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1. Introduction and motivation

High value products are typically technology intensive, expen-

sive and reliability critical requiring continuous maintenance

throughout their life cycle. Continuous maintenance is an

engineering service that allows products to achieve required

performance through-life with optimum through-life cost. Exam-

ples of the high value products include high-tech machine tools,

aircraft engine, nuclear power station, train, defence equipment,

high-end car, medical equipment, and wind turbine (Fig. 1). In

addition, manufacturers are looking for opportunities to provide

the maintenance service within the in-service phase of the product

life cycle to generate additional revenue and profit. Customers and

end users are expecting to pay for the usage of the product rather

than the full ownership. This is known as ‘servitisation’ phenome-

non within the manufacturing sector. A full study of the

phenomenon under the ‘Industrial Product-Service Systems

(IPS2)’ CIRP Collaborative Working Group was presented in 2010

[113]. When manufacturers provide continuous maintenance for a

product they have developed, especially within an industrial

product-service system context, it provides additional opportu-

nities to improve the design and production of those products

using the in-service feedback. This can lead to overall reduction of

the through-life cost together with reduction in material

consumption. There are also new challenges in the area of

maintenance service [144] [22] due to the new context. Continu-

ous maintenance of high value products to achieve enhanced

durability and reliability is also consistent with the European

Commissions recent action plan on Circular Economy [36]. The

action plan emphasises on better product design by aligning the

producers, users and the recyclers. The new IPS2 model has

prompted additional changes and has become the key motivation

for continuous maintenance:

� Engineering for life and extending life of the legacy high value

products with optimum cost [7].

� Better understanding of the foundations of product in-service

degradation.

� Applying new technologies to improve efficiency and effective-

ness of the maintenance: large scale data analytics (or Big Data),

automation and autonomy.
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� Applying advanced repair and retrofit technologies for legacy

systems.

� Functional improvement of a high value product over time.

With technological developments such as Additive Layer

Manufacturing (ALM), Industry 4.0 and Internet of Things (IoT)

(Fig. 2) there is a paradigm shift in our ability to better repair or

replace individual components, better understand the health of a

product and plan maintenance based on the availability of

significantly large volume of data. The increasing amount of data

collected requires the development of new product-service

business models. Whether the collected data belongs to the

manufacturer or the customer/user of equipment is a critical issue

to be solved when designing the product-service business models.

Manufacturers could pay customers for providing the usage data,

because with the data the manufacturer improves product quality

by feeding back retrieved information in the product development

process following the example of ‘‘Total Cost of Ownership (TCO)’’

contracts. The data collection could improve the quality of service

received by the customer (as ‘‘serviceability’’) and implement

autonomous maintenance approach to reduce the through-life cost

of the equipment and increase the customer satisfaction [27].

This keynote presents different technologies and fundamental

knowledge that is essential to provide continuous maintenance,

their challenges and how the technologies are changing in the

future, associated opportunities, uncertainties and risks. The scope

of this keynote (Fig. 3) includes continuous maintenance of high

value and long life industrial products and the manufacturing

facilities for the products within the industrial product-service

system context. The keynote will cover technologies that are

relevant at component level as well as the whole system level and

will also include continuous maintenance approaches used for both

workshop-based maintenance and ‘in-situ’ maintenance of large

equipment (e.g., power generation gas turbines). The paper will not

consider shorter life products (e.g., consumer products) and will not

include retrofitting technologies used to maintain the legacy

systems. The keynote does not include ‘design for continuous

maintenance’ or associated product design challenges. This keynote

does not also cover the environmental effect of the maintenance

and the decision making process for upgrade, overhaul or renewal.

There are several terminologies used in academia and in practice

that have similarities with continuous maintenance. The terminol-

ogies are Maintenance, Repair and Overhaul (MRO); Through-life

Engineering Services; Life Cycle Engineering and Asset Manage-

ment. The context of this keynote is based on industrial product-

service systems and includes several similar terminologies such as

product-service systems, performance based contracts, ‘power by

hour’ contracts and availability contracts. Although the terminolo-

gies have similarities there are some differences. For the purpose of

this paper, the term continuous maintenance is being used in this

document. The earliest paper related to computer-assisted mainte-

nance within the CIRP Annals is from 1981 [24]. There are

66 maintenance related papers within the Annals so far with several

more papers published within the CIRP Life Cycle Engineering and

CIRP Sponsored Through-life Engineering Services conferences.

Spur et al. [153] discussed challenges in robotics task execution for

maintenance in space platforms, then an extension of the task

classification for automation was reported by Farnsworth and

Fig. 2. Technological challenges that will affect manufacturing significantly (based

on [46,52,180]).

Fig. 3. Continuous maintenance – fundamental knowledge required and technological challenges.
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Tomiyama [42]. A number of researchers also reported work on

monitoring and diagnostics at the machine tool and the plant

maintenance levels [50,107,116,125,126,152,170,182]. Over the

years the community has moved on from a component level

monitoring to a system level monitoring due to availability of latest

technologies, both in terms of sensors and management of data

through Clouds. Maintenance planning is another major area of

investigation which the community is focused on over the years

[11,21,67,76,85,90,94,166,190,201]. The research has evolved over

the years from resource-based maintenance planning to whole

system planning and optimisation. Model based maintenance has

also supported the planning and prognostics research along with a

life cycle management perspective [31,77,163,164]. In recent years,

study of degradation, automation of maintenance-repair-overhaul

(MRO) and virtual reality applications to support maintenance has

gained significant interest [78,111,115,122,129,156]. This keynote

focuses on the recent technological knowledge challenges at the

component and system level and presents major research trends

inside and outside the CIRP community.

The keynote is presented in five major sections before it is

concluded. After this introduction section, market size of continu-

ous maintenance is investigated across industry within the UK and

globally. The next section presents six fundamental knowledge

areas that are necessary to develop continuous maintenance

solutions. The knowledge types define the current and future

technical challenges that are faced in the maintenance tasks. The

fourth section focuses on the technologies used in continuous

maintenance and their challenges. This section also outlines the use

of different technologies across multiple sectors and their limits to

solve the continuous maintenance challenges. The suitability of the

technologies for equipment used in industrial product-service

systems context is also discussed. The fifth section describes future

technology trends and investigates new challenges to continuous

maintenance. The keynote is concluded in the sixth section with a

summary of key technology trends across sectors for maintenance

and the major challenges faced to achieve step change in availability

of long life equipment with optimum through-life cost.

2. Market size of continuous maintenance

Fig. 4 estimates the global aerospace MRO market is going to be

around $89 billion by 2023 (ICF International Analysis report,

2013). The MRO spend growth will be driven by the Asia-Pacific

and Middle East sectors. The growth is mainly due to the significant

increase expected in the commercial aircraft numbers. Transpor-

tation sector (e.g., train) is experiencing significant through-life

cost pressures and are also focusing on improving their ‘whole

systems approach’ for maintenance of carriages together with the

network infrastructure (Technical strategy leadership group, office

of the rail regulator, UK, 2014). A recent report on UK service and

support industry [112] identifies the global market in ‘service and

support’ across high value manufacturing sectors as £490 billion

today, growing to £710 billion by 2025.

Fig. 5 shows the value of machine tools consumed in top

5 countries [51]. Global machine tools consumption value in

2015 was $75,197.5 million. Assuming that the life expectancy of

machine tools is typically 14–15 years, the machine tool operating

in global market is estimated as worth $500 billion, and is

approximately equal to half of the total number of turnouts for the

last 15 years. There are no statistics about the global machine tool

MRO market, but it can be estimated, assuming spare parts

expense occupy 10–15% of the sales of the machine tool

manufacturer. Therefore, the estimated market size of the machine

tool MRO globally is in the tune of $50–75 billion.

Aerospace, maritime, defence and nuclear sectors dominate the

continuous maintenance market. As an example, Fig. 6 shows a

breakdown of the number of companies that provide the

maintenance service within the UK as of December 2014. Within

the aerospace sector, Rolls-Royce has an annual turnover in excess

of £14 billion, with more than half derived from the service and

support for their products. Their annual costs for providing services

are in the order of £5–6 billion. One of their primary company

strategic goals is to reduce this cost going forward. Their cost

competitiveness in this crucial engineering services market will be

the key to future growth, prosperity and profitability. Another

example is from Germany, where Fig. 7 shows that, along with the

Fig. 4. Global aerospace MRO market in 2023.

Source: ICF International Analysis report 2013.

Fig. 5. Consumption of machine tool over the years by top 5 countries.

Adapted from [51].

Fig. 6. Number of companies in the UK in the service and support sector, operating

by standard industrial classification (SIC) system in December 2014.

Fig. 7. Size of MRO market across different sectors in Germany (actual values until

2013).

Source: statista 2016.
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auto-car sector other sectors are also showing a stable or slightly

growing MRO market.

3. Foundations of continuous maintenance

Continuous maintenance is dependent on six fundamental

knowledge areas: degradation mechanisms of components and

systems in service; repair mechanisms; monitoring, diagnostics

and prognostics; autonomous maintenance; obsolescence; and

finally an integrated planning.

