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Abstract
Discrete systems with long-range interactions are considered. Continuous
medium models as continuous limit of discrete chain system are defined. Long-
range interactions of chain elements that give the fractional equations for the
medium model are discussed. The chain equations of motion with long-range
interaction are mapped into the continuum equation with the Riesz fractional
derivative. We formulate the consistent definition of continuous limit for the
systems with long-range interactions. In this paper, we consider a wide class of
long-range interactions that give fractional medium equations in the continuous
limit. The power-law interaction is a special case of this class.

PACS numbers: 45.05.+x, 45.50.−j, 45.10.Hj

1. Introduction

Derivatives or integrals of noninteger order [1–5] have found many applications in recent
studies in mechanics and physics [6–10]. Equations which involve derivatives or integrals
of noninteger order are very successful in describing anomalous kinetics and transport and
continuous time random walks [11–15]. Usually, the fractional equations for dynamics or
kinetics appear as some phenomenological models. Recently, a method to obtain fractional
analogues of equations of motion was considered for sets of coupled particles with a long-
range interaction [16–19]. Examples of systems with interacting oscillators, spins or waves
are used for many applications in physics, chemistry and biology [20–34]. In the continuous
limit, the equations of motion for discrete systems give the continuous media equation. The
procedure has already been used to derive fractional sine-Gordon and fractional wave Hilbert
equation [16, 18], to study synchronization of coupled oscillators [17], to derive fractional
Ginzburg–Landau equation [17] and for chaos in discrete nonlinear Schrödinger equation
[19]. In [16–19], only the power-law long-range interactions are considered. In this paper,
we consider a wide class of long-range interactions that give fractional medium equations in
continuous limit. The power-law interaction is a special case of this class.

0305-4470/06/4814895+16$30.00 © 2006 IOP Publishing Ltd Printed in the UK 14895

http://dx.doi.org/10.1088/0305-4470/39/48/005
mailto:tarasov@theory.sinp.msu.ru
http://stacks.iop.org/JPhysA/39/14895


14896 V E Tarasov

Long-range interaction (LRI) has been the subject of investigations for a long time.
An infinite one-dimensional Ising model with LRI was considered by Dyson [20]. The d-
dimensional classical Heisenberg model with long-range interaction is described in [21, 22],
and their quantum generalization can be found in [23, 24]. Solitons in a one-dimensional
lattice with the long-range Lennard-Jones-type interaction were considered in [28]. Kinks in
the Frenkel–Kontorova model with long-range interparticle interactions were studied in [29].
The properties of time periodic spatially localized solutions (breathers) on discrete chains in the
presence of algebraically decaying interactions were described in [32, 33]. Energy and decay
properties of discrete breathers in systems with LRI have also been studied in the framework
of the Klein–Gordon [27] and discrete nonlinear Schrödinger equations [30]. A main property
of the dynamics described by the equation with fractional space derivatives is that the solutions
have power-like tails. The lattice models with power-like long-range interactions [18, 31–33,
35–37] have similar properties. As was shown in [17–19], the analysis of the equations with
fractional derivatives can provide results for the space asymptotics of their solutions.

The goal of this paper is to formulate the consistent definition of continuous limit
(transform operation) for the systems with long-range interactions (LRI). This aim is realized
by propositions 1, 4 and definitions 1, 2. The power-law LRI is considered in [16–19].
The exact continuous limit results for power-law LRI were formulated in propositions 2, 3.
This operation is used to consider a wide class of long-range interactions that can be called
alpha-interaction. In continuous limit, the equations of motion give the medium equations
with fractional derivatives. The power-law interaction is a special case of this class of α-
interactions. We show how the continuous limit for the systems of oscillators with long-range
interaction can be described by the corresponding fractional equation.

In section 2, the transform operation that maps the discrete equations into continuous
medium equation is defined. In section 3, the Fourier series transform of the equations of a
system with long-range interaction is realized. A wide class of long-range interactions that can
give the fractional equations in the continuous limit is considered. In section 4, the fractional
equations are obtained from three-dimensional discrete system. In section 5, the linear power-
law long-range interactions with positive integer and noninteger powers are considered. The
correspondent continuous medium equations are discussed. In section 6, the nonlinear long-
range interactions for the discrete systems are used to derive the Burgers, Korteweg–de Vries
and Boussinesq equations and their fractional generalizations in the continuous limit. The
conclusion is given in section 7.

