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Abstract

The timeliness and synchronization requirements of
multimedia date demand efficient buffer management
and disk access schemes for mullimedia database sys-
tems. The data rates involved are very high and despite
the development of efficient storage and reirieval sirate-
gies, disk 1/0 is a potential bottleneck, which limits the
number of concurrent sessions supporied by a system.
This calls for more efficient use of data that has already
been brought into the buffer. We introduce the notion of
continuous media caching, which is a simple and novel
technique where data that have been played back by a
user are preserved in a controlled fashion for use by
subsequent users requesting the same data. We present
heuristics to determine when continuous media sharing
18 beneficial and describe the buffer management algo-
rithms., Simulation studies indicate thal our technique
substantially improves the performance of multimedia
database applications where data sharing is possible.

1 Introduction

To support modern applications that use multimedia
data, numerous researchers and system developers have
been focusing on the development of multimedia database
systems. Lately the construction of information super-
highways has also received enormous attention and many
commercial ventures are focusing on providing a variety
of on-demand services. Multimedia database systems will
also form the backbone for these services. Multimedia
data comprises of static media, like text and images, that
do not vary with time {with respect to the output de-
vice) and dynamic (or continuous) media, like audio and
video, which vary with time. Whenever continuous media
is involved, in order to ensure smooth and meaningful flow
of information to the user, timeliness and synchroniza-
tion requirements are imposed. Timeliness requires that
consecutive pieces of data from a stream be displayed to
the user within a certain duration of time for continuity.
Hence, unlike real-time database systems where deadlines
are associated with individual transactions, multimedia
data has continuous deadlines. Synchronization requires
that data from different media be coordinated so that the
user is presented with a consistent view.

Thus far, most of the research work in the area
of multimedia data management has concentrated on
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data modeling [3,4,5,12,16,17,25] and storage mangement
[1,10,13,20,22,24,26). Though eflicient storage and re-
trieval strategies have been developed, since the data
rates involved are very high (around 2 MB/sec of com-
pressed data per request) disk 1/O is a potential bottle-
neck, i.e., the number of concurrent sessions supported
could be limited by the bandwidth of the storage sys-
tem. Hence, it is important to make better use of data
brought from the disk into the database buffer whenever
possible. In this paper we explore the potential benefits
that can be achieved through continuous media shar-
ing, wherein the data fetched into the server’s memory
is used by multiple requests that arrive over a period of
time. Although several buffer management schemes have
been studied, thus far there has not been much research
to evaluate the potential benefits of continuous media
sharing when users are accessing multimedia data con-
currently. Though buffer management schemes used in
traditional database systems [9] share data, they are un-
suitable for multimedia data because of the timeliness and
synchronization requirements. Alternatively, schemes de-
veloped thus far for multimedia data [1,5] disregard shar-
ing of continuous media data. The Use-And-Toss (UAT)
scheme [5] tosses away used data so that the next piece
of required data is brought into the same buffer. Thus
the UAT scheme is good only if data sharing cannot be
exploited. The buffer sharing scheme discussed in [21]
only reuses buffer space and does not consider continuous
media sharing.

The motivation for our work comes from the fact that
once a user has requested a playback, advance knowl-
edge of the multimedia stream to be accessed for this
user can be utilized to promote sharing between this user
and future users (planned sharing for future accesses).
To achieve this, we introduce the notion of continuous
media caching. 1t is a simple and novel technique where
buffers that have been played back by a user are pre-
served in a controlled fashion for use by subsequent (or
lagging) users requesting the same data. This technique
can be used when sufficient buffer space is available at the
server to retain data for the required duration as in the
case of multimedia database systems that handle video
databases. Since the system can avoid fetching the data
from the disk again for the lagging user, it is possible
to support a larger number of sessions than that permit-
ted by the disk bandwidth. To help the system decide
whether a new request is to be shared with an existing
one, we have designed suitable heuristics. A new buffer
management scheme called SHR has been developed that
enhances UAT with continuous media caching. In addi-
tion to reusing old data, it also allows sharing of future
data. We explore the benefits of continuous media sharing
in multimedia database systems by considering the News-
On-Demand-Service (NODS) where a customer makes a
request by choosing a topic from a set of offered topics.
This typifies applications where extensive data sharing is
possible.

