pi) =

n
∑

i=1

fi · (pi − c(qi)), (2)

where fi is the fraction (or weight) of buyers i in the population. Note that
the cost is separable, which means that the costs of different bundles do not
depend on each other and the fractions fi are not in the argument of the cost
function.

The profit is maximized under individual rationality (IR) constraints

Ui(qi, pi) = ui(qi)− pi ≥ 0, ∀i ∈ I, (3)
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and incentive compatibility (IC) constraints

Ui(qi, pi) ≥ Ui(qj , pj), ∀i, j ∈ I, i 6= j. (4)

The IR constraints can be formulated as IC constraints by defining a dummy
type 0 with quality q0 = (0, . . . , 0) and price p0 = 0. Now, both constraints
can be written symmetrically as

Ui(qi, pi) ≥ Ui(qj , pj), ∀i ∈ I, j ∈ I+ \ {i}. (5)

where I+ = {0, . . . , n}. The buyers are assumed to be friendly (Nahata et al
2004), i.e., they choose the most profitable bundle for the firm when they are
indifferent between two or more bundles.

The firm’s problem can now be formulated as

max
qi,pi

n
∑

i=1

fi · (pi − c(qi)) (6)

s.t. ui(qi)− pi ≥ ui(qj)− pj , ∀i ∈ I, ∀j ∈ I+ \ {i}. (7)

To make the problem mathematically more tractable, it is assumed that the
efficient (first-best) qualities qei defined by

max
q∈R

k

+

ui(q)− c(q), (8)

are strictly positive and finite, and they satisfy ∇ui(q
e
i ) = ∇c(qei ). We also

assume that there is a quality qm such that qualities above this limit are
not profitable to produce, e.g., ui(q

m) < c(qm), ∀i ∈ I. These assumptions
guarantee the existence of the solution, and the conditions are satisfied in
practical situations.

2.3 Illustrative examples

We present the learning methods in a simplified setting to illustrate the ideas
better. The methods apply to the more general models and they do not re-
quire the following assumptions. The first assumption is that there are only two
buyer types. This means that there are only two possible solution structures,
which are explained shortly. The second assumption is that there is only one
quality dimension and the single-crossing assumption is satisfied. With more
buyer types and multiple dimensions, there are more possible solution struc-
tures and finding the optimal structure is more complicated (Berg and Ehtamo
2008, 2009; Nahata et al 2004).

With two buyer types, there are two characteristic solutions to the pricing
problem: a) the firm can serve both types with efficient bundles, when the types
are not interested in each other’s bundles, and b) one bundle is distorted from
the efficient quality to make it less attractive to the other type; see Figure
1. In a), the firm gets the maximal possible profit, and the buyers get zero
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utilities. In b), the firm loses some of its profit, because the quality of type L

is not efficient, i.e., q∗L 6= qeL, and type H gets positive utility due to the price
discount, which is called as informational rent.

In a), both IR constraints are active, the optimal qualities are given by
u′

i(q
∗

i ) = c′(q∗i ), i.e., q
∗

i = qei , and the optimal prices are p∗i = ui(q
∗

i ), i = 1, 2.
The firm can sell these bundles, since neither bundle attracts the other type,
i.e., ui(q

∗

j ) − p∗j < 0 = ui(q
∗

i ) − p∗i , i 6= j. In b), there are two possibilities:
either q∗L = 0, or q∗L > 0. When the fraction of type L, fL, is relatively low
and type L values the product relatively less, then type L is excluded, i.e.,
q∗L = 0, and type H is served efficiently, i.e., q∗H = qeH and p∗H = uH(q∗H). In
the more interesting situation when q∗L > 0, the optimum is given by (Ehtamo
et al 2010)

fL(u
′

L(q
∗

L)− c′(q∗L)) = fH(u′

H(q∗L)− u′

L(q
∗

L)), (9)

u′

H(q∗H) = c′(q∗H), (10)

p∗L = uL(q
∗

L), (11)

p∗H = p∗L + uH(q∗H)− uH(q∗L). (12)

Eq. (11) means that the IR constraint is active for type L (IRL from now on),
i.e., type L gets zero utility. Eq. (12) means that type H is indifferent between
the bundles, i.e., the IC constraint is active for type H (ICH from now on).
Eq. (9) determines how much L’s quality is distorted. The optimal quality q∗L
is a compromise between the profit uL(qL) − c(qL) weighted by fL and the
information rent uH(qL) − uL(qL) weighted by fH . The informational rent,
which type H gets and the firm loses, is uH(q∗H)− p∗H = uH(q∗L)− uL(q

∗

L).