3.1. Degradation mechanisms of components and systems in service

Modern machines and components are exposed to changing

environmental influences and material ageing effects. This results

in damages or degradations that needs to be taken care of by using

adequate repair and maintenance technologies (Fig. 8). Within the

IPS2 context, replacement or repair of components and systems is a

responsibility of the manufacturer often for a fixed price. By

developing products that have less degradation the profitability to

the manufacturer would increase. This would also mean longer

mean time to failure (MTTF), this is in contrast to a previous

approach where manufacturers were earning revenue by selling

spare parts. Study of degradation mechanisms for the mechanical,

electrical and electronics components and systems are not new,

but they are mostly limited to degradation of material used against

the operating or environmental conditions [37,127,137]. Increas-

ingly manufacturers need to understand how the design and

manufacturing features affect degradation as well. Following are

few examples of how components degrade and eventually fail and

where there is a need for further research. Fig. 9 shows an example

of a design parameter affecting the fatigue life of a component [29].

Fig. 10 shows the effect of surface damages (e.g. white layer and

material drag), after making a hole in a nickel based super alloy

component, on the component fatigue life. Mechanical, Electrical

and Electronic systems degrade over time due to use, natural

ageing and exposure to environment. The types of degradation

include chemical, thermal, mechanical, electrical and radiation.

There are two main approaches to model system level failure due

to component level degradations: discrete and continuous. Takata

et al. [167] has simulated wear (mechanical) of gears and bearings

in robot manipulator joints as component deterioration and

evaluated the resultant positioning error of an end-effector as

functional degradation. In a similar attempt, Iung et al. [78]

presented a component level degradation state model based

discrete simulation approach to predict the functional failures of a

product (Fig. 11). In an attempt to model degradation continu-

ously, dynamic degradation modelling for bearings is developed

with auto regression models developed from vibration data from

sensors. Kalman filter is used to track the model to predict the

mechanical degradation of the bearing [135].

Similarly, there is significant interest in understanding the

degradation mechanism of electronic components and systems for

reliability predictions. Electronic components and systems are

often replaced rather than repaired due to low cost of replacement

and efficient turnaround. Connectors at system-level failures due

to degradations will cause intermittent failures of electronics

systems and this is a major challenge for efficient repair of
Fig. 8. An image of an aerospace mechanical component exhibiting typical

degradations in use, such as cracks, corrosion and delamination [111].

Fig. 9. An example of design parameters affecting fatigue life: effect of outer groove

curvature radius of a ball bearing on the fatigue life of outer race [29].

Fig. 10. Surface damages (e.g. white layer and material drag) produced by hole

making operation affect fatigue performance (endurance) of the Ni-based super

alloy significantly [63].

Fig. 11. A mapping approach between degradation mode and the component modes

(OK = normal function, Dg = damaged, Dd = dead).
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electronic systems, especially in quick turnaround scenarios.

Electronic system degradation in service could occur at the

component, board, line-replacement-unit (LRU) or at the system

level. The component-level degradation includes ageing impacted

by the environmental conditions, such as temperature, vibration

and radiation damage, which will lead to sudden, intermittent or

gradual failures. Intermittent faults will lead to what is called ‘no

fault found’ (NFF) problems. A failure is termed NFF when it cannot

be reproduced at the testing stage in a laboratory. At the board

level, the joints and bond failure due to thermal cycling and

vibration is common along with the intermittencies in the

performance. The LRU and the system levels often degrade in

service through a combination of component/board-level failures

with the ‘no fault found’ type problems. Alghassi et al. [2] identify

thermo-mechanical stress as a major factor for connector failures

for power electronics, such as isolated-gate bipolar transistor

(IGBT). Fig. 12 shows three major types of degradations of power

electronic modules as wire bonds, emitter metallisation and chip

destruction. There are three major types of failure modes for the

wire bonds: heel crack and fractures due to physical constraints on

the wires and thermal changes, ‘liftoff’ due to mechanical stresses

generated as a result of different coefficient of expansion between

Al and Si, and also metallurgical damage due to the thermo-

mechanical stress due to the thermal property difference between

the Al and Si [150]. Fig. 13 shows microscopic images of wirebond

failure and solders failure due to thermo-mechanical loading and

stress. Fig. 14 shows the cause and effect for NFF failures in

electronic products. It is worth noting the skill level of people and

their behaviour also causes NFF failure. There is a need to

understand the impact of system architecture and the components

on the probability of NFF so that the failure mode can be reduced

and can be made predictable with better accuracy.

3.2. Repair mechanisms

Repair mechanisms are versatile. Prevalent principles are

separating, joining, coating and cleaning technologies for mechan-

ical products. For electronics soldering, wiring and re-balling for

Ball Grid Array (BGAs) are used. Mechatronics components are

often substituted in case of damage. A potential future technology

for spare part production is Additive Layer Manufacturing that

allows producing directly from 3D scan data [3,47,103]. The

mechanism involves cleaning the damaged area, depositing new

material (Fig. 15) or replacing any component and then machining

the geometry through a finishing operation [101]. While there are

several approaches to repairing metallic components, repair of

composite material is still a major research topic. The composite

failure mechanism is still less understood [87] due to unique

properties of composite materials. Bonded composite repair is the

most common approach to repair structural composite parts. One

of the main challenges in the process is to achieve the joint

strength and avoid human error. The joint strengths can be

Fig. 12. Major types of degradations in the power electronic modules [150].

Fig. 13. Bond wire damage due to thermo-mechanical load (microscopic image); (a)

breakage and lift-off at the marked area; (b) failure due to bond wire lift-off [120].

Fig. 14. An example cause and effect diagram for No-Fault-Found (NFF) conditions in electronic products [134].
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improved by designing the repair section for a shear dominant

stress state and induce minimum peel stresses in the adhesive

layer [58]. Fig. 16 shows laser based repair concept of composite

parts with precise layer-by-layer removal of the damaged area

[45]. There are attempts to automate the repair process as well to

improve efficiency [174] and reduce human error. Part of the

composite parts repair process is to assess the damage more

accurately (moving from qualitative assessment to quantitative

assessment) using advanced techniques like active thermography,

digital shearography and laser ultrasonics [87,111].

3.3. Monitoring, diagnostics and prognostics

Monitoring of machines to check their state of degradation due

to use or health parameters (e.g., temperature and vibration) is

done either using an additional network of sensors [39] or by

analysing signals which are available in machines (e.g., position,

speed and drive current consumption) [182]. Diagnostic and

prognostic tools are classified into two major categories based on

how the monitoring data is analysed and the conclusions reached:

data-driven and model-based. Sensor based monitoring example is

a Health Usage and Monitoring System (HUMS), first used in

helicopters. The system records vibration measurements taken at

different critical components using different sensors and stores in a

removable memory for further diagnostics. Fig. 17 shows a

proposed remote monitoring and maintenance system for machine

tools [116], where a simple mobile phone based communication is

established to connect 8000 machine tools for the remote

maintenance. Verl et al. [182] presents a sensor-less monitoring

of machine health by analysing the positional error and vibration

energy in a drive system (Fig. 18). Dependency of the sampled data

on the speed in case of a rotating machine is eliminated through

the integration of complex wavelet transform-based envelope

extraction of speed-varying vibration signals with computed order

tracking [186]. Lanza et al. [95] have also proposed a dynamic

optimisation of preventive maintenance schedule using actual

operating life of components. The research uses a stochastic

technique based on Weibull Cumulative Damage Model and

multiple service related stress profiles (e.g., mechanical, thermal

and humidity stresses) to predict the remaining useful life of the

component. A Bayesian learning based prognostics is also proposed

by Ferreiro et al. [44] to reduce the maintenance cost. Uncertainty

in measurements is a major source of inaccuracies and therefore a

challenge for the condition monitoring. Similarly, there are major

challenges in the diagnostics and prognostics in terms of simplicity

of the assumptions used during the model development, effect of

the operating conditions on the heuristics and data driven models,

and also lack of knowledge while extrapolating for the operational

envelope.

The work on prognostics should, in summary, address:

� The type of results expected. It is remaining useful life (RUL), a

future situation or behaviour and a risk concerning the

appearance of future failure modes.

� The abstraction level for which the result is expected – at the

component/subsystem/system level.

� The degree of confidence to be associated to the result (e.g.,

uncertainty).

� The data from which the prognostics results will be calculated. It

means data/information related to the past, current or future

usage/mission/situation of the item to be analysed. The future

can be defined from degradation laws, contextualisation, etc.

Fig. 15. The process to repair a mould using cold spray deposition and then

machining [101].

Fig. 16. Laser-based repair of CFRP [45].

Fig. 17. A remote monitoring and maintenance system for machine tools [116].

Fig. 18. Effect of wear (2nd half) on vibration energy parameter over time [182].
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� The method/tool to be used for performing projection/forecast-

ing from the data/information available.