Batching is another technique for improving the per-
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formance of a system by grouping requests that request
the same topic [6]. By using continuous media caching
in conjunction with batching, the performance of multi-
media database systems can be further improved. To ex-
amine such techniques, we also study two other schemes
BAT-UAT and BAT-SHR, which are enhancements of
UAT and SHR respectively with batching. Simulation
studies indicate that continuous media caching improves
the performance of multimedia database systems when
data sharing is possible.

The rest of the paper is organized as follows. Section 2
discusses the data characteristics of multimedia data and
NODS in particular. Issues related to continuous media
sharing are discussed in section 3. In section 4 we briefly
discuss heuristics that can help the system decide whether
a new request is to be shared with an existing one. Sec-
tion 5 discusses the UAT scheme and its enhancement
the SHR scheme (through the use of continuous media
caching). Continuous media caching schemes enhanced
with batching techniques are discussed in section 6. De-
tails of the performance tests are presented in section 7.
Section 8 interprets the results of the performance tests
and section 9 concludes with a summary of this work.

2 Data Characteristics

Multimedia objects are captured using appropriate
devices, digitized and edited, until they are in a form
that can be presented to the user. These independently
created objects are then linked using spatial and tem-
poral information, ready to be played back by the user.
At playback time, to ensure smooth and meaningful flow
of information to the user, there are timeliness and syn-
chronization requirements which vary from application to
application. When multiple concurrent sessions are to be
served, ensuring timeliness is a complex goal in a band-
width limited system. We do not discuss synchrounization
requirements here since detailed discussions can be found
in [19,23]. The rest of this section describes the data
characteristics of NODS.

Time—

I News ltem boundary
| segment boundary

B gudio data
EEEE video data

Figure 1: Multimedia Data Stream of a request

In NODS, given that the number of topics in high de-
mand is likely to be limited at any particular time, given
the higher level of interest in certain topics like sports or
business, the probability of one or more users requesting
the same item for playback is very high. To request a
service, the user chooses a topic and a language from the
variety of options available, e.g. topic from one of Politics,
International, Business, Sports, Entertainment, Health,
Technology etc. and language from one of English, Span-
ish, Italian, French, German, Hindi etc. Each topic con-
sists of a list of news items. News items are composed
of video and audio segments and possibly some images.
All news items to be displayed when a topic is chosen
are compiled in advance and the bandwidth required at
every instance of playback is known in advance. Figure
1 shows the data stream of a request. Because video is
often compressed, we assume that the continuous media
data is played out at a variable bit rate. The data rate
actually depends on the amount of action that is packed

Data Rate —
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in the video. For example a video stream of a news reader
reading news will require a lower data rate than the video
stream from a moving camera (e.g. sports clippings). We
assume that a data stream is divided into segmenis where
each segment is characterized by a uniform playout data
rate. For simplicity, we also assume that segments are of
equal length (of 1 second duration). The data rate can
vary from segment to segment and hence the amount of
buffer space required for a segment varies.

3 Continuous Media Sharing

In this section we introduce the concept of contin-
uous media caching which promotes planned sharing. It
i1s a simple and novel technique where buffers that ﬁave
been played back by a user are preserved in a controlled
fashion for use by subsequent users requesting the same
data. We try to efficiently utilize the high memory avail-
able in large scale multimedia database servers.

Sharing of data can occur at various levels in NODS as
we discuss below. Sharing can occur when there are mul-
tiple requests for the same topic. Sharing is also possible
if some news items are shared between topics, e.g., news
on an international trade agreement can be included in
a variety of topics like Politics, International and Busi-
ness because of its relevance to all of them. In addition,
sharing of continuous media can also occur at the media
level, e.g., for news items in different languages, addi-
tional storage is necessary only for the audio segments as
the video segments can be shared. This clearly shows that
sharing at different levels can lead to compound sharing.
We focus exclusively on the first type of sharing since this
is likely to be more frequent.

Since the buffer requirements for images and audio are
less compared to video, we consider only the sharing re-
quirements of video data. We mainly focus on sharing
that occurs when multiple users request service on the
same topic (though they may have chosen a different lan-
guage). Several possibilities exist for sharing, depending
upon the arrival time of the customers. When the same
service is being requested by two (or more) users simul-
tancously, one of the following could be true:

1. they arrive at the same time (start at the same time).
2. they arrive with a gap of few time units between them.

Depending upon the order in which users share an
application, they may be classified as leading (the first
on;a_g or lagging (the subsequent ones that can share the
buffers). Using the same buffers for both users can def-
initely improve performance in case 1 since the same
data 1s used simultaneously. In case 2, continuous me-
dia caching can be used to promote sharing provided the
length of the gap is short. If the gap is too long, it is
better to obtain the data for the lagging user directly
from the disk and reuse the data buffers from the leading
user, if possible, just immediately after the contents have
been played out.