We assume the standard single-crossing condition (Spence 1980)

u′

H(q) > u′

L(q), ∀q > 0. (13)

This means that a) is no longer possible, and the optimum must be of char-
acteristic b); this structure is more generally known as chain (Nahata et al
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2004). We also assume that q∗L > 0 and the second-order condition (Ehtamo
et al 2010)

u′′

H(q) ≥ u′′

L(q), ∀q ≥ 0, (14)

which makes Eq. (9) as the sufficient optimality condition for L’s quality, and
the solution is unique. This follows from the fact that the convexity assumption
(14) makes the function defined by Eq. (9) strictly monotone in qL, and then
it cannot have multiple roots.

3 Continuous learning methods

In the previous section the solution was characterized when the firm knows
the buyers’ utility functions. Now, we examine how the firm can learn the
solution by adjusting the quality-price bundles continuously. It is assumed, for
simplicity, that the firm knows the fractions of buyers, fi, but only knows the
utility functions, ui(q), and their slopes, u′

i(q), locally around the currently sold
bundles. We present different learning methods using the local information:
the gradient method that takes the steepest ascent direction to the firm’s
profit, and modified methods that aim to solve the optimality conditions. In
Section 3.4, the different criteria are presented to compare these methods,
which include the discounted profit over the learning period, and the time it
takes to learn the optimal bundles. In Section 5, it is discussed how the firm
can get the local information by selling the product and collecting the sales
data.

3.1 Gradient method

Let us define a continuous solution path x(t) = (qL(t), qH(t), pL(t), pH(t)),
t ≥ 0, starting from an initial solution x0 = x(0) and ending in x∗. The
solution path is defined through differential equations, which give the rate of
change locally. The gradient method is given by

ẋ = ∇π(x) =

(

∂π

∂qL
,
∂π

∂qH
,
∂π

∂pL
,
∂π

∂pH

)T

(x), (15)

where the gradient ∇π(x) is the steepest ascent direction to the firm’s profit
at the current solution x; see a similar best-response dynamics in Hofbauer and
Sigmund (2003) in a matrix game context. We remind that ẋ(t) = (q̇L(t), q̇H(t),
ṗL(t), ṗH(t)). Now, we define ∇π(x) in different regions of x. We assume that
x0 is feasible, i.e., satisfies IR and IC constraints, and we only need to check
IRL and ICH constraint during the iteration. Thus, we have four possible
regions: (a) no constraints are active, (b) only IRL is active, (c) both IRL and
ICH are active, and (d) only ICH is active.
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In region (a), we have

∇π(x) =









−fLc
′(qL)

−fHc′(qH)
fL
fH









, (16)

which we get simply by taking the partial derivates of the profit in Eq. (2).
In region (b), we need to compute the gradient while satisfying the con-

straint pL = uL(qL). We substitute the equation into the profit,

π = fL(uL(qL)− c(qL)) + fH(pH − c(qH)), (17)

and thus reduce the problem into three dimensions (qL, qH , pH). The gradient
is now computed by taking the appropriate partial derivates, and ṗL(t) is
solved by differentiating the constraint, i.e., ṗL = u′

L(qL)q̇L. We get

∇Rπ(x) =









fL(u
′

L(qL)− c′(qL))
−fHc′(qH)
u′

L(qL)q̇L
fH









, (18)

where ∇R defines the reduced gradient under the constraint pL = uL(qL),
and q̇L in the third component is equal to the first component, i.e., q̇L =
fL(u

′

L(qL)− c′(qL)). By examining the update directions, we can see from the
first equation that qL is updated towards the efficient value qeL.