3.4. Autonomous maintenance

Automating the continuous maintenance of machines can lead

to significant reduction in through-life cost. The automation could

come from inherent resilience of a system or a component or could

be assisted using external agents, such as robots. The resilience is

often achieved at the hardware and software level using self-

healing and self-repairing technologies. Self-healing is a bottom-

up approach, where the components of a system heal the damage

internally. Whereas, self-repair is a top-down approach, where

the system is able to maintain or repair itself [48]. In both these

cases the system exhibits a degree of autonomy. On the other

hand, maintenance efficiency could be improved by using

automation (e.g., using robots to support maintenance tasks).

Fig. 19 shows categorisation of self-healing and self-repair

technologies. Farnsworth and Tomiyama [42] identified key

challenges in using robots to assist maintenance as: maintenance

is often irregular, non-uniform, non-deterministic and non-

standardised. In their research, they proposed building blocks

of maintenance tasks and automated the tasks using a standard

robot. Effective automation of maintenance tasks would require

further co-ordination between robots and advances in autono-

mous robotics.

3.5. Obsolescence

A component becomes obsolete when it is no longer available

from the original manufacturer or its authorised supplier for an

affordable price [141]. For long life equipment the risk of

obsolescence can come from electronic components, materials,

software, mechanical components, test equipment, processes,

skills, and documents [146]. The drivers for obsolescence include

technological development and commercial decisions to phase out

some products. With the performance based contracts (or

industrial product-service systems) becoming more popular, the

obsolescence risks are found to increase with the manufacturers

rather than the customers. The manufacturers are now more

interested to design equipment to reduce the impact of obsoles-

cence. A key capability to manage obsolescence and reduce the

through-life cost is the ability to predict component procurement

life [145] and also to predict the cost of obsolescence resolution

[142,143] Effective continuous maintenance of long life systems

will require a systematic and proactive approach to manage

obsolescence [113].

3.6. Integrated planning

Maintenance planning is a major capability to perform

continuous maintenance. Houten et al. [68] identified the product

data model to support a model based maintenance planning. An

integrated maintenance-planning platform was proposed by Iung

et al. [75] that connects different parts of an enterprise to support

the maintenance planning, as shown in Fig. 20 [167]. Arnaiz et al.

[6] presents a methodology of predictive maintenance technolo-

gies that is integrated with specific business scenarios and

upcoming technologies. Optimisation of preventive maintenance

schedule and spare parts supply is proposed using a stochastic

algorithm that uses a load-dependent reliability model [94]. Takata

et al. [165] have proposed three feedback loops (Fig. 21) for

maintenance management, combined with maintenance planning.

Managing life cycle data across the enterprise and decision support

is essential for an integrated maintenance planning capability

Fig. 19. Categorisation of mechanisms for self-healing and self-repair [48].

Fig. 20. An e-maintenance framework showing different parts of the technology

used, called TELMA [75].
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[126]. Colledani et al. [20] have integrated manufacturing system

maintenance performance with the productivity to implement a

comprehensive continuous improvement. There is a significant

need to integrate the production and maintenance considerations

for the manufacturing planning and scheduling.

4. Technological challenges

Key technologies that support continuous maintenance, utilis-

ing the six knowledge types mentioned above, can be classified as:

non-destructive evaluation (NDE) for degradation assessment,

repair technologies, prognostics, self-healing and self-repair

technologies, remote maintenance, digital maintenance-repair-

overhaul (MRO), big data and visualisation of maintenance tasks

(e.g., using augmented reality) for planning and training.

4.1. Non-destructive evaluation for automated degradation

assessment

Assessing degradation of a component in service using non-

destructive evaluation techniques and automating the assessment

process are two major trends in continuous maintenance. The

techniques used for the degradation assessment include: visual

inspection, dye penetrant inspection, magnetic particle inspection,

ultrasonic testing, eddy current inspection, X-radiography, photo-

luminescence piezo-spectroscopy and thermography [92,181]. Al-

though there are several techniques already used in assessing in-

service degradation, thermography is becoming popular in recent

years for their ease of use and affordability [196]. Thermography is a

rapid, large area inspection, low-cost and non-destructive evalua-

tion technique that is performed by directing an infrared camera at

a target (i.e., a component with in-service degradation) and

recording a heat map image (also known as a thermogram) of

the specimen in order to detect variations in temperature emitted

by the component or transmitted from behind it. These changes can

reflect a change in temperature or in the material’s thermophysical

properties, either of which can be exploited to seek assessment of

the in-service degradation. There are two main types of thermog-

raphy: passive and active. Based on the sources and nature of

energy for active thermography, there are six different types: pulse

[188], lock-in/modulated [131], pulse phase [72], vibrothermogra-

phy/thermosonics [43], eddy current [199] and laser spot thermog-

raphy [17]. Thermography is mostly used in studying thermal

behaviour of manufacturing operations. Mehnen et al. [111]

presents the use of thermography to quantitatively measure the

in-service degradation assessment for aerospace components

(Fig. 22). Inspection of this component’s cooling at various locations

indicated differing behaviour of coating close to spalling, indicating

sub-surface delamination. The research then proposes to use an

image processing approach to measure the shape and size of the

delamination. Future work involves improving the quality of the

size measurement and performing similar active thermography on

in-accessible areas. Inspiration for Fig. 23 has been drawn from non-

destructive testing or NDT comparison charts already in use for

training purposes that are available online. Further details have

been added based on literature and understanding of working

concepts of the techniques. Where a statement is unclear due to a

lack of suitable examples available to demonstrate, a question mark

has been applied. For example, it has been suggested that laser

stimulation can be used in pulsed thermography to deliver a well-

controlled heat injection. While this would facilitate detection of

planar sub-surface damages, demonstration of this in practice is not

yet sufficient to arrive at this conclusion. The Fig. 23 functions as

‘rule of thumb’ guidance, and is based on a combination of proven

applications and subjective interpretation of capability from

conceptual understanding of the techniques only. The figure clearly

identifies Ultrasound, X-ray and pulsed thermography having the

widest range of applications for metallic components. Fig. 24 also

presents a mapping between the key types of mechanical

degradations in different industrial sectors and corresponding

commonly used NDT techniques to identify them based on

literature review [88,92,93,136,162]. Mehnen et al. [111] has

presented the suitability of pulsed thermography for automation to

improve repeatability of the assessment and increased efficiency.

Thermography is more effective for composite part degradation

assessment [105]. The major limitations of pulsed thermography

are:

� Not well suited to closed degradations that are still adjoined, a

break in material to provide change in thermal property is

required.

� Not well suited to cracks propagating normal to the surface,

change in material must be through-depth.

� Small damages are harder to detect with increased depth.

� Heat-trapping subsurface features such as voids, air pockets and

structural channels obscure similar size features below them.

� Thermography inspection requires absorption and re-emission

of the injected heat, which requires a high emissivity value at the

surface, so is not well suited to reflective metallic surfaces; a

coating is required in this instance.

4.2. Repair technologies

Regarding repair and overhaul strategies, different approaches

exist [173,179]: starting from single repair events that can be

handled by replacement with spare parts up to complete overhaul

strategies combined with facelifts and modernisation of machines

[172]. Different technologies are needed to fulfil the necessary

Fig. 21. A framework for life cycle maintenance with three feedback loops [165].

Fig. 22. Inspection of coating delamination indicated by red and green plots in the

thermogram on an aerospace component (a), with sound coating plotted for

comparison (blue). Logarithmic temperature cooling curves (b) show heat

obstruction from delamination, with 2nd differential indicating the time of peak

cooling rate change (c) [111].
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requirements. Especially in the field of cost-intensive and long-

living machine tools complete exchange of major components can

often be too expensive to keep machines in business [177]. Auto-

mated repair [70,159] is a major trend to avoid human errors

associated with the manual process, along with the repair of novel

materials. Robot guided reworking of functional areas and rapid

manufacturing of spare parts is becoming popular [9,140]. Fur-

thermore it is necessary to significantly reduce the production

stoppage. This correlates with the productivity of machines and

the costs of repair processes. To cover all repair cases a flexible and

robust process chain consisting of inspection, repair and remanu-

facturing technologies as well as quality control is needed

[18,160]. Additionally, mobile technologies offer advantages

compared to stationary technologies, because there is no need

for disassembling and transportation of damaged parts. Repair

tasks can be processed in different repair plants or in situ where the

large part is directly inspected. Another important requirement

addresses the consumption of resources and energy efficiency

aspects corresponding to repair and overhaul technologies. A

potential future technology for spare part production is additive

manufacturing that allows parts production directly from 3D scan

data [171,175]. The important repair technologies are presented as

below [178].

4.2.1. Cleaning technologies

Cleaning technologies are not only used for better look but also

as a preventive measure to maintain functionality. Many of those

Fig. 23. A comparison of strengths of non-destructive evaluation (NDE) techniques for degradation assessment in metallic aerospace components, highlighting

thermographic strengths. The suitability of techniques against various damage and defect types have been graded 1 (appropriate) to 4 (inappropriate).

Fig. 24. Mapping of key types of mechanical degradations in different sectors and

the most commonly used NDT techniques.
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principles are using chemicals that have a negative environmental

impact. Thus, the application of flexible and eco-efficient cleaning

processes has taken on greater significance. In addition, newly

developed and adjusted cleaning technologies are able to reduce

downtimes, because they can be either used during machine

operation or need short time compared to other repair technolo-

gies [159].