2. Transform operation

Let us consider a one-dimensional system of interacting oscillators that are described by the
equations of motion,

∂sun

∂ts
= gÎ n(u) + F(un), (1)

where s = 1, 2 and un are displacements from the equilibrium. The terms F(un) characterize
an interaction of the oscillators with the external on-site force. The term Î n(u) is defined by

Î n(u) ≡
+∞∑

m=−∞
m�=n

J (n,m)W(un, um), (2)

and it takes into account the interaction of the oscillators in the system.
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For linear long-range interaction we have W(un, um) = un −um, and the interaction term
(2) is

Î n(u) ≡
+∞∑

m=−∞
m�=n

J (n,m)[un − um]. (3)

In this paper, we consider a wide class of interactions (3) that create a possibility of presenting
the continuous medium equations with fractional derivatives. We also discuss the term (2)
with W(un, um) = f (un) − f (um) as nonlinear long-range interaction. As the examples, we
consider f (u) = u2 and f (u) = u − gu2 that gives the Burgers, Korteweg–de Vries and
Boussinesq equations and their fractional generalizations in the continuous limit.

Let us define the operation, which transforms equations (1) for un(t) into continuous
medium equation for u(x, t). We assume that un(t) are Fourier coefficients of some function
û(k, t). Then we define the field û(k, t) on [−K/2,K/2] as

û(k, t) =
+∞∑

n=−∞
un(t) e−ikxn = F�{un(t)}, (4)

where xn = n�x,�x = 2π/K is distance between oscillators and

un(t) = 1

K

∫ +K/2

−K/2
dk û(k, t) eikxn = F−1

� {û(k, t)}. (5)

These equations are the basis for the Fourier transform, which is obtained by transforming
from a discrete variable to a continuous one in the limit �x → 0 (K → ∞). The Fourier
transform can be derived from (4) and (5) in the limit as �x → 0. Replace the discrete
un(t) = (2π/K)u(xn, t) with continuous u(x, t) while letting xn = n�x = 2πn/K → x.
Then change the sum to an integral, and equations (4), (5) become

ũ(k, t) =
∫ +∞

−∞
dx e−ikxu(x, t) = F{u(x, t)}, (6)

u(x, t) = 1

2π

∫ +∞

−∞
dk eikx ũ(k, t) = F−1{ũ(k, t)}. (7)

Here,

ũ(k, t) = Lû(k, t), (8)

and L denotes the passage to the limit �x → 0 (K → ∞). Note that ũ(k, t) is a Fourier
transform of the field u(x, t), and û(k, t) is a Fourier series transform of un(t), where we can
use un(t) = (2π/K)u(n�x, t). The function ũ(k, t) can be derived from û(k, t) in the limit
�x → 0.

The map of a discrete model into the continuous one can be defined by the transform
operation.

Definition 1. Transform operation T̂ is a combination T̂ = F−1LF� of the operations:

(1) The Fourier series transform:

F�: un(t) → F�{un(t)} = û(k, t); (9)

(2) The passage to the limit �x → 0:

L: û(k, t) → L{û(k, t)} = ũ(k, t); (10)

(3) The inverse Fourier transform:

F−1: ũ(k, t) → F−1{ũ(k, t)} = u(x, t). (11)

The operation T̂ = F−1LF� is called a transform operation, since it performs a transform
of a discrete model of coupled oscillators into the continuous medium model.
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3. From discrete to continuous equation

Let us consider the interparticle interaction that is described by (3), where J (n,m) satisfies
the condition

J (n,m) = J (n − m) = J (m − n),

∞∑
n=1

|J (n)|2 < ∞. (12)

Note that J (−n) = J (n).

Definition 2. The interaction terms (2) and (12) in the equation of motion (1) are called
α-interaction if the function

Ĵ α(k) =
+∞∑

n=−∞
n�=0

e−iknJ (n) = 2
∞∑

n=1

J (n) cos(kn) (13)

satisfies the condition

lim
k→0

[Ĵ α(k) − Ĵ α(0)]

|k|α = Aα, (14)

where α > 0 and 0 < |Aα| < ∞.

Condition (14) means that Ĵ α(k) − Ĵ α(0) = O(|k|α), i.e.

Ĵ α(k) − Ĵ α(0) = Aα|k|α + Rα(k), (15)

for k → 0, where

lim
k→0

Rα(k)/|k|α = 0. (16)

Examples of functions J (n) for α-interactions can be summarized in the table of the
appendix.

