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Introduction

Let N and M be closed manifolds on each of which an involution is given,
and assume that the involution on N is free. In the previous paper [9], the
author defined the equivariant Lefschetz class of a continuous map f: N—M, and
treated the class in the case when the involution on M is also free. The present
paper is concerned with the equivariant Lefschetz class in the case when the
involution on M is trivial. As applications, we show generalizations of the
Borsuk-Ulam theorem and also theorem of group action on manifolds.

Compared with the previous case, the expression of the equivariant Lefschetz
class in the present case is rather complicated, and the Wu classes of mainfolds
and the operations of Breden [1] appear in it. Some properties of the semi-
characteristic of manifolds are also needed in our applications. These are
prepared in §1 and §2 (see also Appendix).

Throughout this paper, the homology and cohomology with coefficients in
Z, are to be understood. For brevity, manifolds and actions on them are
assumed to be differentiable.

1. Semicharacteristic of manifolds with involution

If M is a closed manifold such that the dimension of the vector space
H*(M) is even, an integer mod 2 given by

X(M) = % dim H*(M)  mod2

is called the semicharacteristic of M. If N is a closed manifold with a free
involution, it is known that dim H*(N)is even (see [1], [9]). In this section we
shall consider the semicharacteristic of closed manifolds with involution.

(1.1) Proposition. Let W be a compact (n-+1)-dimensional manifold with
boundary oW, and assume that W has a free involution T. Then we have

X(8W)=0.
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Proof. Consider the exact sequence

oo HYW, 0W) 22 HAW) s H7(0W) 2 HP (W, 0 ) e
Since dim H”(W, 0W)=dim H"*'~"(W) by the Lefschetz-Poincar¢ duality, it is
casily seen theat

dim Tm j#= X(W)+2 dim H"(0W) ~ mod 2
if n=2]—1, and .
dim Im i¥= X(W)+:Z: dim H'(@W)  mod 2

if n=21l, where X(W) denotes the Euler characteristic of W.

Since W has a free involution, a triangulation of W can be taken in such a way
that the number of 7-simplices is even for each r. Therefore X(W)=0mod 2.
Since 9W has a free involution, dim H*(0W) is even if n=2l. By the Poincaré
duality we have dim H”(0W )=dim H"""(0W).

Consequently the desired result follows from that

1) dim Imj¥ is even if n=2/—1,

ii) dim Im ¥ =% dim H'(0W) if n=2.

Proof of i). It follows that a non-degenerate bilinear form

@: Imj¥xImj¥ - Z,
can be defined by
pla, B) =L’ UT*a, (W],
a=j¥a), B=j¥#8),

where [W]e H, (W, 0W) is the fundamental homology class. If M is any closed
2/-dimensional manifold with a free involution T, it is known that o U T*a =0
for any o= H(M) (see [1], [9]). Therefore, by considering the double of W,
it is easily seen that o’ U T *a’=0 for any o’ H*(W, 0W). This shows that the

bilinear form ¢ is symplectic. Thus Imj¥ has a symplectic, non-degenerate
bilinear form, and hence dim Imj¥ is even.

Proof of ii). If follows that a bilinear form
Vo H(@OW)/Im i¥ X Im i¥ — Z,
can be defined by
‘\P‘(C—X, 18) = <C(UB, [6W]> ’

where & is the class represented by o= H*(0W), S Im i¥, and [0W ] H,,(0W)
is the fundamental homology class. Consider the commutative diagram
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i 5
H(W) — H(0W)—— H*{(W, 0W)
nw) N[w] W]
H,y (W, 0W) 255 H,(0W) %5 H,(W),

then it is easily proved that the bilinear form +r is non-degenerate. Therefore
it holds that

dim Im 7§ = dim H*(0W)—dim Im ¥,
and the proof of i1) completes.
Remare. R. Lee [6] proves (1.1) in a more general form when z is odd.

Let Jl, denote the unoriented Thom bordism ring, and let J7,4(Z,) denote
the unoriented bordism group of free involutions. As is shown in [2], J1.(Z,)
may be regarded as an Jly-module by defining

[N, T]-[M] = [NXM, Tx1]

for [M]€Jlx and [N, T1€Jl«(Z,), and it is a free Jly-module with basis
{[S”, 4]; n=0, 1,2, ---}, where 4 denotes the antipodal map on the n-sphere S”.
If N, and N, are closed manifold with free involution,

X(N,UN,) = X(N,)+X(N,)
is obvious. Therefore, in virtue of (1.1) a group-homomorphism
X: T4(Z,) — Z,
can be defined by seding [N, T7] to )2(N ) If Nis a closed manifold with free
involution and M is a closed manifold, it follows that
X(NX M) = X(N)X(M) mod?2.