The disk and buffer requirements are compared as a
function of time for the non-shared case and the shared
case (continuous media caching) in figure 2. Two re-
quests for the same topic (containing 5 segments) that
arrive with a time difference corresponding to two seg-
ments is shown in the figure. In the non-shared case,
disk and buffer bandwidths are allocated independently
for each request. However for the shared case, since it is
known that segments three through five will be available
in the buffer (they are loaded into the buffer for the first



request) when the second request needs it, the buffers
are reused, i.e., the buffers are preserved until the cor-
responding playback time for the second user. Since the
segments need not be fetched again from the disk for the
second request, there is a decrease in the number of disk
I/Os while the buffer requirements may increase.

BE Disk Bandwidhfor Presant Request

B Disk Bandwidh for Present Request
B viskBandwidh for Next Reguest

B Disk Bandvidh for Next Request

Bytes/sac

— Disk Banchich for Shared Case~ Trio—s-

Disk Bandwidth for Non-Shared Case
BB Buters Aocatedfor Prosent Reguest

[ New Buflers for Next Request

[ | Preserved Buffers for Nexl Request
New Biflers for Next Request

i Butfers Aliocated for Present Reques! '
L
L]
5
o

Bytes

T

Butler Raquirsment for Shared Case

Tim e g

Bufler Requirament lor Non-Shared Case
Figure 2: Buffer Sharing between two requests

Details of the segments that are actually present in the
buffer at each time instant in the shared case (bottom
right case of figure 2) are shown in figure 3. It differenti-
ates the segments as follows — segments that are loaded
for the first user, segments fetched from the disk for the
second user and segments that have been used by the
first user but preserved for the second user. It illustrates
how the continuous media caching technique preserves
only the necessary segments for just the required amount
of time. By sharing the continuous media data buffers
effectively, we illustrated how more number of sessions
can be supported than that supported by the disk band-
width. The buffer and disk bandwidth for the schemes
we propose are determined using this technique.

1,2,3,4, 5~ Segmerts Loaded for First User
1,2 - Segments Loaded from disk for Second User
3,45 - Segments preserved in buffer for Second User
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Figure 3: Segments available in buffer at each time slot
(zooming into bottom right of figure 2)

4 Heuristics to determine when sharing
in beneficial

The criteria used to determine whether a request
is to be shared is critical to the success of systems that
use continuous media caching. Several factors determine
this and there are tradeoffs. As we discussed earlier, this
technique pays off when the difference in the arrival times
of two requests to be shared is small but not when it is
large. We denote the threshold value for the maximum
tolerable inter arrival time to share a new request with
an existing one by maz-iat. Hence the inter-arrival time
(#a?) has to be less than this value for sharing to occur.

Determining this threshold value beyond which there is
no payoff is a complex task. This threshold value depends
on a number of parameters — mean inter arrival time
between requests (sec), total memory available in the
system (MB) and the data rate of the topic (MB/s). If
more memory is available, then segments can be cached
for a longer duration of time; hence, maz-iat is directly
proportional to memory size. On the other hand, if the
data rate is high, it is difficult to cache segments for a
longer duration since the buffer space needed will be too
high. Hence maz-iat is inversely proportional to the data
rate. Based on the above facts, we arrive at the following
set of equations:

] Mean_Arrival Time - Memory_Size

Data_Rate

(1)
(2

The constant C can be determined via empirical tests as
we do later in section 8.1. Thus, for the SHR scheme, we
have used inequality (2) as a basis for deciding when the
requests are to be shared. If zat is larger than maz-iat
then continuous media caching is not used and the request
has to be satisfied using the UAT scheme. It should be
noted that in all these cases, a request is considered for
scheduling as soon as it arrives (zero response time).

mag.iat = C

tat < maz.iat

5 Buffer Management Schemes

In this section we first review the UAT buffer man-
agement scheme for handling multimedia data and then
describe the SHR scheme. While UAT tries to reuse
past data alone, SHR is an improvement on UAT that
allows future data to be shared as well. Although nu-
merous buffer management schemes (FIFO, LRU, etc.)
[9,14] have been studied in the context of traditional and
real-fime database systems, we will not discuss them since
they are not quite suitable in the context of multimedia
data which has continuous deadlines.