Proposition 1. The transform operation T̂ maps the discrete equations of motion

∂sun(t)

∂ts
= g

+∞∑
m=−∞
m�=n

J (n,m)[un(t) − um(t)] + F(un(t)) (17)

with noninteger α-interaction into the fractional continuous medium equations:

∂s

∂ts
u(x, t) − GαAα

∂α

∂|x|α u(x, t) − F(u(x, t)) = 0, (18)

where ∂α/∂|x|α is the Riesz fractional derivative and Gα = g|�x|α is a finite parameter.

Proof. To derive the equation for the field û(k, t), we multiply equation (17) by exp(−ikn�x),
and summing over n from −∞ to +∞. Then,

+∞∑
n=−∞

e−ikn�x ∂s

∂ts
un(t) = g

+∞∑
n=−∞

+∞∑
m=−∞
m�=n

e−ikn�xJ (n,m)[un − um] +
+∞∑

n=−∞
e−ikn�xF (un). (19)

The left-hand side of (19) gives
+∞∑

n=−∞
e−ikn�x ∂sun(t)

∂ts
= ∂s

∂ts

+∞∑
n=−∞

e−ikn�xun(t) = ∂sû(k, t)

∂ts
, (20)
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where û(k, t) is defined by (4). The second term on the right-hand side of (19) is
+∞∑

n=−∞
e−ikn�xF (un) = F�{F(un)}. (21)

The first term on the right-hand side of (19) is
+∞∑

n=−∞

+∞∑
m=−∞
m�=n

e−ikn�xJ (n,m)[un − um]

=
+∞∑

n=−∞

+∞∑
m=−∞
m�=n

e−ikn�xJ (n,m)un −
+∞∑

n=−∞

+∞∑
m=−∞
m�=n

e−ikn�xJ (n,m)um. (22)

Using (4) and (24), the first term on the rhs of (22) gives
+∞∑

n=−∞

+∞∑
m=−∞
m�=n

e−ikn�xJ (n,m)un =
+∞∑

n=−∞
e−ikn�xun

+∞∑
m′=−∞
m′ �=0

J (m′) = û(k, t)Ĵ α(0), (23)

where we use (12) and J (m′ + n, n) = J (m′), and

Ĵ α(k�x) =
+∞∑

n=−∞
n�=0

e−ikn�xJ (n) = F�{J (n)}. (24)

+∞∑
n=−∞

+∞∑
m=−∞
m�=n

e−ikn�xJ (n,m)um =
+∞∑

m=−∞
um

+∞∑
n=−∞
n�=m

e−ikn�xJ (n,m)

=
+∞∑

m=−∞
um e−ikm�x

+∞∑
n′=−∞
n′ �=0

e−ikn′�xJ (n′) = û(k, t)Ĵ α(k�x), (25)

where we use J (m, n′ + m) = J (n′).
As a result, equation (19) has the form

∂sû(k, t)

∂ts
= g[Ĵ α(0) − Ĵ α(k�x)]û(k, t) + F�{F(un)}, (26)

where F�{F(un)} is an operator notation for the Fourier series transform of F(un). �

The Fourier series transform F� of (17) gives (26). We will be interested in the limit
�x → 0. Using (15), equation (26) can be written as

∂s

∂ts
û(k, t) − GαT̂α,�(k)û(k, t) − F�{F(un(t))} = 0, (27)

where we use finite parameter Gα = g|�x|α and

T̂α,�(k) = −Aα|k|α − Rα(k�x)|�x|−α. (28)

Note that Rα satisfies the condition

lim
�x→0

Rα(k�x)

|�x|α = 0.

The expression for T̂α,�(k) can be considered as a Fourier transform of the operator (3). Note
that g → ∞ for the limit �x → 0, if Gα is a finite parameter.
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The passage to the limit �x → 0 for the third term of (27) gives

L: F�F(un) → LF�F(un). (29)

Then,

LF�{F(un)} = F{LF(un)} = F{F(Lun)} = F{F(u(x, t))}, (30)

where we use LF� = FL.
As a result, equation (27) in the limit �x → 0 obtains

∂s

∂ts
ũ(k, t) − GαT̂α(k)ũ(k, t) − F{F(u(x, t))} = 0, (31)

where

ũ(k, t) = Lû(k, t), T̂α(k) = LT̂α,�(k) = −Aα|k|α.