Consequently, if we regard Z, as an Jly-module by defining 7-[M]=rX(M)
mod 2 (reZ), it turns out that X is a homomorphism of Jly-modules.

Let X be a paracompact space with a free involution 7. Denote by X,
the orbit space, and consider the principal Z,-bundle »: X — X, defined by the
projection. The 1-st Stiefel-Whitney class

¢ = (X, T)e H{(Xy)

of the bundle 7 is called the involution class of (X, T'). For an equivariant map
f: X—Y, we have

(1.2) (Y, T) =X, T).
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We denote by w,(M)< H* M) the k-th Stiefel-Whitney class of a manifold
M. The following is due to F. Uchida.

(1.3) Theorem. For a closed n-dimensional manifold N with a free involu-
tion T, it holds that

X(N) = <3ty [N7D>,
where c=c(N, T), wy=w(N).

Proof. As is shown above, X: N(Z,)—Z, is a homomorphism of Tl-
modules. We have also a homomorphism J4(Z,)—Z, of Jli-modules by
sending [N, T] to <i "k, [N7]>. This is easily shown if we recall that

£=0

¢" *w, depends on the class [N, T]e Jl«(Z,) ([2]) and if we note (N x M, Tx 1)
=N, T)x1, wi(NrxM)= 53 0(Nr)x w(M) and <un(M), [M]>=X(M)

mod 2. Thus it suffices to prove the theorem in the special case when N is S*
and T is the anitpodal map.
In this case, N is the real projective space RP”", and it follows that

Sy erra,, [RP
oS (n+ 1N . "
= (" e rP

=k2;<n_|];1>51 mod 2.

Since 72(S ")==1, we have the desired result.

Remark. If N is a closed even-dimensional manifold with a free involution
T, it is easily seen that

X(N7) = X(N)2=%(N) mod2.

2. The Bredon operation

Let S denote the infinite dimensional sphere, and let X be a paracompact
space. We shall regard as a space with involution S* by the antipodal map T,
and X*=Xx X by the map T such that T(x,, x,)=(x,, »,). We consider the
diagonal action on S~ X X? and denote the orbit space by § °°>T< X2

A continuous map f: X—Y defines a continuous map 1Xf*: S*X X*—>
T il
S*x Y? and the diagonal map d: X— X? defines a continuous map 1Xxd:
r T
X X—=>8"xX*% The projection p: S*XX?*— S8~ defines a bundle p;:
T
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S”x X?— 87 with fiber X2, and there is the inclusion 7: X2—>S"xX X? of a
T T

typical fiber.
According to Steenrod [9] (see also [1]), there is the operation

P: H'(X) > H*(S" X X?)

satisfying the following properties:

(2.1) P(f*a) = (1 X f)*Pla),
(2.2) *Pla) = aXa,

(2.3) P(aB) = P(a)P(B),

(2.4) 1 X d)*P(a) =i+§f w'XSq’er,

where w=w(S*, T) is the generator of H'(S%).
Suppose now that X has an involution 7, and consider the diagonal action
on S*xX. Then an equivariant map A: X — X?is defined by

A(x) = (%, Tx),

and it defines a continuous map 1 X A: §*X X —S8*XX? Bredon [1] defines
an operation ! ! !
Q: H'(X) - H"(S" X X)
T
by O=(1Xx Ay*oP.
7

We suppose now that the involution T on X is free. Then the projection
q: S*X X —X defines a bundle ¢,: S” XX — X, with fiber $=, and hence we
have the isomorphism i

g H'(X)=H"(S~x X).
T
Thus, if X has a free involution T, there is the operation
Q: H'(X) - H"(Xy)

by regarding g% as the identification.
Corresponding to (2.1)-(2.3), the following (2.5)~(2.7) hold:

(2.5) If f is equivariant, then
Of*(e) = f1Q(a) .
(2.6) For the projection w: X—>Xr, we have
7*0(a) = aU T*a .
(2.7) QaB) = Qa)Q(B) -
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We shall prove