In traditional database systems, once a page is brought
from the disk into the bufier, in virtual memory operat-
ing system environments a fiz operation is performed to
ensure that it is not paged out. Once it is determined
that the page is no longer necessary or is a candidate for
replacement an un fiz 1s performed on that page. Also,
buffer allocation and page replacement are considered
orthogonal issues. Essentially these techniques cannot
handle continuous deadlines and hence are unsuitable for
multimedia data. Part of the motivation for the con-
tinuous media caching scheme came from the way code
pages (which are read only) are shared in virtual memory
operating systems.

Before we discuss the UAT and SHR schemes, we pro-
vide details of our memory model, admission control, and
bandwidth reservation scheme. In multimedia database
systems, advance knowledge of the data stream to be ac-
cessed is usually available and can be utilized for efficient
buffer management. Since we are assuming a large main
buffer, this information can be stored in main buffer (i.e.,
the number of segments that make up a topic and the seg-
ment data rates for each segment). Unused buffer space
exists in a global free-pool. Buffers needed for the seg-
ments of a request are acquired (analogous to fix) from
the free-pool and returneg (analogous to unfix) to the
free-pool when they have been used. When buffers are
requested from the free-pool, the oldest buffer in the free-
pool is granted to the requester.
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The admission control and reservation scheme is de-
pendent upon whether a request can be shared. Given
(n — 1) sessions already in progress, the n'® request is
accepted iff the following inequalities hold.

n
dtdie < M Vi=1,.,s (3)
=1
n
ddis < R Vi=1,.,s (4)
=1

where d; ; represents the continuous media rate (audio
and video) for request i at time slot ¢, I represents the
length of each segment, s represents the total number of
segments in the request {called the length of the request).
The first inequality corresponds to the constraints im-
posed by the buffer bandwidth (buffer size = M) and
the second by the disk bandwidth (data rate supported
= R). I the inequalities hold for a request, the required
buffer and disk bandwidth is reserved and the request is
guaranteed to succeed. We mentioned earlier that since
the video rate dominates the audio rates, only the require-
ments of video are considered for sharing. The availability
of the necessary bandwidth for audio however is also to
be checked by the admission control policy to determine
whether the synchronization requirements of audio and
video streams can be met.

5.1 Traditional Scheme - Use And Toss (UAT)

QOur UAT scheme replaces data on a segment basis and
performs admission control and bandwidth reservation to
anticipate future demand. Using a timestamp mecha-
nism, a FIFO policy is used to decide which of the seg-
ments from the free-pool is to be allocated to a new
request, i.e., when a new request is to be allocated a
segment from the free-pool, the oldest segment in the
free-pool is allocated first. UAT reuses segments that
may already exist in the buffer, i.e., if any of the re-
uired segments happen to exist in the free-pool then
they are grabbed from the free-pool (unplanned sharing),
thereby avoiding fetching those segments again from tﬁle
disk. UAT does not consider sharing explicitly (planned
sharing%}, i.e., when the segments of a topic have been
layed back, they are not preserved in the buffer for a
agging user who might have requested the same topic.
Hence admission control and bandwidth reservation are
performed independently (using inequalities 3 and 4) for
requests from different users. If the necessary bandwidth
is available, then the required disk and buffer bandwidths
are reserved; else the request is rejected.

5.2 Proposed Scheme - Sharing Data (SHR)

The UAT scheme has been enhanced using the continu-
ous media caching technique to form the SHR scheme.
We focus only on buffer management and do not dis-
cuss details of disk scheduling here. Segments required
by the different streams can be obtained from the disk
in a timely manner by proper layout of the data on disk
using schemes like striping, staggered striping or other
techniques [1,13,20,22,24,26).

Segments that are explicitly preserved begin with the
segment that is being played back by the leading user
when the la%lging user enters the system. All segments
that follow this are also preserved in the buffer until the
lagging user needs it for playback (segments 3,4 & 5 in
figure 3). If it happens that some of the segments are
in the free-pool (segments 1 & 2 after playback in figure
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1), they can be reacquired from the free-pool if the buffer
space corresponding to those segments has not already
been granted to other sessions. If all the segments (loaded
for the first user prior to this user’s arrival) are available,
then no data is to be fetched from the disk for the second
user (only buffer bandwidth is checked/reserved), else
data 1s to be fetched from the disk for those segments
that do not exist in the free-pool(both buffer and disk
bandwidth checked/reserved).