The inverse Fourier transform of (31) gives
∂s

∂ts
u(x, t) − GαTα(x)u(x, t) − F(u(x, t)) = 0, (32)

where Tα(x) is an operator,

Tα(x) = F−1{T̂α(k)} = Aα

∂α

∂|x|α . (33)

Here, we have used the connection between the Riesz fractional derivative and its Fourier
transform [2]: |k|α ←→ −∂α/∂|x|α .

As a result, we obtain continuous medium equations (18).
Examples of the interaction terms J (n) that give the operators (33) in continuous medium

equations are summarized in the following table:

J (n) Tα(x)(
(−1)nπα+1

α+1 − (−1)nπ1/2

(α+1)|n|α+1/2 L1(α + 3/2, 1/2, πn)
)

−∂α/∂|x|α
(−1)n

n2 −(1/2)∂2/∂x2

1
n2 −iπ∂/∂x

|n|−(β+1), (0 < β < 2, β �= 1) −2�(−β) cos(πβ/2)∂β/∂|x|β
|n|−(β+1), (β > 2, β �= 3, 4, . . .) ζ(β − 1)∂2/∂x2

(−1)n

�(1+α/2+n)�(1+α/2−n)
(β > −1/2) − 1

�(α+1)
∂α/∂|x|α

(−1)n

a2−n2 − aπ
2 sin(πa)

∂2/∂x2

J (n) = 1/n! 4ei∂/∂x

4. Fractional three-dimensional lattice equation

The generalization of the three-dimensional case can be easily realized. Let us consider the
three-dimensional lattice that is described by the equations of motion

∂sun

∂ts
= g

+∞∑
m=−∞

m�=n

J (n, m)[un − um] + F(un), (34)

where n = (n1, n2, n3) and J (n, m) = J (n − m) = J (m − n). We suppose that un(t) are
Fourier coefficients of the function û(k, t):

û(k, t) =
+∞∑

n=−∞
un(t) e−ikrn = F�{un(t)}, (35)
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where k = (k1, k2, k3) and

rn =
3∑

i=1

niai .

Here, ai are the translational vectors of the lattice. The continuous medium model can be
derived in the limit |ai | → 0.

To derive the equation for û(k, t), we multiply (34) by exp(−ikrn), and summing over n.
Then, we obtain

∂sû(k, t)

∂ts
= g[Ĵ α(0) − Ĵ α(ka)]û(k, t) + F�{F(un)}, (36)

where F�{F(un)} is an operator notation for the Fourier series transform of F(un) and

Ĵ α(ka) =
+∞∑

n=−∞
e−ikrnJ (n). (37)

For the three-dimensional lattice, we define the α-interaction with α = (α1, α2, α3), as an
interaction that satisfies the conditions

lim
k→0

[Ĵ α(k) − Ĵ α(0)]

|ki |αi
= Aαi

, (i = 1, 2, 3), (38)

where 0 < |Aαi
| < ∞. Conditions (38) mean that

Ĵ α(k) − Ĵ α(0) =
3∑

i=1

Aαi
|ki |αi +

3∑
i=1

Rαi
(k), (39)

where

lim
ki→0

Rαi
(k)/|ki |αi = 0. (40)

In the continuous limit (|ai | → 0), the α-interaction in the three-dimensional lattice gives the
continuous medium equations with the derivatives ∂α1/∂xα1 , ∂α2/∂yα2 and ∂α3/∂zα3 :

∂su(r, t)
∂ts

= −g

3∑
i=1

Aαi

∂αi u(r, t)
∂|x|αi

+ F(u(r, t)). (41)

This equation describes multifractional properties of continuous medium.

5. Linear power-law long-range interaction

Let us consider the chain with linear long-range interaction that is defined by the equation of
motion

∂sun

∂ts
= g

+∞∑
m=−∞
m�=n

J (n,m)[un − um] + F(un), (42)

where J (n,m) = J (|n − m|) and

J (n) = |n|−(β+1) (43)

with positive integer number β.
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Proposition 2. The power-law interaction (43) for the odd number β is α-interaction with
α = 1 for β = 1, and α = 2 for β = 3, 5, 7, . . .. For even numbers β, (43) is not α-
interaction. For odd number β, the transform operation T̂ maps the equations of motion with
the interaction (43) into the continuous medium equation (42) with derivatives of first order
for β = 1,

∂s

∂ts
u(x, t) − iG1

∂

∂x
u(x, t) − F(u(x, t)) = 0, (44)

and the second order for other odd β (β = 2m − 1, m = 2, 3, 4, . . .),

∂s

∂ts
u(x, t) − G2

∂2

∂x2
u(x, t) − F(u(x, t)) = 0, (45)

where

G1 = πg�x, G2 = (−1)m−1(2π)2m−2

4(2m − 2)!
B2m−2g(�x)2 (46)

are the finite parameters.