Dry ice blasting is a dry cleaning technology that causes no

residues (Fig. 25). Dry ice pellets are used as an abrasive for

blasting processes. They are solid at ambient conditions with a

temperature of �78.5 8C and change directly into the gaseous state

during blasting. Due to its low hardness, it is suitable for gentle

cleaning and processing of sensitive surfaces. Unfortunately the

low hardness makes the pellets sensitive to external impacts or

friction. Dry ice blasting is predominantly used to clean easily

accessible surfaces. For areas with limited accessibility, different

blasting nozzles are available [154].

Besides blasting technologies other cleaning technologies are

wet cleaning (e.g., ultrasound), mechanical cleaning (e.g., blow off)

and thermal cleaning principles [130]. For printed circuit boards

principles without electrostatic effect can be used such as ultra-

clean water, compressed carbon dioxide, blowing, suction or

brushing; the major challenge is to reduce adverse environmental

effect [104].

4.2.2. Coating technologies

So-called ‘‘patch processes’’ have been established for the repair

of engine and turbine components. Damaged component areas are

identified and replacements are attached. Subsequently, the

contour is re-established with mechanical procedures. Laser metal

deposition as an example is a technology to create a metallurgical

bonded material deposition on a substrate. It can be used to repair

worn surfaces or to produce a hard facing layer [10]. A laser beam is

used to melt the surface of a specimen and a powdery filler

material is injected in the molten pool [54,132]. The low

metallurgical impact is particularly important for preservation

of material’s microstructure (e.g., high-strength steels) [53,102].

For proper use knowledge about process parameters and their

influence on weld bead geometry is necessary [98]. This influence

is shown in Fig. 26, using a nickel-based superalloy as example

[53]. While bead width is mainly determined by laser power, main

effects for bead height are welding velocity and powder mass flow.

This knowledge allows adjusting the bead geometry for the specific

repair task, e.g., high and narrow weld beads for tip repair.

A future challenge is to develop mobile laser metal deposition

solutions. Laser metal deposition is used for metallic materials or

composites consisting of carbides in a metallic matrix material,

typically tungsten carbides or titanium carbides are used. An

example is given in [66], where titanium carbide is used together

with an Inconel 718 metal matrix to improve wear performance.

4.2.3. Additive manufacturing technologies for making spare parts

Additive manufacturing technologies mostly follow a custo-

mised single part production principle. They are advantageous

compared to conventional production technologies like milling,

drilling or casting, because they are not limited to conventional

design guidelines [171]. They allow production of organic freeform

geometries as well as undercuts and multipart production in one

step. Polygon data in STL format generated by 3D scanners can be

used as direct input for these manufacturing principles. Examples

for additive manufacturing and rapid prototyping principles are

Selective Laser Melting (SLM) [149], Stereo-lithography (SL), Fused

Deposition Modelling (FDM), Wire and Arc Additive Manufacturing

(WAAM) [57,185] and Laminated Object Manufacturing (LOM). A

future challenge is to overcome material and microstructure

limitations to enable better functionality e.g., better surface

quality, better dimensional and geometric distortion control,

better fatigue strength and increase reproducibility. Furthermore,

the process has to be accelerated for use in serial production (e.g.,

SLM is relatively slow process). General Electric (GE) is going to

enter series production of fuel nozzles using SLM and is supposed

to manufacture more than 100,000 additive parts until 2020. First

projects in Germany like BMBF and AutoAdd even focus on small

series in the automotive industry. Another goal is the support of

multi-material production, which would allow producing conven-

tional assemblies as single parts (Fig. 27).

Fig. 25. Dry ice injector principle for cleaning [176].

Source: Fraunhofer IPK.

Fig. 26. Effect of welding parameters (power – P, spot diameter – d, welding velocity

– v, powder mass flow – m) on bead width and height, nickel-based superalloy [53].

Fig. 27. Example for SLM optimisation: An assembly consisting of 8 parts and

different materials were redesigned and produced with SLM as one single part.

Source: Euro-K GmbH in cooperation with Fraunhofer IPK.
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4.3. Prognostics

In the past, maintenance was regarded as repair work.

Machines were operated until they broke down, and there was

no way to predict failures. With the development of reliability

engineering in the 1950s, the concept of preventive maintenance

was advocated, and time-based maintenance (TBM) was intro-

duced [165]. Reliability centred preventive maintenance [82] and

performance centred maintenance [184] are introduced in recent

times. In order to realise preventive maintenance, several different

approaches have been done. Several papers researched model

based prognostics, which is simulation of degradation process. A

maintenance decision-making tool using Bayesian Dynamic Net-

works (BDN) was proposed [79]. Two Remaining Useful Life (RUL)

tools were proposed: the component RUL (RULc) and the function

RUL (RULf) were researched in order to improve the prognosis

efficiency [78]. Kara [86] has also proposed a novel approach to

predict the RUL based on history of a part and remaining

technological life. It is very difficult to simulate a degradation

process therefore there are not many industrial applications. The

functional integration of maintenance within the product life cycle,

based on experience obtained from work was introduced

[26]. Odds approach was also proposed for the integration of

the maintenance at the production planning stage for developing

opportunistic maintenance task keeping conjointly the product –

production – equipment performances [76]. Sensing technologies

are often used to predict system failure.

Technologies used for prognostics can be applied at the

component and system level. Fig. 28 presents a prognostics

process as part of a system level prognostics and health

monitoring. At component level, the focus is:

� A direct tracking of the degradation by calculating Reliability/

RUL from a degradation modelling based on processes such as

Gamma, Markov, Wiener and by taking into account usage and

contextualisation. It implies to have at disposal data for

parameter calculation [151].

� An indirect tracking of the degradation by using COX model to

calculate the RUL [71].

The historical data, i.e., historical signals or indicators, is used to

extrapolate the current trajectory of the component observed. It

could be done by working on a mono-dimensional health index

(Relevance Vector Machine tool) [191] or multi-dimensional

health index (Match Matrix tool) [83]. Fig. 29 shows an application

of self-organising map technique to classify the different

degradation states of bearings.

On the other hand, at the system level, the focus is on the

performances/services expected at the system level and repre-

sented by the evolution of the properties of each flow (ex. product,

energies) [78] produced by the system. Embedded prognostics and

self-repair capability could also support more resilient systems.

Fig. 30 shows the different sensing technologies used in machine

tools today. The sensing technologies cover component and system

level feedback and support the evolution of the system level

information. This evolution is built from a functional/dysfunctional

analysis allowing a link to be made between the component level

and the system one through the flows exchanged between the

different functions at different levels together with the propaga-

tion of the component degradations at each level. In that way, it is

possible to propose a generic pattern for prognostics, which could

be applied at different abstraction levels [183]. For example, from

the instantiation of this generic pattern to a specific system, it is

proposed to create a Dynamic Bayesian Network (DBN) and to

combine it with an event model (creating a set of ‘‘event’’ DBN

variables that correspond to the degradation (a) and maintenance

(b) events) [79] in order to adjust the parameters given a priori

with the real value of the parameters. The final prognostics model

is resulting by combining the two models [118].

The system level focus continues to be on

� The concept of fleet: the prognostics are calculated in line with

similar situations already known and stored in knowledge base.

It is supported by Ontologies [110].

� The types of interactions between the components (ex.

redundancy, functions distribution and criticality). The prog-

nostics is using the models developed at the component level but

by considering the relative weight of each component and the

interactions within the co-variables [33].

Some of the key prognostics challenges are:

� The prognostics aims at calculating RUL, but this calculation is

very different with regards to the component technologies

addressed because the degradation laws are sometimes difficult

to model.

� The prognostics are using data/information produced by the

monitoring, health assessment and diagnostics upstream pro-

cesses. The mastering of these processes in terms of robustness,

precision; quality of the raw data consumed are key issues to be

addressed.

� Uncertainty in the input data and as a result the degree of

confidence on the prognosis is still a major challenge. There is

also uncertainty associated with the model developed. Changes
Fig. 28. Prognostics process within PHM loop.

Adapted from: PHM Society.

Fig. 29. (a) Vibration signals from bearing degradations and (b) health map for

different bearing failure modes using a self-organising map [100].

Fig. 30. Different sensing technologies used in Machine Tools.

Source: DMG MORI Co. Ltd.
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in the process, equipment or the environment can all introduce

uncertainty that further complicates the RUL calculation.

In order to support environmental and economic sustainability

through maintenance services, recently prognostics techniques

developed for health prediction are also used to predict the energy

consumption and environmental impact [74].

4.4. Self-healing technologies

Self-healing technologies are used for autonomous mainte-

nance. Self-healing can be achieved in materials, in the electronic

components and in the software [48]. Thakur and Kessler [169]

have presented a review of self-healing polymer nanocomposite

materials. Harrington et al. [60] have studied a number of case

studies on the biological archetypes for self-healing material

development. In a recent development, Nair et al. [121] presented

the circuit board integration of a self-healing mechanism to repair

open faults by physically restoring fractured interconnects in the

electronic circuits. Significant research is required to mature this

field before it could be directly useful for continuous maintenance.