do while there are requests in the queue
select next request ;
admitted = false;
For each segment in the topic, check if the segment is already
in the free—-pool and grab itif itis available ;
For sach segment grabbed trom the free~pool, modity the
total Erolue 10 reflect preserving of these segments and
check for buffer bandwidth violation ;

For segments that have to be fetched from the disk, modify
the total profile for disk and butfer accordingly and check
for buffer/disk bandwidth viofation ;

if request is shared X .
For segments that exist in the buffer and are shareable, modify
the total profile for buffer and check for bandwidth violation ;

endif
it no violation at any stage

admitted = trug . . _
7* total profite contains reservation for this request */

Bh?%store old total profile
reject request ;
endif
end do

Figure {: Admission Control and Bandwidth Reservation

The admission control and bandwidth reservation
scheme for SHR is shown in figure 4. The total profile
refers to the total requirements of buffer/disk bandwidth.
It also describes the sequence in which the availability
of segments in the buffer is checked along with admis-
sion control and buffer/disk bandwidth reservation. The
admission control policy checks if there is sufficient disk
bandwidth available for segments to be loaded from the
disk and sufficient buffer bandwidth for loading these seg-
ments in the buffer and preserving the other segments
gi.e., loading segments 1 & 2 and preserving segments 3,

and 5 in figure 3). If the required bandwidth is available
then appropriate disk and buffer bandwidths are reserved.
If sharing 1s not possible, the SHR scheme behaves like
the UAT scheme and an attempt is made to reserve the
necessary buffer and disk bandwidth for each request in-
dependently. If this also fails, then the new request is
rejected.

do forever
do for all active sessions
if butfers are shared with another session
if leading user i
preserve the used buffers for lagging users ;
actéuwe new buffars from the free pool ;
fetch data from disk into the buffe!
else if lagging user
if there are more lagging users X
preserve the used buffers for lagging users ;
read from preseived butters ;

el
s'?caturn the used buffers to the free pool ;
read from preserved buffers ;

ndif
endi?
when a new segment is encountered
return the used f?uffers to Kie free pool ;
acquire new buffers from the frae ;?oo| :
fetch segment from disk;

else

endif
end do
L end do

Figure 5: SHR Buffer Allocation & Replacement

Buffer allocation and replacement is done in an inte-
grated manner as shown in figure 5. Buffer allocation is
done when a inter segment synchronization point is en-
countered. The figure describes how buffers are allocated




for playback and how they are freed/preserved after play-
back depending on whether there are lagging users for
a request. Information about allocated iuffers can be
maintained using a hash table.

6 Batching Schemes

Batching tries to support more number of concurrent
users by grouping requests that arrive within a short
duration of time for the same topic. This type of sharing
corresponds to case 1 discussed in section 3 since the
requests are satisfied simultaneously (even thought they
arrive at different times). Our objective is to improve the
system performance by using continuous media caching
in conjunction with batching schemes.

The response time of a request is the time interval be-
tween the instant i1t enters the system and the instant
at which 1t is served (i.e., the first segment of the re-
quest is played back). Since customers will be inclined to
choose a service with a faster response time, it is impor-
tant to study the effect of batching and sharing schemes
on response time. The factors that determine the actual
response time of a request include the scheduling policy
and the scheduling period. The scheduling period is the
time interval between two consecutive invocations of the
scheduler. At each invocation of the scheduler (schedul-
ing poin?, requests for the same topic are batched and
scheduled according to the scheduling policy. If the tol-
erable response time is small, then it 1s necessary to have
smaller scheduling periods else the percentage of success-
ful requests will ie low. However in order to increase
sharing through “batching”, the scheduling period has
to be large. Hence, as a compromise, some intermediate
value has to be chosen such that batching can be achieved
with smaller response times. The scheduling policy deter-
mines the order in which the requests are to be considered
at each scheduling point. The First-Come-First-Serve
(FCFS) policy, selects the topic which has the oldest re-
quest and batches all requests waiting for that topic. In
the Maximum-Group-Scheme (MGS) policy, requests for
the same topic are batched and the topic which has the
maximum number of requests is considered first. Other
variations are possible but we consider only the FCFS
policy which is recommended as a fair policy in [6].

At each scheduling point, in the FCFS scheme, the
grouped requests are considered one by one based on the
earliest arrival time of a request in the group. A request
first goes through the admission contro% and bandwidth
reservation phase. If the required resources are available
and allocated, then all the requests for that topic are suc-
cessful. If this request cannot be satisfied, it will be tried
again at the next scheduling point and so on as long as
the response time requirements are met. In this case, the
remaining requests are considered at the present schedul-
ing point. Hence a request that could not be satisfied at a
particular scheduling point may be successful at the next
scheduling point. If the actual response time exceeds the
maximum tolerable response time, then the request is no
longer considered for scheduling and is rejected.