Proof. From (26), we get the equation for û(k, t) in the form

∂sû(k, t)

∂ts
+ g[Ĵ α(k�x) − Ĵ α(0)]û(k, t) − F�{F(un(t))} = 0, (47)

where

Ĵ α(k�x) =
+∞∑

n=−∞
n�=0

e−ikn�x |n|−(1+β). (48)

The function (48) can be represented by

Ĵ α(k�x) =
+∞∑
n=1

1

n1+β
(e−ikn�x + eikn�x) = 2

+∞∑
n=1

1

n1+β
cos(kn�x). (49)

Then, we can use (section 5.4.2.7 in [47]) the relations
∞∑

n=1

cos(nk)

n2m
= (−1)m−1(2π)2m

2(2m)!
B2m

(
k

2π

)
, (0 � k � 2π), (50)

where m = 1, 2, 3, . . . , and B2m(z) are the Bernoulli polynomials [46], which are defined by

Bn(k) =
n∑

m=0

Cm
n Bmkn−m. (51)

Here, Bm are the Bernoulli numbers. Note B2m−1 = 0 for m = 2, 3, 4, . . . [46]. �

For β = 1, we have

Ĵ α(k�x) − Ĵ α(0) = 1
2 (k�x)2 − πk�x ≈ −πk�x. (52)

For β = 2m − 1 (m = 2, 3, . . .),

Ĵ α(k) = (−1)m−1

(2m)!
(2π)2mB2m

(
k

2π

)
, (0 � k � 2π). (53)

Then,

Ĵ α(k�x) − Ĵ α(0) ≈ (−1)m−1(2π)2m−2

4(2m − 2)!
B2m−2(k�x)2. (54)
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For β = 0, we have ([47], section 5.4.2.9) the relation
∞∑

n=1

cos(nk)

n
= −ln[2 sin(k/2)]. (55)

Then, the limit �x → 0 gives

Ĵ α(k�x) ≈ −ln(k�x) → ∞. (56)

For even numbers β,

|Ĵ α(k�x) − Ĵ α(0)|/|k�x|β → ∞, (57)

since the expression has the logarithmic poles.
The transition to the limit �x → 0 in equation (47) with β = 1 gives

∂sũ(k, t)

∂ts
− G1kũ(k, t) − F{F(u(x, t))} = 0, (58)

where G1 = πg�x is a finite parameter. The inverse Fourier transform of (58) leads to the
continuous medium equation (44) with coordinate derivative of first order. For s = 1, this
equation can be considered as the nonlinear Schrödinger equation.

The limit �x → 0 in equation (47) with β = 2m − 1 (m = 2, 3, . . .) gives
∂sũ(k, t)

∂ts
+ G2k

2ũ(k, t) − F{F(u(x, t))} = 0, (59)

where G2 is a finite parameter (46). The inverse Fourier transform of (59) leads to the partial
differential equation (45) of second order. For s = 2, this equation can be considered as a
nonlinear diffusion equation, and for s = 1 as a nonlinear wave equation.

Proposition 3. The power-law interaction (43) with noninteger β is α-interaction with α = β

for 0 < β < 2, and α = 2 for β > 2. For 0 < β < 2 (β �= 1), the transform operation
T̂ maps the discrete equations with the interaction (43) into the continuous medium equation
with fractional Riesz derivatives of order α:
∂s

∂ts
u(x, t) − GαAα

∂α

∂|x|α u(x, t) = F(u(x, t)), 0 < α < 2, (α �= 1). (60)

For α > 2 (α �= 3, 4, 5, . . .), the continuous medium equation has the coordinate derivatives
of second order:

∂s

∂ts
u(x, t) + Gαζ(α − 1)

∂2

∂|x|2 u(x, t) = F(u(x, t)), α > 2, (α �= 3, 4, . . .). (61)