In parallel, research must develop techniques for qualification of

the self-healed state for certification purposes. There are three

examples of self-healing technologies under development: self-

healing MEMS, self-healing robots and fault tolerant sensor

systems that are relevant for continuous maintenance.

4.4.1. Self-healing MEMS

MEMS devices can be very cheap on its own, but can have

significant impact on the overall availability of the system where it

is used. There is a strong motivation to improve robustness of the

MEMS for more resilient systems. There are two principal ways to

develop the self-healing capability, one by using redundancy and

the other protecting the MEMS device from damage using surface

lubrication. Self-healing MEMS accelerometer has redundant

gauging finger modules. With a built-in-self-repair strategy, when

one module becomes damaged a circuit connection control

mechanism replaces the damaged module by a redundant one,

as a result improving the robustness of the MEMS device

[193]. Applying lubricants in between silicon oxide surfaces to

reduce friction could also reduce the in-service degradation of the

devices (Fig. 31). The lubrication along with the redundancy could

develop next generation of robust MEMS devices [69].

4.4.2. Self-healing robotics

Self-healing in robots is often achieved through re-configur-

ability, modularity, redundancy and adaptive behaviour. Recon-

figuration or self-repair by replacing a failed module with another

functionally homogeneous module is the most common approach.

A number of self-configuring robots already exist [157]. Following

the idea of redundancy, the solar-powered Odysseus [109] also

performs self-repair on the fly. That is the aircraft will be able to

autonomously modify its body while rejecting any failing modules.

Odysseus is a project within the DARPA Vulture programme,

aiming at an aircraft, which can remain airborne over a duration of

five years. Another radically different self-healing capability in a

robot is about modifying its internal model of itself to the changing

state of its body, and thus to find alternative ways to maintain its

functionality. For example, a walking robot which loses a limb will

modify its gait to still be able to walk [13].

4.4.3. Fault tolerant sensor systems

Fault tolerant sensors that are used in systems for monitoring

along with the actuators in feedback loops helps the system to self-

adapt, which is a step in the direction to achieve self-healing

[80]. This self-adaptation allows the system to correct any minor

deviations (may be due to the in-service degradation) automati-

cally and autonomously. Brandon et al. [16] have presented an

integrated approach to sensing and self-healing for structural

health management of deployable structures (e.g. on the moon). A

passive wireless sensor network is used in conjunction with self-

healing materials, identifying any damage to the structure,

monitoring the self-healing process and raising an alert for major

damages for human expert intervention. Verification and valida-

tion of the sensor network robustness is still a major challenge.

4.5. Remote maintenance

Remote monitoring and diagnosis was discussed considerably

in the 1970s, when the technology for data transmission via

telephone line was first developed. Although many machine tool

manufacturers offered remote maintenance service at that time,

this type of service had not become popular due to the immaturity

of the technology [165]. Currently, machine tool shipments are

growing year after year. This trend is expected to continue for the

foreseeable future. Currently, whenever problems occur with

machine tools, service technicians are likely to visit the customers’

plants to troubleshoot and resolve them. To deal with this

situation, the first step is to improve product quality to reduce

the number of potential service calls. The second is to increase the

efficiency of the service itself. In order to do so, the ideal solution is

to acquire the customers’ machine tools operating status, perform

diagnostic and analysis remotely at manufacturers’ service base

and conduct necessary preventive maintenance immediately

online. In the 2000s remote maintenance with mobile phone

technologies was developed and applied by several machine tool

manufactures [116]. Remote maintenance with mobile phone

structure is shown in Fig. 17. DMG MORI and other machine tool

companies around the world have already installed remote

maintenance system for several thousand customers’ machines.

Successful remote maintenance would require data communica-

tion across the Extended Enterprise. The remote maintenance is

mostly at the level of accessing the health parameters of a machine

remotely and perform software-based repair and upgrade tasks.

Another approach for remote maintenance is to use remotely

controlled robots to perform maintenance tasks within uncertain

environments. Use of remote controlled robots for maintenance is

widely used in Nuclear [106], space and any hazardous industries.

Fig. 32 is showing a concept maintenance system for nuclear

installation, the manipulators are to be operated remotely. The

existing remote maintenance technologies work best when the

environment is very structured and the state of a machine is less

uncertain. Researchers have used Virtual Reality based training

systems for the remote maintenance operator training [12]. In an

effort to explore use of robots for autonomous maintenance,

Fransworth and Tomiyama [42] have proposed a novel task

classification for automation and collaborative robot application.

4.6. Digital MRO

Digital MRO comprises all Maintenance, Repair & Overhaul

(MRO) activities facilitated by IT-solutions. There is a need to

develop new processes, methods and tools for MRO applications, in

order to exploit the potential of virtual technologies for MRO

optimisation in practice. For instance, solutions for fast access to

information on important lifecycle phases and MRO activities,

Fig. 31. (a) MEMS degradation: Cycles before failure of 6% cationic polymer

lubricant (CPL) in dry and 50% relative humidity (RH) as a function of time interval

between cycles, (b) cycles before failure of 15% CPL in dry and 50% RH as a function

of time interval between cycles [69].
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solutions to interface conflicts between various multi-player

systems, or to enable remote-servicing with mobile tele-coopera-

tion devices via narrow-band connection are addressed [155]. Dif-

ferent kinds of IT systems are used for scheduling of MRO tasks,

resource planning and communication. Predominant IT-Systems in

Germany (for example) are self-made or customised software

solutions as well as Microsoft Office applications, because the

diversity of MRO business makes it difficult to develop a single

solution that fits to all requirements:

- Management of inspection plans, protocols and reports

- MRO tasks: Administration, planning, cost control and docu-

mentation

- Asset management: Machine data, handbooks, check lists,

warranty information, inspection intervals, service contracts,

date of purchase, predicted lifespan

- Stock management: Administration of spare parts and availabili-

ty, tools, aids and expendable items

- Statistics and analysis: Number of MRO jobs, date of inspection,

run time information

- Reports for continual improvement process

- Comparison of planned and actual data.

Computerised maintenance management systems (CMMS) aim

to cover all of these requirements. However, these systems are

costly and need training for use. In case Enterprise resource

planning systems are used, CMMS may be an add-on or an

integrated part. As a general rule companies are using diverse IT-

systems simultaneously without adequate interfaces and with the

problem of redundant data. Furthermore, systems are neither

integrated horizontally with customers, suppliers and OEMs nor

integrated vertically with MES (Manufacturing Execution System),

SCADA (Supervisory Control and Data Acquisition) or PLC

(Programmable Logic Controller). Besides IT-solutions product

design data and technical documentation are important for

functional understanding, repair and overhaul. Unfortunately

technical documents like bill of material and design drawings or

data as well as maintenance protocols are hardly available for

maintenance companies that are not from the original equipment

manufacturer (OEM) [41]. Product changes are unknown if

different companies maintain the same product one after another.

An additional issue is around obsolescence of components

[198]. Highly experienced staff is needed to perform these tasks

[55] and IT-Infrastructure has to enable acceleration of innova-

tions. Modern 3D scanning technologies deliver 3D models of

actual product geometry and allow deviation and tolerance

analyses in case of available reference models. However, optical

limitations and difficult part disassembly make 3D digitisation still

a laborious task which is followed by a high effort in data post-

processing [156].

4.6.1. Major scientific and technological challenges

The scientific challenge is to create a digital MRO solution to

provide all information, data and knowledge that is needed for

MRO planning and execution. Of course there are restrictions of

data and information exchange between life cycle stages, B2B and

B2C relations due to business models and intellectual property

rights that can only be solved by new product-service systems

[113]. Technical solutions are needed for monitoring, retracing,

determination and prediction of product state to optimise the

schedule for the MRO operations. Intelligent resource manage-

ment systems should enable reactive condition based planning. IT

system interface models are necessary to prevent redundant data

storage and to provide all relevant data and to facilitate new

mobile assisting devices. In addition, technology has to deliver

product data of actual product condition for reengineering, spare

part production or renovation of mechanical and electronic

components using future production technologies such as additive

manufacturing [9,149]. In order to reduce downtimes of cost

intensive products automation of operations is very important as

well.

4.6.2. Solution approaches for overall reduction of through-life cost

Products can become intelligent cyber physical systems by

RFIDs or integrated chipsets and communicate with cloud-based

management services. Big data solutions are developed to enable

collection and interpretation of all product related data, which is

created during a life cycle. Thus, tracing of product changes

through MRO could deliver knowledge that can directly be used to

assist MRO planning and operation and to support product

configuration management. Vice versa product data from design

stage can be used to support inspection workflows in the MRO

stage. In this context Augmented and Virtual Reality can be

powerful tools to visualise product changes compared to CAD

design. Intelligent information analysis and production technolo-

gies enable automation and specification of future digital MRO

factories. Therefore adequate and efficient project management

and workflow tools have to be created. Furthermore, acquired

information in combination with advanced 3D scan and computer

tomography data analysis systems (Fig. 33) [56,96] could identify

single parts of a product and deliver a bill of material and product

structure [41,156]. CAD parts in a database could be used for

automated building of assembly models. In case of electronic

Fig. 33. Automated superposition of a 3D scan and a computer tomography of a

printed circuit board.