2.9 O(r*a) = 31 ¢Se'a,
where o= H'(X 1) and c=¢(X, T). ]

Proof. Consider the diagram

(IxA)* *
H¥(S™X X*) —— H*($"x X) £~ HX(Y)
r

(15”2)*T (1 xdy* PWM *

H*(S*x Y?) L H¥(S3X Y)

where Y=X and d is the diagonal map. Since the diagram is commutative,
it follows from (2.1) and (2.4) that

O(z*a)
= g5 (1% AY*P(r*e)
= g (1 X A1 X7)*P(a)
= ¢t (1x7)*(1 X d)*P(a)
= ¢¥'(1 X n)*({ﬂZLw" XS¢ar) .

Let 2: X— S° be an equivariant map, and consider the diagram

h%

H*(S3) ————— HX(Y)

It ot

H*(S7x Y) ——— H¥(S"x X) .

Since the maps hog, p: S*X X —>S~ are equivariant, we have p¥=qg%oh¥. It
is obvious that (1 X z)*op*=p%. Therefore it follows that
T
O(=*a)
= 3 g1 x zy*(p*w' U g*Sela)
i+ j=r
= 3 gt(1 X z)*p*aw’ U gk (1 X z)*¢*S¢’a
i+ je=r T
= _;,:rh";w" U S¢ler
= ) iS¢l .

This completes the proof of (2.8).
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For a closed manifold M, let v(M)=3]v (M) H*(M) denote the total Wu
class of M, i.e. the class such that )

{Sqa, [M]> = {a Uv(M), [M]>
for any o € H*(M), where Sqg=1+S¢'4+Sg*++-. For the total Stiefel-Whitney
class w(M )___2 w,(M) we have
w(M) = Squ(M),
and it holds that
2;(M)=0 for 7>[dim M/2]

(see [5]).
We shall prove

(2.9) If g: M—M is a continuous map such that g*: H*(M)— H*(M) is
onto, then '
g (M) = v(M).
Proof. It follows that
{Sgg*a, [M]> = {g*Sqat, [M]>
= {Sqa, g+[M]> = {Sqa, [M]>
= LaUn(M), [M]> = <aUo(M), g+[M]>
= {g*aUg*s(M), [M])
and any element of H*(M) has the form g*«. Therefore we have g*o(M)=v(M).
(2.10) For a closed manifold N with a free involution T, we have
(N) = n*v(Ny) .
Proof. Since the tangent bundle to N is induced from the tangent bundle
to N, by the projection z, we have
w(N) = n*w(Nyg) .
Therefore it follows that
Sqr*o(N 1) = n*Squ(N 1)
= r*w(N 1) = w(N)
= Squ(N).
Since Sgq is invertible, this proves (2.10).

As for the semicharacteristic, we have

(2.11) Theorem. For a closed n-dimensional manifold N with a free
tnvolution T, it holds that



154 M. NAKAOKA

XN) = <D Q(v,), [N4D,
where c=c(N, T), v,=v(N).
Proof. It follows from (2.10), (2.8) that

23 O(vN))
= 22" Q(z*v,(N7))
= 'Z o sz c* Sq’v,(N )

= 2 ¢*S¢/v(Nq)

i+ jtp=n

= Zk] c*w, o(N7) .
Therefore, by Theorem (1.3) we have

<2 " O(vN)), [N2]>
= <§] c*w, (N1), [IN7]>
= XNV,

which completes the proof.

3. The equivariant Lefschetz class

Let N be a paracompact space with a free involution, and M be a closed
manifold with an involution. In [9], for a continuous map f: N— M, we defined
the equivariant Lefschetz class f#(A ~)E H*(N7), and considered the class in the
case when the involution on M is free. In this section we shall consider the
class in the case when the involution on M is trivial. To distinguish Ay in
the two cases, we shall write 8y for Ay in the present case.

Let M be a closed m-dimensional manifolds. We denote by » the normal
bundle of the diagonal imbedding d: M — M?. We regard M? as a manifold
with involution by the map T interchanging factors. Then the total space of »
may be regarded as an equivariant tubular neighborhood U of d(M) in M?>.
Therefore it turns out that » is a vector bundle with involution.