Proof. For fractional positive α, the function (48) can be represented by

Ĵ α(k�x) =
+∞∑
n=1

1

n1+α
(e−ikn�x + eikn�x) = Li1+α(eik�x) + Li1+α(e−ik�x), (62)

where Liβ(z) is a polylogarithm function. Using the series representation of the polylogarithm
[45],

Liβ(ez) = �(1 − β)(−z)β−1 +
∞∑

n=0

ζ(β − n)

n!
zn, |z| < 2π, β �= 1, 2, 3, . . . , (63)

we obtain

Ĵ α(k�x) = Aα|�x|α|k|α + 2
∞∑

n=0

ζ(1 + α − 2n)

(2n)!
(�x)2n(−k2)n, α �= 0, 1, 2, 3, . . . ,

(64)
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where ζ(z) is the Riemann zeta-function, |k�x| < 2π , and

Aα = 2�(−α) cos
(πα

2

)
. (65)

From (64), we have

Jα(0) = 2ζ(1 + α).

Then,

Ĵ α(k�x) − Ĵ α(0) = Aα|�x|α|k|α + 2
∞∑

n=1

ζ(1 + α − 2n)

(2n)!
(�x)2n(−k2)n, (66)

where α �= 0, 1, 2, 3, . . ., and |k�x| < 2π . �

Substitution of (66) into equation (47) gives

∂sû(k, t)

∂ts
+ gAα|�x|α|k|αû(k, t) + 2g

∞∑
n=1

ζ(α + 1 − 2n)

(2n)!
(�x)2n(−k2)nû(k, t)

−F�{F(un(t))} = 0. (67)

We will be interested in the limit �x → 0. Then, equation (67) can be written as
∂s

∂ts
û(k, t) + GαT̂α,�(k)û(k, t) − F�{F(un(t))} = 0, α �= 0, 1, 2, . . . , (68)

where we use the finite parameter

Gα = g|�x|min{α;2}, (69)

and

T̂α,�(k) =
{

Aα|k|α − |�x|2−αζ(α − 1)k2, 0 < α < 2, (α �= 1);
|�x|α−2Aα|k|α − ζ(α − 1)k2, α > 2, (α �= 3, 4, . . .).

(70)

The expression for T̂α,�(k) can be considered as a Fourier transform of the interaction operator
(2). From (69), we see that g → ∞ for the limit �x → 0, and finite value of Gα .

The transition to the limit �x → 0 in equation (68) gives
∂s

∂ts
ũ(k, t) + GαT̂α(k)ũ(k, t) − F{F(u(x, t))} = 0, (α �= 0, 1, 2, . . .), (71)

where

T̂α(k) =
{

Aα|k|α, 0 < α < 2, α �= 1;
−ζ(α − 1)k2, 2 < α, α �= 3, 4, . . . .

(72)

The inverse Fourier transform to (71) is
∂s

∂ts
u(x, t) + GαTα(x)u(x, t) − F(u(x, t)) = 0, α �= 0, 1, 2, . . . , (73)

where

Tα(x) = F−1{T̂α(k)} =
{

−Aα∂α/∂|x|α, (0 < α < 2, α �= 1);
ζ(α − 1)∂2/∂|x|2, (α > 2, α �= 3, 4, . . .).

As a result, we obtain the continuous medium equations (60) and (61).
For s = 1 and F(u) = 0, equation (60) is the fractional kinetic equation that describes

the fractional superdiffusion [12, 15, 39]. If F(u) is a sum of linear and cubic terms, then
equation (60) has the form of the fractional Ginzburg–Landau equation [40–44]. A remarkable
property of the dynamics described by the equation with fractional space derivatives is that
the solutions have power-like tails.
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6. Nonlinear long-range interaction

Let us consider the discrete equations with nonlinear long-range interaction:

Î n(u) =
+∞∑

m=−∞
m�=n

Jα(n,m)[f (un) − f (um)], (74)

where f (u) is a nonlinear function of un(t) and Jα(n,m) = Jα(n−m) defines the α-interaction.
As an example of Jα(n), we can use

Jα(n) = (−1)n

�(1 + α/2 + n)�(1 + α/2 − n)
. (75)

For α = 1, 2, 3, 4, the interactions with f (u) = u2 and f (u) = u − gu2 give the Burgers,
Korteweg–de Vries and Boussinesq equations in the continuous limit. For fractional α in
equation (75), we can obtain the fractional generalization of these equations.