Source: Fraunhofer IPK.

Fig. 32. Section of proposed DEMO vertical maintenance system architecture with

remote controlled manipulators [106].
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components schematics and layout plans could be reconstructed

for repair and reproduction of spare parts. In this context quality

control systems are able to realise automated 3D comparison of as-

designed, as-produced, as-maintained, as-is and as-defined

product geometries [55,81]. Product changes and operation can

be visualised with Virtual Reality solutions augmented with

inspection information. Virtual Reality also allows immersive

training sessions for faster learning results.

Simulation of maintenance tasks for resource optimisation and

cost estimating is becoming popular. Datta et al. [28] has

demonstrated an application of discrete event simulation (DES)

technique to study maintenance resource utilisation for an

availability type defence contract. Alrabghi and Tiwari [4] have

reported the dominance of DES for maintenance system simulation

(61% of reported publications use DES). There is also use of hybrid

modelling approaches where DES is integrated with a continuous

element to represent time dependent degradation process. The

other simulation techniques used include agent based simulation

and continuous simulation.

4.7. Big data and data analytics

With the growing popularity of condition monitoring, prog-

nostics, Internet of Things (IoT), Industry 4.0 and cloud computing,

the volume of data available for continuous maintenance decision

making has increased significantly. This large volume of relevant

data is now referred as Big Data. The Big Data is defined to be high

volume, high-velocity information assets, that comprises unstruc-

tured text, audio and video files [49]. It has a strong impact in

almost every sector and industry [84]. Current methods in big data

analyses are semantic data mining and integration of operational

data. The key challenges in dealing with this high volume of data

are: diversity in data types (variety), uncertainties in the data

(veracity) and in some cases the speed of data collection and

decision making (velocity) for maintenance purposes. In general,

the Big Data complexity comes from data at a computational and

system level. There is a lack of quantitative studies to understand

the essential characteristics of the Big Data complexity. It is also

observed that traditional data analytics techniques are not effective

for the Big Data processing. Because of the fast changing Big Data

(e.g., from continuous health monitoring across a number of assets

within an enterprise), the analytics cannot rely on past statistics.

Developing big data based maintenance decision support system

will have significant system complexity due to the diversity of data

(e.g., text data mining for the maintenance logs along with the

vibration and temperature monitoring data from sensors). Man-

agement of the data across long life cycle and beyond is a major

challenge in terms of governance, storage, access and supply chain

collaboration. Fig. 34 presents a classification of Big Data. There is a

need for value based analysis of the Big Data to answer specific

domain questions and that will reduce the computational burden.

There are major research initiatives around the World that are

interested in Big Data [84]: US Big Data research and development

initiative involving DARPA, DoD, NIH and NSF; UK Innovate UK and

EPSRC initiatives across multiple industry sectors, EU Horizon

2020 focus on Big Data and Japanese through ‘‘The Integrated ICT

Strategy for 2020’’. All these major initiatives are developing

advanced tools and techniques to extract knowledge and insight

from the data and that will help us to better understand the health

of our machines and plan for the future spare parts and

maintenance requirements.

The Big Data analytics could generate new knowledge by using

the relationship of service events, component degradation and

component design [25,108]. Applying the generated knowledge to

the manufacturing environment, improves prediction accuracy of

machine state and maintenance scheduling of the ERP system

[97]. Ninety-five percent of big data is unstructured. Because of its

heterogeneity and missing data structure the analysis of big data

requires the development of new complex algorithms [49]. The

faster the algorithms work, the better the distinction between

valuable and trash data is, and the better the results will be [84]. To

reduce costs of the extensive resources that are required for big

data analysis cloud computing can be used, as shown in Fig. 35

[61]. This requires computing time and storage time that is actually

utilised and has to be paid for only. Selecting appropriate cloud

services for the data analytics is a challenge. Wang et al. [187] have

presented an AHP based approach to select the cloud services

based on computational cost and network communication load. In

the CIRP keynote paper [50], the historical development of

prognosis theories and techniques are summarised, and their

future growth enabled by the emerging cloud infrastructure is

projected. Techniques for cloud computing are highlighted, as well

as the influence of these techniques on the paradigm of cloud-

enabled prognosis for manufacturing and maintenance. The use of

quantum computing offers further potential for reduction of

computation time [73]. Shortened computation time can enable

data analyses algorithm to evaluate data in real-time without the

need for several hours of computing. In addition, the usage of

advanced approaches of machine diagnostics [119] and stochastic

optimisation algorithms [94] can gain their full potential when

combining with big data.

Visualisation of the large volume of data is essential to support

human analytical thinking and decision making for the continuous

maintenance. The visualisation tools, also known as visual

analytics, synthesise multi-dimensional information and knowl-

edge from complex and dynamic data in order to support

assessment, planning and forecasting. Adagha et al. [1] have

presented a comprehensive analysis of the design of visual

analytics (VA) tools and suggests four key attributes any VA tools

should: provide multi user access to the data, support intuitive

communication, support multiple and linked displays and track

information flows between the users. Along with the tool

development, there is also a requirement to use large visualisation

spaces to display the large volume of heterogeneous data and

support interaction with the users [138]. Design of a continuous

maintenance approach (or service) at the early design stage of a

complex engineering system can also benefit from VA tools [8]. The

early design phase visualisation could assist in the design

evaluation and creativity through exploration of alternative future

scenarios with associated uncertainties.

4.8. Augmented reality for maintenance support and training

Augmented reality (AR) has the potential to become a major

tool for the continuous maintenance, by overlaying and integrating

virtual information on physical objects [32]. AR technology uses

three fundamental techniques for the maintenance support:

optical combination, video mixing and image projection. The AR

tools are used in conjunction with a head mounted device (HMD)

or a portable hand held device (e.g., a tablet) or a spatial display

unit and a tracking system. Original ideas were developed in 1960s

[161] and since then a steady progress has been made with the

advancement of computing power and image analysis. Dini andFig. 34. Big Data classification [61].
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Mura [32] identified aerospace, automotive and industrial plant as

the top three areas of AR application. Similarly, video mixing is the

most popular approach for the AR solution development. HMDs are

the most popular AR device used in the applications, followed by

tablets. AR is used to support a maintenance task through a step-

by-step guidance, diagnostics and inspection and training. Fig. 36

presents a research project to apply tablet based AR for NDT of

pipelines [5]. To justify incorporation of AR technology to support

aerospace maintenance, Suárez-Warden et al. [158] have pre-

sented a microeconomic analysis of the benefits of AR for

aerospace maintenance assembly task. The microeconomic analy-

sis incorporates the investment required, impact of downtime and

the maintenance variable cost reduction.

In spite of the advancement of the AR technology, it is still not

well established in industrial use yet. Current research on

augmented reality on the shop floor deals with legibility of text

that is projected on surfaces [34]. When information projected on

surface in the shop floor is legible, it can assist the maintenance

worker by providing valuable information about the maintenance

task. Application of AR to assist maintenance tasks on the shop

floor is dependent on the lighting conditions. We need to develop

augmented reality technologies that can work consistently within

industrial environment (both in poor light and open day light

conditions). Regenbrecht et al. [139] has presented a number of

early industrial applications of augmented reality where relevant

information is overlaid on equipment for maintenance guidance.

Nee et al. [122] provided an overview of augmented reality

application across multiple manufacturing applications, including

maintenance. The team identified tracking as a major trend in the

augmented reality research. This is also very important for the

maintenance research where we could overlay real time health

data on equipment. Industrial applications of AR will also depend

on the ease of AR content creation, especially related to the context

of the real life object in focus, and adaptation of the AR response

based on the object context [200]. The context aware AR system

architecture is presented in Fig. 37, showing a rule based context

reasoned working with a database of different contexts. The offline

content creation and adaptation of the AR response is very

important for continuous maintenance as the AR service could

adapt based on the technician expertise. There is a need to extend

the offline authoring to an interactive input interface to capture the

technician feedback and reasoning for a maintenance decision on a

physical object (e.g., repairing a hydraulic valve). In a very recent

work, ‘Cognitive Augmented Reality’ is described as an automated

AR content creation technique based on video analysis, adaptive

feedback (Fig. 38) and real time learning [133]. Based on the

limited case study, the technique has significant potential where

Augmented Reality is applied to a number of maintenance training

tasks. The training involves effective content management and

efficiency of the AR technology to link the virtual information with

Fig. 35. Use of cloud computing for Big Data storage and analysis [61].

Fig. 36. Augmented reality applied to NDT for pipelines using a tablet device [5]. Fig. 37. Architecture for a context aware AR system [200].
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the physical objects, cognitive aspects of the training on the user

learning and usability of the AR equipment. Schwald and de Laval

[148] presented an early study on the effectiveness of AR

technologies for maintenance training within industrial context.