Let N be a paracompact space with a free involution 7. As in §2, we
regard N X M? as a space with involution by the diagonal action, and consider
the orbit space N X M?. Then we have the real n-dimensional vector bundle

IXv: NxU—->NpXM. We regard the Thom class #(1 X»)e H™(Nx(U, U—
T T T T
dM)) as an element of H™(N X (M?, M*—dM)) by the excision. Then
T

Oy € H™(N X M?)
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is defined to be the restriction of #(1 X ).
We have )

(3.1) Ifh: N— N’ is an equivariant map of paracompact spaces with free
tnvolution, then (h;< 1)*0y=0y.
(3.2) If N is a closed manifold with a free involution T, then
(IXd)x[Nr X M] = GNﬂ[szMz] .
Let f: N— M be a continuous map. By definition, the equivariant Lef-

schetz class of f is .
fH6n)EH"(N),
where f : N—Nx M? is an equivariant map given by f( Y=y, f(»), fT(»)).

As is shown in [9], we have

(3.3) Let N be a closed n-dimensional manifold with a free involution T.
If fX(0y)=+0, then the covering dimension of
A(f) = {yeN; /T(y) = f(»}
is at least n—m.

To study f#(@ ~) we shall proceed in parallel with [9].
We denote by 6., the element 6, for N=S~ and T'= antipodal map.

(3.4) Proposition. Let {a,, ay, >+, ot} be a basis for the vector space
H*(M), and put a;—o;\[M]. Let
d([M]) = 2;: k47 X A

for dy: Hy(M)— Hyx(M?). Then we have

[m/2] .
0. = 23" ¥ P(v;)+ g i+ 175 M) (I X @t X o)
J

where v;=v, (M), c=c(S”XM?, T) and $*: H*(S"X M?)— H*(S~ X M?) is the
transfer homomorphism. !

Proof. It is known that
0. =[Lﬁ]cm-2fp(vi)+ S end*(1xXarx )
with &, Z, (see [3], [8]). Therefore it suffices to prove
Eiw =t 755 (J<K).
Consider the inclusion i: M 2—>S°">T< M? of a typical fibre. It follows that

1%(0..) = H™(M?) is the restriction of the Thom class #(v)e H™(M?, M*—dM) of
the normal bundle v. Therefore it follows that
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d*[M] = *@.)N[MxM].
Since i*(¢)=0, i*P(a)=a X a and i*¢*(1 X a X B)=a X B+B X a, we have
g Nir@j X Ay
J;ke,-k(a,-xak—i-akxaj) if m is odd,
- ]Zk E;&a; X ak—i—g Ei(a; X apta,xa;) if mis even,
where we put v[m/zlz; &;a; if mis even. Consequently it holds that
€k = 1 <k), 7;5=10
if m is odd, and
i =€t Ei& (<R, M =¢;

if m is even. 'Thus &;,=7;,47;; 74 (j<k) holds, and the proof completes.
As for the equivariant Lefschetz class f%(6y) we have

(3.5) Theorem. Let N be a paracompact space with a free involution
T, and M be a closed manifold. Let {a,, ct,, -+, ot} be a basis for the vector space
H*(M), and put

dx[M] :?;Wkaixak, a;=a;N[M].
Then, for any continuous map f: N— M, it holds that
Im/2} .
FHOn) = g_;) e Q(f*v")—*_,-;» (ie 775 ) d*(f*or; U T *at)

where c=c(N, T), v,=v,(M) and ¢*: H¥(N)—>H*(Nr) is the transfer homomor-
phism.

Proof. There exists an equivariant map #: N —S=, and we have
O = (h X 1)*6..
by (3.1). The diagram

(A X 1)* P
u > H™(Nx M) ks

H™(S" X M) > H™(Ny)
( >T<f2)*l

H™(S"XN?)

d%
(1 x A)* (A 1)*
! > H™(5"xN) —1—->H’”(N;<N)

is commutative, where A: N—-NXN is given by A(y)=(y, Ty), and
d: N— N XN is the diagonal map. It is obvious that
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dbo(hX 1)*ogh = id
T
for the isomorphism g%: H¥(N,;)=H*(S*XN). Therefore it follows that
r

FH6n) = fHRx1)%0.
= d"T‘(h;g 1)*(1 X A)¥(1 >T<f2)*l9°°
= g1 (1 AP (1Xf)* 0. .
We have
g (X AP (AX ) e(S™XM?, T) = o(N, T)
by (1.2), and
g (1 AY(LX)*P(a) = O(f*a)
by (2.1) and the definition of Q. It follows that
g (DX AP (X *(1 xax B)
= g ¥ (A Xd¥) A X IX T*)(AXf*Xf*N1XaxB)
= gr¢*(IX (f*aUT*f*B))
= p*(f*a U T*f*B).
Therefore, in virtue of Proposition (3.4), we have the desired result.