Proposition 4. The transform operation maps the equations of motion

∂sun(t)

∂ts
= g

+∞∑
m=−∞
m�=n

Jα(n − m)[f (un) − f (um)] + F(un), (76)

where F is an external on-site force, and Jα(n) defines the α-interaction, into the continuous
medium equations

∂su(x, t)

∂ts
= GαAα

∂α

∂|x|α f (u(x, t)) + F(u(x, t)), (77)

where Gα = g|�x|α is a finite parameter.

Proof. The Fourier series transform of the interaction term (74) can be represented as
+∞∑

n=−∞
e−ikn�x Î n(u) =

+∞∑
n=−∞

+∞∑
m=−∞
m�=n

e−ikn�xJ (n,m)[f (un) − f (um)]

=
+∞∑

n=−∞

+∞∑
m=−∞
m�=n

e−ikn�xJ (n,m)f (un) −
+∞∑

n=−∞

+∞∑
m=−∞
m�=n

e−ikn�xJ (n,m)f (um). (78)

For the first term on the rhs of (78):
+∞∑

n=−∞

+∞∑
m=−∞
m�=n

e−ikn�xJ (n,m)f (un) =
+∞∑

n=−∞
e−ikn�xf (un)

+∞∑
m′=−∞
m′ �=0

J (m′) = F�{f (un)}Ĵ α(0),

(79)

where we use J (m′ + n, n) = J (m′).
For the second term on the rhs of (78):

+∞∑
n=−∞

+∞∑
m=−∞
m�=n

e−ikn�xJ (n,m)f (um) =
+∞∑

m=−∞
f (um)

+∞∑
n=−∞
n�=m

e−ikn�xJ (n,m)

=
+∞∑

m=−∞
f (um) e−ikm�x

+∞∑
n′=−∞
n′ �=0

e−ikn′�xJ (n′) = F�{f (un)}Ĵ α(k�x), (80)

where we use J (m, n′ + m) = J (n′).
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As a result, we obtain

∂sû(k, t)

∂ts
= g[Ĵ α(0) − Ĵ α(k�x)]F�{f (un)} + F�{F(un)}, (81)

where û(k, t) = F�{un(t)} and Ĵ α(k�x) = F�{J (n)}.
For the limit �x → 0, equation (81) can be written as

∂s

∂ts
û(k, t) − GαT̂α,�(k)û(k, t) − F�{F(un(t))} = 0, (82)

where we use finite parameter Gα = g|�x|α and

T̂α,�(k) = −Aα|k|α − Rα(k�x)|�x|−α. (83)

Here, the function Rα satisfies the condition

lim
�x→0

Rα(k�x)

|�x|α = 0.

In the limit �x → 0, we get

∂s

∂ts
ũ(k, t) − GαT̂α(k)F{f (u(x, t))} − F{F(u(x, t))} = 0, (84)

where

ũ(k, t) = Lû(k, t), T̂α(k) = LT̂α,�(k) = −Aα|k|α.

The inverse Fourier transform of (84) gives the continuous medium equation (77). �

Let us consider examples of quadratic-nonlinear long-range interactions:
(1) The continuous limit of the lattice equation

∂un(t)

∂t
= g1

+∞∑
m=−∞
m�=n

J1(n,m)
[
u2

n − u2
m

]
+ g2

+∞∑
m=−∞
m�=n

J2(n,m)[un − um], (85)

where Ji(n) (i = 1, 2) define the αi-interactions with α1 = 1 and α2 = 2, gives the Burgers
equation [48] that is a nonlinear partial differential equation of second order:

∂

∂t
u(x, t) + G1u(x, t)

∂

∂x
u(x, t) − G2

∂2

∂x2
u(x, t) = 0. (86)

It is used in fluid dynamics as a simplified model for turbulence, boundary layer behaviour,
shock wave formation and mass transport. If we consider J2(n,m) with fractional α2 = α,
then we get the fractional Burgers equation that is suggested in [49]. In general, the fractional
Burgers equation is

∂

∂t
u(x, t) + Gα1u(x, t)

∂α1

∂|x|α1
u(x, t) − Gα2

∂α2

∂xα2
u(x, t) = 0. (87)

(2) The continuous limit of the system of equation

∂un(t)

∂t
= g1

+∞∑
m=−∞
m�=n

J1(n,m)
[
u2

n − u2
m

]
+ g3

+∞∑
m=−∞
m�=n

J3(n,m)[un − um], (88)

where Ji(n) (i = 1, 3) define the αi-interactions with α1 = 1 and α3 = 3, gives the Korteweg–
de Vries (KdV) equation