In region (c), we need to satisfy both constraints pL = uL(qL) and pH =
pL+uH(qH)−uH(qL). Again, we reduce the dimensions by substituting these
into the profit function. By differentiating, we get

∇Rπ(x) =









fL(u
′

L(qL)− c′(qL))− pH(u′

H(qL)− u′

L(qL))
fH(u′

H(qH)− c′(qH))
u′

L(qL)q̇L
ṗL + u′

H(qH)q̇H − u′

H(qL)q̇L









, (19)

where the last two components are solved by differentiating the corresponding
constraints and q̇L, q̇H , and ṗL are equal to the first three components, in the
same way as q̇L was defined in Eq. (18). The first two equations mean that qL
is updated towards the optimal value q∗L and qH towards q∗H = qeH .

In the same way, we get for region (d)

∇Rπ(x) =









−fLc
′(qL)− fHu′

H(qL)
fH(u′

H(qH)− c′(qH))
fL + fH

ṗL + u′

H(qH)q̇H − u′

H(qL)q̇L









. (20)

To implement the gradient method, the firm needs an initial solution x0

and the region of x(t) for different time instances t ≥ 0. The region depends
on the active constraints, i.e., values pL, uL(qL), pH , uH(qH), and uH(qL).
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Actually, the firm needs not know uL(qL) exactly, and it suffices to know
whether pL < uL(qL) or not. If it happens that pL > uL(qL) then the firm
observes this since type L does not simply buy the bundle. Similarly, the firm
needs not know uH(qH) and uH(qL) exactly, and it is enough to evaluate
whether pH < pL + uH(qH) − uH(qL) or not. Again, if it happens that pH >

pL+uH(qH)−uH(qL) then the firm knows this since type H chooses type L’s
bundle.

The firm also needs to know u′

L(qL), u
′

H(qH), and u′

H(qL) to compute the
adjustment directions in Eqs. (16)-(20). We note that in region (a) the firm
needs not know anything about the utility functions to make the adjustment.
Indeed, u′

L(qL) is only needed when IRL is active, and u′

H(qH) and u′

H(qL)
are only needed when ICH is active. Under the single-crossing condition (13)
and Eq. (14) the gradient method, like all local methods, always converge to
the optimal solution from any feasible starting point. When Eq. (14) does not
hold there may be many local optima, where these methods may converge to.

3.2 Modified methods

The gradient method is only one of the possible learning methods for the
problem. Now, we examine the directions that are both profit-increasing for
the firm and acceptable for the buyers. It is also shown how the optimality
conditions can be used in determining the update for the quality.

Let us examine the region (a) where none of constraints are active. Given
some quality-price bundle, the directions that give more profit to the firm are
given by the tangent plane of the cost function, see Fig. 2a). These directions
are in the half-space of the tangent plane in the direction of increasing price. In
region (a), all directions are acceptable for buyer i since buyer i gets positive
utility, see Fig 2b). When IR or some IC constraint is active for buyer i, then
the firm must make sure that buyer i gets the same or better utility from the
new bundle than the current bundle. Now, the directions that are both more
profitable for the firm and acceptable for buyer i are presented in Fig. 2c). The
most profitable direction is the one going along buyer i’s indifference curve,
which corresponds to the direction given by the gradient method.

We can see that the firm has more options when the constraints are not
active. Especially, the quality may either be increased or decreased. It is ac-
tually possible to narrow down these directions by requiring that the quality
should be updated towards the optimal value. This can be done with local
information by evaluating the optimality conditions if the optimal structure is
known. For example, if the structure is a) of Fig. 1, then the quality update
is determined by evaluating the condition u′

i(q) = c′(q). If u′

i(q) > c′(q) holds,
then q < q∗ and q should be increased, and similarly if u′

i(q) < c′(q) holds,
then q should be decreased. If the structure is b) of Fig. 1, then the quality
update for type L is determined by evaluating the condition of Eq. (9). Again,
if fL(u

′

L(q) − c′(q)) > fH(u′

H(q) − u′

L(q)), then q < q∗ and q should be in-
creased. This result follows from the concavity of u(q), convexity of c(q), and
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Eq. (14). This way, the firm can update the quality towards the optimal value
using only local information.