The research represented a scenario based context development

that can provide step-by-step training for a maintenance task. The

physical limitation of the HMD (e.g., weight, lack of complete

wireless connection) and its impact on prolonged use by the

maintenance technicians is highlighted as a major challenge at the

time. This basic issue about the HMD still exists and as a result

more mobile and handheld technologies such as tablets and

smartphones are gaining popularity in industry. Neumann and

Majoros [123] highlighted the difference between cognitive tasks

and direct work piece manipulation tasks and their relationships to

the level of attention required for different maintenance tasks. Use

of AR would reduce manual interaction with the work piece and

document search and study, but the training must address the

‘level of attention’ required for a maintenance task. This is

particularly relevant for continuous maintenance of life critical

equipment. De Crescenzio et al. [23] presented industrial case

study of AR for aircraft maintenance training. The study developed

a marker less AR technique supported by the training authoring

system and proved its effectiveness within the industrial context.

Webel et al. [189] discussed advantages of advanced AR equipment

such as haptic feedback through a vibrotactile bracelet for

rotational and translational movements. The study also highlight-

ed the use of a training platform with AR based virtual elements

allowing better measurement and evaluation of the trainee’s

performance with a level of detail that is not possible when

performing the actual task without the virtual elements. The

quality assurance and monitoring of continuous maintenance

technician’s performance are essential for complex engineering

systems.

5. Future of continuous maintenance within the Industry

4.0 context

Cyber physical system (CPS) is the basis for Industry 4.0 or

Internet of Things (IoT). Cyber physical systems (CPS) are the

interconnection of physical objects through global or local data

networks. They are the technological driver for collaboration in

organisations. Cyber-physical systems gather the information that

is the base for big data analyses. Objects autonomously communi-

cate with each other to reach a common goal [147] within a CPS.

Industry 4.0 provides an opportunity to collect more real time data

about current state of machines, which can then be analysed using

Big Data Analytics. Preventive maintenance events can be

scheduled assuming smaller safety margins and the risk of

unplanned failures will be reduced. The inventory level for spare

parts can be reduced, because less safety stock for unscheduled

events has to be stored. With the availability of current state of the

systems, it would also be possible to plan spare parts availability

across a geographic location to minimise the inventory cost.

Further research is required to automate the maintenance

planning activities that maximises the utilisation of available

resources and availability of the systems at an optimum cost.

Fig. 39 shows sources of data and communications within an

Industry 4.0 based manufacturing plant for maintenance purposes.

The obvious questions for future vision are:

� How maintenance is going to change in this highly connected

industrial environment? Maintenance technology needs to adapt

to the dynamic and agile manufacturing environment based on

‘Industry 4.0’.

� How do we maintain more than one product in a system (e.g.,

twenty machine tools in a production line): maintenance of

multiple machines simultaneously and optimisation of mainte-

nance and operation schedules together.

According to these questions, Herterich et al. [64] have already

assessed the impact of CPS on industrial services in Manufacturing.

More precisely for the maintenance, they outlined the impact of

CPS relates to ‘‘predict and trigger services activities’’, ‘‘remote

diagnostics, ‘‘replace field services activities’’, ‘‘empower and

optimise the field service and ‘‘information and data driven

services’’. Based on the additional and real time data collected from

the machines, efficiency and quality of the maintenance can be

improved. In addition, Yokoyama [195] is investigating new

Fig. 38. Examples from an automatically authored AR-manual: the half-transparent

overlays (left) were automatically extracted from the reference sequence. The green

colouring (middle) indicates a correct completion of the task, red a wrong posture or

position. [133].

Fig. 39. A manufacturing plant based on Industry 4.0 showing the sources and communications of Big Data for maintenance purposes.
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maintenance services in line with CPS through the ‘‘Smart

Maintenance Initiative’’ advocated for Railway applications. An

integrated maintenance platform will capture track irregularity

and material condition data frequently by trains in operation and

perform maintenance decision-making based on the condition of

the individual track. CPS in the future will improve the ability to

monitor individual systems and even components for mainte-

nance.

In relation to fault prediction service, Xu et al. [194] are

proposing an intelligent system based on IoT. Three major

challenges in using IoT for the fault prediction of a machine group

are: (1) communication of data from the IoT sensor network, (2)

non-stationary and nonlinear fault prediction and (3) massive data

processing. The IoT acts as an enabler for more efficient continuous

maintenance, but the need for fundamental understanding of the

degradation mechanisms and root causes for the failure modes

remains unchanged. More globally, the cyber-physical system

comprises of machines and work pieces that communicate

autonomously with each other to reach the common objective

of realizing the processing in production. Work pieces communi-

cate their position and work progress, and machines communicate

their status (e.g., working, waiting and mounting). The communi-

cation between machines and work pieces negotiates the point of

time to start of the following production step. The resulting

collaborative architecture is assimilated by Zuccolotto et al. [202]

to an Artificial Immune Intelligent Maintenance System (AI2MS)

which is biologically inspired. In a complementary way, with

regards to life cycle consideration Denkena et al. [30] are using the

term of gentelligent components to form new intelligent

(maintenance) system. Gentelligent combines the attributes of

genetics and intelligence in one adjective. Gentelligent compo-

nents are able to feel, communicate and store information from

their environment and thus act as autonomous intelligent

individuals. In specific CPS-based maintenance, the information

of machine status and condition monitoring information is sent

continuously to a big data storage system (e.g., Cloud). Big data

analysis algorithms watch and analyse all incoming data.

Maintenance plans and schedules are derived based on the results

of the big data analyses. Maintenance activities are scheduled

depending on the machine condition. The maintenance plan is

constantly adapted according to the machine status and work

schedule. Lee et al. [99] are showing the impact of industrial big

data analytics and CPS for the future maintenance and service

innovation. Moreover, during execution of maintenance opera-

tions, information from the big database assists the maintenance

workers. Videos or text information about maintenance task are

provided to the worker by using innovative wearable devices

meeting the needs of cloud manufacturing [59]. In turn the worker

feeds back his or her findings and experience during the

maintenance process into the database. In addition, spare parts

can hand over all required data for the machine control unit

automatically like an USB-device in a PC [35]. With time the

increasing database enhances the accuracy of maintenance

planning and information for augmented reality based mainte-

nance worker assistance. Use of IoT as an enabler for continuous

maintenance is still at its infancy. Fig. 40 shows a scheme for

condition monitoring of engineering systems using IoT and cloud

computing [192]. With the IoT and the cloud, condition data from

various modules of an engineering system distributed across

multiple locations can be collected and analysed together using

cloud based data fusion and data analytics. The knowledge about

the system health can then be fed back to the design team to

achieve a closed loop design process.

There are still several key open issues in IoT for its adoption in

the industry for the maintenance support [14]:

� Scalable, flexible, secure and affordable reference architecture

for IoT solutions with components, devices and systems.

Standards organisation, such as IEEE, 3GPP and ETSI have

developed IoT reference architectures for network scalability and

high traffic capacity [40]. Major industrial players are also

introducing their own reference architectures.

� Addressing and naming of heterogeneous IoT devices within a

network. Although there are several object naming services [38],

there is a lack of knowledge about the robustness of the services.

� Supporting IoT object mobility, where the objects within a

manufacturing system (e.g., products in an assembly line) move

with time.

� Machine to Machine (M2M) communications between hetero-

geneous IoT devices [50] in terms of routing and end-to-end

reliability is essential for efficient maintenance. In future, the

network congestion has to be addressed in large scale IoT based

systems.

� Intelligent and flexible Gateways (GWs) to connect heteroge-

neous devices and to cater for different characteristics of the

devices.

� Remote device and data management [187] within a resource

constrained environment of IoT (e.g., memory, energy con-

straints). Scalability of the device and data management is going

to be a major challenge for the maintenance.

� Understanding traffic characteristics will be a major challenge to

maintain an IoT enabled manufacturing system.

� Providing security for the IoT enabled systems is a critical issue. A

series of properties, such as confidentiality, integrity, authenti-

cation, authorisation, non-repudiation, availability, and privacy,

must be guaranteed for IoT based future systems [19,62].

� Standardisation of IoT devices and the communication interfaces

is also essential to perform effective continuous maintenance

[65]. Höller et al. argues for open standards to address the IoT

scalability issue [65].

� Long term management of big data from the IoT devices for the

maintenance purposes. Cloud based data storage is recently

proposed to address this challenge [15].

Common Internet protocols are unsuitable for the Internet of

Things, because resources on devices are limited. Security keys

and algorithms have to be developed that allow for the

autonomous communication of devices with limited IT-resources

[124]. Cyber security of the cyber-physical systems is a major

topic of research in recent times. Zhang et al. [197] have identified

three major areas of cyber security threats: aware execution layer

(i.e., from sensors and actuators), data transport layer (i.e., from

Fig. 40. A scheme of condition monitoring of engineering systems using IoT and

cloud computing [192].
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network architecture) and application control layer (i.e., from user

data storage) (Fig. 41). Knowles et al. [89] have presented a review

of cyber security management techniques for industrial control

systems. They have highlighted development of international

standards (e.g., IEC 62443 for control systems and IEC 27000 series

for information systems) to protect hardware and software. It is

observed that legacy systems are a major challenge in the absence

of built-in cyber security features. Olivier et al. [128] presented a

novel software defined network (SDN) architecture for the IoT

based systems. Continuous maintenance of complex engineering

systems needs to protect the security features both at the

hardware and software level and the SDN architecture could be

very effective against any cyber threat.