∂

∂t
u(x, t) − G1u(x, t)

∂

∂x
u(x, t) + G3

∂3

∂x3
u(x, t) = 0. (89)
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First formulated as a part of an analysis of shallow-water waves in canals, it has subsequently
been found to be involved in a wide range of physics phenomena, especially those exhibiting
shock waves, travelling waves and solitons. Certain theoretical physics phenomena in the
quantum mechanics domain are explained by means of a KdV model. It is used in fluid
dynamics, aerodynamics and continuum mechanics as a model for shock wave formation,
solitons, turbulence, boundary layer behaviour and mass transport.

If we use noninteger αi-interactions for Ji(n), then we get the fractional generalization of
the KdV equation [50, 51]:

∂

∂t
u(x, t) − Gα1u(x, t)

∂α1

∂xα1
u(x, t) + Gα3

∂α3

∂xα3
u(x, t) = 0. (90)

(3) The continuous limit of the equation

∂2un(t)

∂t2
= g2

+∞∑
m=−∞
m�=n

J2(n,m)[f (un) − f (um)] + g4

+∞∑
m=−∞
m�=n

J4(n,m)[un − um], (91)

where

f (u) = u − gu2,

and Ji(n) define the αi-interactions with α2 = 2 and α4 = 4, gives the Boussinesq equation
that is a nonlinear partial differential equation of fourth order:

∂2

∂t2
u(x, t) − G2

∂2

∂x2
u(x, t) + gG2

∂2

∂x2
u2(x, t) + G4

∂4

∂x4
u(x, t) = 0. (92)

This equation was formulated as a part of an analysis of long waves in shallow water. It was
subsequently applied to problems in the percolation of water in porous subsurface strata. It
also crops up in the analysis of many other physical processes. The fractional Boussinesq
equation is

∂2

∂t2
u(x, t) − Gα2

∂α2

∂xα2
u(x, t) + gGα2

∂α2

∂xα2
u2(x, t) + Gα4

∂α4

∂xα4
u(x, t) = 0. (93)

7. Conclusion

Discrete system of long-range interacting oscillators serves as a model for numerous
applications in physics, chemistry, biology, etc. Long-range interactions are important types
of interactions for complex media. An interesting situation arises when we consider a wide
class of α-interactions, where α is noninteger. A remarkable feature of these interactions is
the existence of a transform operation that replaces the set of coupled individual oscillator
equations by the continuous medium equation with the space derivative of noninteger order α.
Such a transform operation is an approximation that appears in the continuous limit. This limit
allows us to consider different models in unified way by applying tools of fractional calculus.

We can assume that an asymmetric interaction term (J (n − m) �= J (|n − m|)) leads to
other forms of the fractional derivative [2].

Note that a fractional derivative can result from a fractional difference as interaction term,
just as an nth order difference leads to an nth derivative [2]. It follows from the representation
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of the Riesz fractional derivative by Grunwald–Letnikov fractional derivative:

∂α

∂|x|α u(x, t) � − 1

2 cos(πα/2)

1

hα

∞∑
n=0

(−1)n�(α + 1)

�(n + 1)�(α − n + 1)
[u(x − nh, t) + u(x + nh, t)],

(94)

where h = �x is the discretization parameter.
A similar approach to fractional dynamics in the context of the diffusion equation was

developed in the papers [52, 53]. In those papers, a continuum limit of (non-interacting)
random particle motions leads to a fractional equation.

Appendix

J (n) Ĵ α(k) − Ĵ α(0)(
(−1)nπα+1

α+1 − (−1)nπ1/2

(α+1)|n|α+1/2 L1(α + 3/2, 1/2, πn)
)

|k|α
(−1)n

n2 (1/2)k2

1
n2

1
2 [k2 − 2πk], (0 � k � 2π)

|n|−(β+1), (0 < β < 2, β �= 1) 2�(−β) cos(πβ/2)|k|β
|n|−(β+1), (β > 2, β �= 3, 4, . . .) −ζ(α − 1)k2

(−1)n

�(1+α/2+n)�(1+α/2−n)
, (β > −1/2) 2α

�(α+1)
sinα

(
k
2

)
(−1)n

a2−n2
π

a sin(πa)
cos(ak) − 1

a2 , (0 < k < 2π)

J (n) = 1/n! ecos k cos(sin k), |k| < ∞
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