We now define two modified methods: price raise and constant direction

methods. In the price raise method, the adjustment direction is the same as in
the gradient method, except when the constraints are not active for the bundle.
When this happens, the adjustment direction is defined by dR = [q̇i ṗi] =
[0 1]. This means that only the price is increased but the quality remains the
same.

The constant direction method is defined in similar way. If there are no
active constraints for a bundle, then the adjustment direction is 0.8dR+0.2dC,
where dC = [∓1 c′(q)]. The direction dC is where the firm’s profit remains
locally the same for the bundle, and∓ depends on the sign of the corresponding
optimality condition of Eqs. (9) and (10) as discussed earlier. If it holds that
qi < q∗i , then + is chosen, and the quality of bundle i is increased. These two
methods converge to the optimal solution like the gradient method, and they
basically require the same information about the buyers’ utility functions.

3.3 Optimal path by dynamic programming

Let us now compute the optimal path using complete information about the
buyers’ utility functions. The path is computed by using the dynamic program-
ming algorithm (Bertsekas 2005). In this approach, the path is optimized over
the learning period. It is assumed that the firm discounts the future profits,
and the learning time is infinite. This means that the firm has enough time
to learn the optimal solution, and there is no need to specify the length of
the learning period. We also need to discretize the continuous quality-price
space, define the bundles that are reachable in one time step from the current
solution, and define the profit-to-go function for the algorithm. The computed
path is not, however, optimal due to the discretization. But if the discretiza-
tion is fine enough, the computed path is very close to the optimal continuous
path.
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We use a regular grid, which divides the four dimensions uniformly be-
tween some lower and upper bounds. The time is also discretized and de-
noted by k = 0, 1, . . ., and x0 is the initial solution. For each point x(k) =
(qL(k), qH(k), pL(k), pH(k)), k ≥ 0, we define a profit-to-go function Jk(xk) to
present the future profits from the point xk and time k on. In one time period,
the qualities and prices can be moved one step in the uniform grid, i.e., each
dimension can be increased, decreased, or kept the same. Thus, each point has
34 = 81 neighboring bundles.

The optimal profit J∗(x0) is computed by doing value iterations

Jk+1(xk) = max
y∈N(xk)

π(y) + δJk(y), (21)

where k ≥ 0, N(xk) are the neighbors of xk, π(y) is the instant profit of
point y, and δ is the discount factor. The iteration is initialized by setting
J0(x) = 0 for all grid points. For the points on the edge of the grid we define
Jk(x) = −M < 0, where k ≥ 0 and M is large enough constant. Also, the value
iteration (21) is only applied to the points that are not on the edge. In this
way, the learning path stays inside the grid. The value iteration is repeated
approximately k∗ times, which is the number of steps it takes from x0 to the
final point.

We note that there is a modified version of the algorithm that converges in
k∗ iterations, and it gives J∗(x0) and the optimal path starting from x0. In the
modified version, the maximization in Eq. (21) is replaced by minimization,
−M by M , and π(y) by g(y) = π∗ − π(y), where g(y) is the instant cost,
and π∗ is the maximum profit on the grid. The stopping condition is when
Jk+1(x0) = Jk(x0), and it is in at most in k∗ iterations. This is because
the iteration finds in one step the correct values for the points that are one
step away from the optimum, and similarly the values are correct after two
iterations for the points that are two steps away from the optimum and so on.

3.4 Criteria for comparison

We examine four criteria when comparing the methods: the profits over the
learning period, the present value of the profits, the time it takes to learn the
optimal bundles, and the buyers’ utilities over the learning period. The profits
and the utilities are easily computed from the simulations but comparing the
learning times is more problematic for two reasons. First, the methods in
Sections 3.1 and 3.2 are continuous whereas the optimal path of Section 3.3
is discrete. Second, the way the differential equations are solved affects the
learning path.