Remarg 1. With the notations in (3.5), consider the matrices X=(£ ),
Y=(n;) over Z,, where £;,=<ct; Uy, [M]>. Then we have Y=X"". In
fact, it follows that

En = <asX atp daM]>
= g N5l i X Oy A5 X A
= 22 ety N [MD <o, s N[M]
= g EisnstEen s
and hence we have X=XYX, ie. Y=X"".

ReEMARK 2. If there exists a basis {a,, -, at,, By, ***, 8,} for the vector space
H*(M) such that <a; Ua, [M]>=0, (B;UB, [M]>=0 and <{a; UGB, [M]>
=381, then the conclusion of Theorem (3.5) is written as follows:

40w) = 23 6 Qo)+ 5 44 UTH*65)

Such a basis exists when dim M=2/—1 or when dim M=2/ and a’=0 for any
acsH'(M).
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4. Applications

1) Borsuk-Ulam type theorem

Combining Theorem (3.5) with (3.3), we can obtain generalizations of the
Borsuk-Ulam theorem. As a typical example we have

(4.1) Theorem. Let N be a closed n-dimensional manifold with a free

involution T, and let f: N— M be a continuous map to an m-dimensional manifold
M. Assume that ¢™+0 for c=¢(N, T) and fv: H(N)—H (M) is trivial. Then
the covering dimension of A(f)= {yEN; f(y)=ATy)} is at least n—m.

Proof. Without loss of generality, we may assume that M is closed (see
p.88in [2]). Since f*: H¥(M)— H*(N) is trivial, we have
FHON) = "0

by Theorem (3.5). Therefore we get the desired result by (3.3).
If N is a mod 2 homology sphere, then ¢”=0 for m<n. Therefore (4.1)
has as a corollary the following result which is known in [8] (see also [2], [7]).

(4.2) Corollary. Let N be a mod 2 homology n-sphere with a free involu-
tion, and let f: N— M be a continuous map to an n-dimensional manifold M.
Then it holds that

1) If n>m, dim A(f)>n—m,

il If n=m and the degree of f is even, A(f) is not empty.

2) Equivariant map

As a direct consequence of (4.1), we have

(4.3) Theorem. Let N and M be closed manifolds on each of which a
free involution T is given, and let f: N — M be an equivariant map. Assume that
¢™%0 for c=c(N, T) and m=dim M. Then fy: Hy(N)— Hy(M) is not trivial.

In some case, the converse of (4.3) is also true.

(44) Theorem. Let N be a closed m-dimensional manifold with a free
tnvolution T, and M be a mod 2 homology m-sphere with a free involution. Let
f: N— M be an equivariant map. Then if the degree of f is odd, we have ¢™=+0
for c=c(N, T).

Proof. By (3.5) we have
FHOn) = "+ ¥ T/ ¥(ar)
= ¢"+(deg /)B
= Cm+B ’

where ¢ H”(M) and B H™(N7) are the generators. Suppose ¢”=0. Then
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we have ﬁ‘-(&N)zi:O, and by (3.3) there exists y&N such that f(y)=f(Ty).
Since f is equivariant and the involution on M is free, this is a contradiction.
Therefore we have the desired result.

REMARK. Assuming that N is orientable and M is S™ with the antipodal
involution, (4.4) is proved in Theorem 5.1 of Holm-Spanier [4].

3) Group action on manifolds
As is shown in (5.4) and (5.5) of [9], the following theorem holds under

weaker conditions. But it is good enough for applications to group action on
manifolds (see §6 of [9]). We shall derive it from (3.5) by using the results in §2.

(4.5) Theorem. Let N be a closed manifold with a free involution T, and
let g: N—N be a homeomorphism. Assume QAC(N )=£0 and also assume the following
i) or ii):

i) g*=id: H¥(N)— H*(N),

i) T*=id: H¥(N)— H*(N).