Continuous maintenance also requires standardisation of IoT

[117], Industry 4.0 and bid data analytics. The standards

development is in its infancy and would require developments

in both hardware and software. European Commission funded a

number of IoT architecture development projects as first step for

wider standardisation [91]. The scalability issue is addressed by

several competing reference architectures: ETSI M2M, FI-WARE,

IoT-A and IoT-6 [117]. Miorandi et al. [114] have highlighted a lack

of standardisation in ontologies, data formats and data models to

be used in IoT applications and in terms of its service level

interfaces and protocols. Lack of standardisation of the IoT devices

could increase the cost of continuous maintenance of the

engineering systems. IoT software platforms are likely to converge

into a few key players, such as Android and iOS, and this will have

major challenges in integrating with the platforms used in the

engineering systems. Similarly, the IoT communication technolo-

gies that are critical for an effective IoT based maintenance

platform are [65]:

� Power line communications (PLC)

� LAN and WLAN

� Bluetooth low energy (Bluetooth Smart)

� Low rate, low power networks

� IPv6 over Low power Wireless Personal Area Networks

� IPv6 Routing Protocol for Low Power and Lossy Networks

� Constrained application protocol.

Continuous maintenance of an IoT enabled complex engineer-

ing system will require the IoT standards work with the existing

maintenance standards such as PASS 55 (i.e., specification for

optimal management of physical assets) and ISO 55000 (a family of

standards: overview, principles and terminology).

Effective utilisation of the big data analytics and IoT for

continuous maintenance will require resolution of the following

challenges as well:

� Knowledge on ‘smart intelligence’ (e.g., control parameters) that

would be necessary to control the maintenance of engineering

systems.

� Knowledge to select the maintenance strategy for an integrated

engineering system (e.g., service design).

� Ownership of data (including system and component design, bill

of materials) is a major challenge to deliver the continuous

maintenance across the supply chain. In the future, a ‘data supply

chain’ with necessary reward structure has to be established to

support the maintenance.

� Design and manufacture for continuous maintenance will

require regular feedback to the designers and manufacturing

engineers.

� Through-life data management across the life cycle of a engineering

system would be essential. The data should also support detailed

component level information to track degradation over time.

� Better integration of machine (e.g., robot) and human operators

for collaborative maintenance solutions. This approach will

address current challenges in autonomous maintenance.

6. Concluding remarks

Continuous maintenance is changing due to the business model

evolution and the drivers such as ‘optimising the through-life cost’

or ‘increasing the availability’ of high value and long life products.

Manufacturers are expected to guarantee performance over the

contracted period and provide the maintenance service, often with

a fixed price. Engineering for life is becoming popular to reduce the

through-life cost. Manufacturers are now interested in better

Fig. 41. Types of security threats for IoT based continuous maintenance (based on [114,197]).
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understanding of in-service degradation mechanisms of their

components and systems; repair mechanisms; monitoring, diag-

nostics and prognostics; autonomous maintenance; obsolescence

and integrated planning. In-service performance (e.g. degradation)

feedback to design and manufacturing, although not covered in

this keynote, is necessary to improve new products. Automating

the feedback to the designers and manufacturing engineers will

reduce current manual and expensive practice in industry and

reduce cost. Developing condition-monitoring technologies to

support legacy products that are not currently suitable for

prognostics and remote maintenance is also very important to

increase their remaining life.

The basic knowledge and skill sets required for the continuous

maintenance research and practice are around the six foundations,

and includes component and product level in-service degradation

science and modelling based on material, design features and

manufacturing process parameters for different environmental

and use conditions. Manufacturers need to use this degradation

information in the product development life cycle stages and

integrate the organisation to implement an ‘engineering for life’

culture. The second most important skill in the future will be real

time data capture, analysis and modelling of the ‘big data’ from the

products in use within a ‘highly connected’ manufacturing and use

environment so that the maintenance efficiency can be improved.

Knowledge of uncertainty modelling will become more important

for the data modelling. The other major knowledge and skill that

are very relevant for the maintenance in the future are: autonomy

for maintenance efficiency, repair technologies for new materials

(e.g. composite repair) for resource utilisation and life extension

and an integrated approach to obsolescence management.

Globally, skills development for the continuous maintenance

knowledge base is behind than that for the production technolo-

gies and systems. There is a significant lack of R&D investment in

the area, especially considering the level of contribution from

‘service and support’ activities (often 50% of revenue) within the

high value manufacturing sector.

Continuous maintenance technologies will enhance ability to

assess health of components and products, develop autonomous

maintenance solutions for efficiency and remote operation,

visualise complex and uncertain data for decision making within

an integrated maintenance planning environment and reduce the

risks and cost. Advanced repair technologies are also important

and are building on the advances in cleaning technologies, coating

technologies and additive manufacturing. Self-healing technolo-

gies are still at its infancy and at the component level. Significant

challenges have to be addressed to develop the ideas at the board

level. Use of adaptive augmented reality in maintenance support

will allow customised help and improve safety (i.e. less human

error) and efficiency of the maintenance tasks. A cross-sector (e.g.

manufacturing, construction, health care and IT) approach to

research and technology development will allow mutual learning

and reduce the R&D costs required to support continuous

maintenance of high value products in the future. With the

emphasis on using more and more life cycle data, secure data

communication across the Extended Enterprise is essential for the

maintenance to work in practice. The Extended Enterprise will also

require a well-governed data supply chain, which is often missing

in industry today.

With the foundations and technologies, there is a need to

develop novel business models and contractual frameworks

between the manufacturers, their customers and the supply chain

to share the risks of guaranteeing the through-life performance. A

stronger partnership between the manufacturer, their customer

and the supply chain will be essential in the future. The partnership

has to be supported by an internal organisational culture based on

‘engineering for life’ and servitisation.

Industry 4.0 is developing across the world and is the future

context for continuous maintenance. It is observed that Internet of

Things (IoT) and cloud computing are going to play a major role in

the near future within the Industry 4.0 context. IoT on its own is

only a major enabler of continuous maintenance, but effective

utilisation of this technology for continuous maintenance depends

on ‘smart intelligence’, service design, sharing of data across the

supply chain, data feedback and management and better human

and machine collaboration. Scalable architecture of the IoT based

products; communication protocols and standards will be essen-

tial to support the future of continuous maintenance.
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– Schonende Umlenkung von Trockeneis-Strahlmittel. Tagungsband 6. Berli-
ner Runde – Neue Konzepte für Werkzeugmaschinen, . S.165-172, ISBN: 978-3-
9814405-2-2.

[177] Uhlmann E, Urban K (2011) Markt- und Trendstudie 2010: Laserstrahlschmel-
zen in generativer Fertigung.

[178] Uhlmann E, Urban K (2011) Licht: Werkzeug mit Potential. 6. Berliner Runde –
Neue Konzepte Für Werkzeugmaschinen 2011, Begleit, 173–183.

[179] Uhlmann E, Krause F-L, Dreher S, Elsner P, Frost T (1999) Development of a
Process Control Strategy for Selective Laser Sintering. Production Engineering
Research and Development in Germany Annals of the German Academic Society
for Production Engineering 6:43–46.

[180] UNIDO (2013) Emerging Trends in Global Manufacturing Industries.
[181] Vavilov VP, Burleigh DD (2015) Review of Pulsed Thermal NDT: Physical

Principles, Theory and Data Processing. NDT and E International 73:28–52.
[182] Verl A, Heisel U, Walther M, Maier D (2009) Sensorless Automated Condition

Monitoring for the Control of the Predictive Maintenance of Machine Tools.
CIRP Annals – Manufacturing Technology 58:375–378.

[183] Voisin A, Levrat E, Cocheteux P, Iung B (2008) Generic Prognosis Model for
Proactive maintenance Decision Support: Application to Pre-industrial e-
Maintenance Test Bed. Journal of Intelligent Manufacturing 21:177–193.

[184] de Vos JIA, van Dongen LAM (2015) Performance Centered Maintenance as a
Core Policy in Strategic Maintenance Control. Procedia CIRP 38:255–258.

[185] Wang F, Williams S, Colegrove P, Antonysamy AA (2012) Microstructure and
Mechanical Properties of Wire and Arc Additive Manufactured Ti-6Al-4V.
Metallurgical and Materials Transactions A 44:968–977.

[186] Wang J, Gao RX, Yan R (2014) Multi-scale Enveloping Order Spectrogram for
Rotating Machine Health Diagnosis. Mechanical Systems and Signal Processing
46:28–44.

[187] Wang P, Gao RX, Fan Z (2015) Cloud Computing for Cloud Manufacturing:
Benefits and Limitations. Journal of Manufacturing Science and Engineering
137:044002.

[188] Waugh RC (2016) Development of Infrared Techniques for Practical Defect
Identification in Bonded Joints, Springer International Publishing, Cham.

[189] Webel S, Bockholt U, Engelke T, Gavish N, Olbrich M, Preusche C (2013) An
Augmented Reality Training Platform for Assembly and Maintenance Skills.
Robotics and Autonomous Systems 61:398–403.
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