The continuous methods are simulated with an ordinary differential equa-
tion (ODE) solver, and it produces a sequence x(t) for different time instances
t. It is not, however, reasonable to compare the methods’ simulation times,
since the ODE solver and the magnitude of ẋ(t) affects how x(t) is computed,
and thus how fast the optimum is found. Instead, we use the path length to
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measure the learning time, and this does not depend so much on how the ODE
is solved. By using the path length as the learning time, we compute the profits
and present values the following way. For example, if the time step is ∆, we
calculate profits π(0), π(∆), π(2∆), . . ., and so on. The present value is then
the sum of discounted profits over some predetermined period. If the final time
is T , the present value is v =

∑T
t=0 δ

tπ(t) = π(0) + δπ(∆) + δ2π(2∆) + . . .,
where δ is the discount factor.

4 Numerical experiments

4.1 Learning and optimal paths

We examine gradient, price raise and constant direction methods in a test
problem. The firm’s cost function is c(q) = q2, the buyers’ utility functions
are uL(q) = 2q1/5 and uH(q) = 3q1/4, and the fractions are fL = 0.7 and
fH = 0.3. The optimal bundles are (0.327, 1.60) to L and (0.571, 1.939) to H ,
and the initial bundles are chosen as (0.2, 1.2) and (0.45, 1.5). The discount
factor is δ = 0.95, a time step ∆ = 0.04, and a final time T = 0.44. The grid is
24 points between the qualities 0.1 and 0.7, and 33 points between the prices
1.0 and 2.1. This makes approximately 600 000 grid points, and the quality
and price steps are 0.025 and 0.03, respectively.

The learning paths are presented in Fig. 3. The solid, dashed, and dash-
dotted curves are gradient, price raise, and constant direction methods, respec-
tively. The thicker curves are the buyers’ and the firm’s indifference curves. The
letters (a)-(c) and the asterisks present the active constraints on the learning
path for the gradient method, i.e., the different regions of Section 3.1. Finally,
the black dots and the white stars are the initial and the optimal bundles,
respectively.

We can see that the path for the gradient method is the longest and for the
constant direction method the shortest. One reason for this is that the initial
qualities are lower than the optimal ones and the gradient method decreases
the quality until some constraint is active. On the other hand, the constant
direction method always points towards the optimal quality, and thus finds
the optimal quality faster.

We also observe that IRL is the first constraint to become active for the
gradient method, i.e., the method switches from region (a) to region (b). From
that on, the lower bundle is updated towards the efficient quality. But here
ICH constraint becomes active before the efficient quality is reached, and the
quality does not go over the optimal value, i.e., the method switches from (b) to
(c) at quality 0.296, and it is lower than the optimal value 0.327. After ICH has
become active, the quality approaches the optimal value. The higher bundle
is updated towards the optimal quality only after ICH has become active. For
the constant direction method, both qualities approach the optimal qualities
immediately from the initial bundles.
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Fig. 3 The illustration of the learning methods.

The optimal path on the grid is presented in Fig. 4. The solid, dashed,
and the dash-dotted curves are, respectively, the gradient method, the optimal
path, and the restricted optimal path under the constraint that the high bundle
cannot be sold to the low type. The asterisks are the end points of the optimal
paths, and they give the best profit on the grid.

The optimal path looks similar to the gradient method, but it is charac-
teristically different. The optimal path involves a shutdown of the low quality
bundle, i.e., there is a period when both buyer types take the high quality
bundle and nobody takes the low quality bundle. First, the low quality bundle
is made less attractive for type L by decreasing the quality and increasing
the price. When the bundle goes above L’s utility function, L switches to H ’s
bundle. From this on, the high quality bundle stays below L’s utility function,
and the low quality bundle approaches the optimal bundle from the infeasible
side. A switch happens again when the low quality bundle comes below L’s
utility function again, and then the high quality bundle need not stay below
the low type’s utility function any more.

This is an interesting phenomena for the optimal path, since the continuous
adjustment never finds this kind of jumps from a bundle to another. Of course,
this happens only with some utility functions and initial bundles. Nevertheless,
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Fig. 4 The illustration of the optimal path.

to find the optimal path, the firm should also examine the option to erase and
add bundles strategically, which makes the learning task more challenging.