Then there exists yE N such that gT(y)="Tg(y).
Proof. Put f=zog: N—Nz . Then, for o, 8= H*(Nt) we have

{p*(f*a U T**B), [Nr]>
= {f*a UT*f*B, [N]>
= {g*n*a U T*g*z*RB, [N]>
_ [<#¥aUB), [ND if g*=id,
~ [ <Kg**aUR), [N  if T*=id
= {aUB, mx[N]>
=0.

Therefore it follows from Theorem (3.5) that
[a/2]
FHOn) = 21" Q(g*n*2),

where c=¢(N, T) and v;=v,(N7). Invirtue of (2.10), (2.9) and Theorem (2.11),
it follows that
<fHO), IN2D>
[x/2]
= (R O(dN)), [N1]>
= X(N).

By the assumption this shows fA#(ﬁ ~)E0. Thus,by (3.3) there exists y& N such
that zgT(y)=ng(y). This means that gT(y)=g(y) or gT(y)=Tg(y). Since g



160 M. NAKAOKRA

is monic, gT(y)=g(y) implies T(y)=2y which contradicts to that T is free.
Therefore there exists y= N such that gT(y)=Tg(y).

Appendix

In the proof of Theorem (1.3), the bordism theory was used. In this
appendix, we shall give another proof of (1.3) which makes no use of bordism
theory and which is an application of Theorem (5.2) in [9]. First of all we shall
prove

(5.1) Theorem. Let N be a closed n-dimensional manifold with a free
involution T. Denote by T(Ny) the tangent bundle of Ny, and p the line bundle
associated to the O(1)-bundle w: N— N, . Then it holds that

X(N) = <, (p@T(N7)), [N2]> .

Proof. Regard N as submanifold of N x N through an imbedding
A: N—-NxN given by A(y)=(y, T), and let v denote the normal bundle of N
in NXN. Regard NxN as a manifold with involution by the map T inter-
changing factors. This makes » a bundle with involution. Consider the bundle
1 X over N x N, and define AyeH"(N X N?) to be the restriction of the Thom

class #(1 X v)EH"(NX(N? N*—N)). Letd: N—>NXN be the diagonal map.
T
Then the composition

d 1XA
T T 2
NT——>N>T<N———»N><N
r

is induced from the map sending yeN to (y, y, Ty)eNxN* Therefore, by
applying Theorem (5.2) in [8] to the identity map of N, we see
X(N) = CH(1X A Aw), [N7D -
By the well known relation between the Thom class and the Euler class, we have
w,(IxXv)=(1 X AY*Ay .

Therefore it holds that

X(N) = <dfw(1%), N4>
Thus it suffices to prove that there is an isomorphism

(5.2) p®'r(NT)zd”-j(1>T<v).

To prove this, we consider on the tangent bundle 7(N) an unusual free
involution given by sending a tangent vector v, of N at y to —d7T(v,), where dT
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is the differential of 7. 'The bunldle 7(V) together with this involution will be
denoted by #(V)

For the bundles 7(N), 7(INXN) together with the usual involution, we
have the following exact sequence of bundles with involution:

0 —> 7(N) > 7(NXN)|N —>» 0.

It is easily seen that an equivariant bundle map of v to #N) can be defined by
sending (v,, v7,)ET(NXN)|N to v,—dT(v%,)=7(N). Therefore there is an
isomorphism »==#N) of bundles with involution, and hence we have an
isomorphism

(5.3) 1><v—z_1;<'?(N)
id
of bundles over N xN.
r

Denote by #(N); the bundle over Ny obtained from #(N) by taking the
orbit spaces. If we consider the involution on R given by 7(¢)=—t, we have
p=Rxn. Itfollows that a bundle map of #(N)r to p®7(N7) can be defined by

r

sending o, to (1 X y)®dn(v,), and that a bundle map of #(IV); to d¥(1 >T<?(N )
can be defined by sending v, to (z(y), ¥ Xv,). Thus we have isomorphisms
T
(54) PRT(N7)=#(N)r=d (1 XHN))

of bundles over N.

From (5.3) and (5.4) we obtain (5.2), and the proof is complete.

The following is well known, and is easily derived from the elementary
properties of Stiefel-Whitney classes by using the splitting principle.

(5.5) Let E be an n-dimensional bundle over X, and p be a line bundle over
X. Put c=w,(p). Then we have

w,(P®F) = 31" Fwy(E) .

Now (1.3) is a consequence of (5.1) and (5.5).
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