The profits from each bundle as a function of path length are presented
in Figs. 5a) and 5b); the thicker curves are for the optimal and the restricted
optimal paths. For the low bundle, the optimal path gives dramatically better
profits than the other methods, mainly due to the jump from the low to the
high bundle. The gradient and the restricted optimal path look pretty similar
by increasing the profit fast in the beginning but giving less profit in the
end. The price raise and the constant direction method increase the profit
more slowly but give more profit in the end. For the high bundle, the optimal
path looks once again different than the others by getting less profit from
the high bundle to make the overall profit bigger; remember the fractions
fL = 0.7 > 0.3 = fH . For the other method, the pattern looks the same as for
the low bundle.

The present values of the paths from 0 to 0.44 with step 0.04 are presented
in Table 1. We can see the compromise the optimal path does by getting little
lower profit from the high bundle but still getting clearly better profit from
the low bundle. The price raise method gives the highest profit of the three
methods. The restricted optimal path should give higher profit than the three
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Fig. 5 The profits and the buyers’ utilities.

methods but the discretization lowers the profit. For the same reason, the
optimal path gives higher profit than the discrete path computed here.

Table 1 The present values (v) of the learning paths.

gradient price raise constant restricted optimal
vL 8.59 8.60 8.53 8.54 9.10
vH 4.10 4.08 4.00 4.12 4.02
fLvL + fHvH 7.240 7.244 7.174 7.215 7.580

The buyers’ utilities from each bundle are presented in Figs. 5c) and 5d). If
we compare the learning methods, the gradient method decreases the buyers’
utilities the fastest and the constant direction method the slowest. The differ-
ence to the low type is dramatic; at the point when the gradient method gives
zero utility, the constant direction method gives half the initial utility to L.
The differences in H ’s utility are also significant between the methods. From
the buyers’ perspective, the constant direction method is the most favorable.
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4.2 Two-dimensional case

The methods were presented under the single-crossing condition and in a
single-dimensional problem. Now, we demonstrate that the methods also work
in the more general settings and discuss what needs to be modified. Let us
examine the following two dimensional example. Let c(q) = q21 + q22 , uL(q) =

− exp(1−1.5q1)−exp(1−2q2)+5.6, uH(q) = 2.5q
1/5
1 +3q

1/4
2 −1.0327, fL = 0.6,

and fH = 0.4; here, q1 denotes the quality of dimension 1.
This is an interesting example because the solution is a mixture of the

characteristic solutions of Section 2.3. The firm cannot sell the efficient bundles
because H will take L’s bundle, and Eq. (9) does not give the optimal quality
for L, since then the price pH in Eq. (12) is too high for H . The IRL, IRH, and
ICH constraints are active, and the optimal bundles are (0.777, 0.718, 4.11)
to L and (0.463, 0.571, 3.72) to H . H gets the efficient bundle but L gets
over-efficient bundle, since (0.777, 0.718) > (0.707, 0.687) = qeL. Solving Eq.
(9) gives the quality vector (0.810, 0.732) to L, which is not correct, and the
qualities are distorted too much. The correct equations are (Berg and Ehtamo
2008)

fL(∇uL(q
∗

L)−∇c(q∗L)) = λ(∇uH(q∗L)−∇uL(q
∗

L)), (22)

uH(q∗L) = uL(q
∗

L), (23)

0 ≤ λ ≤ fH (24)

where λ is the Lagrange multiplier of ICH constraint. We solve these equations
by adjusting λ, and solving qL from the first equation, and then evaluating
the second equation. The correct value of λ ≈ 0.257 can be found, e.g., by the
bisection method since the equations are monotone in λ.

The gradient method for the problem is presented in Fig. 6. The black dots
and stars, the upward-pointing and the left-pointing triangles are the initial
and optimal bundles, the efficient bundle for L, and the bundle of Eq. (9) for L,
respectively. The shaded and the see-through surfaces are the utility functions
for L andH , respectively. We can see that the solution is between the triangles,
i.e., it is a mixture of the two characteristic solutions qeL (corresponding λ = 0)
and the full distorted bundle (λ = fH) as in Eq. (9).

In the gradient path, IRL is the first constraint to become active and then
ICH becomes active. The simulation was run with the equations of Section
3.1 extended to the multidimensional case with two exceptions. We check IR
constraint for type H (IRH) and update accordingly if it becomes active before
ICH. We also stop the iteration of L’s bundle when all IRL, IRH, and ICH
constraints are active, since then we are at the “mixed” optimum if we start
from feasible bundles. This is the point when Eq. (23) is satisfied.

5 Discussion

This paper examines a monopoly pricing problem, which belongs to the class of
mechanism design problems. The model is also a Stackelberg game, where the
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Fig. 6 The two-dimensional gradient path.

firm first designs a nonlinear tariff and then the buyers self-select the quality-
price bundles they wish to consume. We study a setting where the firm has
uncertainty about the buyers’ preferences. Instead of doing a comprehensive
demand data mining and computing the optimal tariff offline as in Wilson
(1993), it is suggested that the solution is learned as the demand data is
collected. This kind of situation could arise in new product development or
in electronic commerce. In electronic marketplaces the prices can be updated
rapidly and the offers can be tailored based on the different characteristics
and conditions, like the buyer’s purchase history and seasonal offerings. If the
product is an information good, then the attributes can also be changed in
real-time at low cost.

We propose various continuous learning methods and characterized the
feasible adjustment directions for the problem, i.e., the directions that increase
the firm’s profit and are acceptable for the buyers. It is possible to compare the
learning methods in terms of different criteria, and we notice that choosing a
good method may be problematic. For example, the gradient method that uses
the direction of greatest profit increase may not be the method that minimizes
the learning time or maximizes the discounted profit on the learning path. An
interesting future research direction is to study the learning methods with real
demand data or with certain shapes of buyers’ utility functions.

This paper characterizes the optimal path for the pricing problem. The path
is computed by discretizing the problem and using dynamic programming.
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We note that the optimal path may involve buyer types jumping from one
bundle to another, which is something that is difficult to include in the learning
methods. This issue is related to adding and removing the bundles strategically
in order to increase the firm’s profit. For example, it is not possible to estimate
with local information the effect of adding a new bundle to the price schedule.
This is something that just has to be tried and it adds complexity to the
learning method.

It is assumed that there are only two buyer types, and the main example
had only one quality dimension. These assumptions are made to simplify the
notation, and the methods generalize to the multidimensional model with mul-
tiple buyer types with small modifications. The gradient and the price raise
methods can be implemented in these models as well. The methods that adjust
towards the optimal qualities are more problematic since it is more difficult
to know the optimal structure of the problem and the correct equations for
adjustment. This is a feature of the multidimensional model that follows from
the possibly more general shapes of utility functions, i.e., the single-crossing
condition may be violated and the buyers’ valuations may change their order-
ing in different quality dimensions; see, e.g., Berg and Ehtamo (2008). What
the firm can do is guess and update the structure of the solution based on
the active constraints. We note that the multidimensional model may be more
difficult to solve mathematically, but it may allow the firm to get more profits
by tailoring suitable bundles for the buyer types.

The implementation of the adjustment can be interpreted in two ways
(Ehtamo et al 2010). In the first, the monopoly gets the local information
needed in (16)-(20), i.e., u′

L(qL), u
′

H(qL), and u′

H(qH), by offering test bundles
near the currently sold bundles and observing the realized sales. For example,
the quality qL can be changed a little and the price can be raised and lowered.
By offering the two bundles side by side, and changing the price of the new
bundle, the firm learns the two prices when the low and high types are indif-
ferent between the bundles. With this information, the slopes of the buyers’
utility functions near qL can be estimated. In the second implementation, the
same information can be revealed by offering linear tariffs. When the firm of-
fers a linear tariff, a myopic buyer will choose a bundle from the tariff so that
the slope of the tariff equals the slope of the buyer’s utility function. Thus,
the chosen bundle reveals the buyer’s marginal valuation at the chosen quality,
which makes it possible for the firm to create more profitable tariffs.
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