6.1 BAT-UAT and BAT-SHR. Schemes

BAT-UAT scheme is the FCFS batching scheme that uses
the UAT buffer management scheme. Since the UAT
scheme does not use continuous media caching, data shar-
inﬁ is achieved purely through the effect of batching in
BAT-UAT. The BAT-SHR scheme is the FCFS batching
scheme that uses the SHR buffer management scheme.

Here the effect of sharing is achieved in two different ways,
through batching & continuous media caching and hence
the extra data sharing that could not be achieved through
batching is achieved via continuous media caching i.e,
requests for the same topic may have been scheguled
in different neighboring scheduling points, but sharing
is achieved through continuous media caching when the
neighboring points are separated by a time less than maz-
at.

7 Performance Tests

In this section we discuss our experimental setting,
a few of our assumptions and then describe the various
parameters and metrics used for the tests.

We use a client-server architecture for the tests. A
DMA transfer is assumed between the disk and the buffer
at the server. Thus the CPU cannot be a bottleneck and
hence is not included in our model. It is assumed that
the network between the client and the server provides
certain quality-of-service (QOS) guarantees with respect
to network delay and bandwidth (detailed discussion of
reliability and networking issues for continuous media can
be found in [2]). We will assume a two level storage
system: primary storage (main memory buffer) and sec-
ondary storage (disk). Knowing the-average seek time,
rotational latency and data read rate, the effective trans-
fer rate, R can be determined for a storage system. This
is used 1n performing bandwidth allocations for the disk.

The parameters to be considered fall in four differ-
ent categories — customer, system, topic and batching.
They are listed below in the table with their default val-
ues. Topic parameters (length, data rate, etc.) are gen-
erated using a uniform distribution. Customer arrivals
are modeled using a Poisson process. The topic chosen
by a customer is modeled using Zipf’s law [27]. Accord-
ing to this, if the topics 1,2,...,n are ordered such that
p1 > p2 > ... > pn then p; = ¢/i where c is a nor-
malizing constant and p; represents the probability that
a customer chooses topic 2. This distribution has been
shown to closely approximate real user behavior in video-
tex systems [1 lj which are similar to on-demand services.
The system and batching parameters were selected based
on practical considerations.

[[ Category | Parameter | Setting (Default Values) Ji]
Customer | Inter-Arrival Time | Poisson Distrib. mean = 10 sec ||
| Topic Chosen { ZipT’s Distribution (1-10) 1l
System | Buffer Size | 1.28 GB
| Disk Rate | < determined using tests> 1]
Topic Total Number 10
Length Uniform Distnib. {(500-700) sec
Data Rate of Segment Uniform Distrib. (1-2) MB/sec

Max. Response Time |
Scheduling Period |

40 sec i}
10 sec Ji]

"—Eatching }

While the percentage of requests that are successful
seems to be the right metric for these systems, it is not
sufficient for system designers since they are more inter-
ested in metrics that are closely tied to QOS guarantees.
An example of a metric that provides a QOS guarantee
is the maximum arrival rate that can be sustained if 95%
of the requests are to succeed given certain resources.
A better metric would be the resource requirements to
ensure a 95% success rate given a specific workload and
this is the metric we use for our tests. Evaluating metrics
that are based on QOS guarantees is a time consuming
process since it is iterative in nature. For example, to de-
termine the disk bandwidth that ensures a 95 % success
rate when the arrival rate is 6/min (inter-arrival time is
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10 sec), starting from a small value of disk bandwidth
(for which the success rate may be lower than 95%(9. tests
are to be performed by incrementing the disk bandwidth,
until the success rate reaches 95%. Response time is more
relevant for the batching schemes, since the scheduling is
done at periodic intervals. A tolerable response time is
specified for these tests and 95% of the requests should
have response times smaller than the tolerable response
time (requests that cannot meet the response time re-
quirements are rejected).

8 Results

Each simulation consisted of 25 iterations and each
iteration sirmulates 2000 customers. The confidence inter-
val tests of the results indicate that 95 % of the results
{percentage of successful requests) are within 3 % of the
mean in almost all cases. All parameters are set to their
default values as specified earlier unless explicitly indi-
cated in the graphs. Topic details (the database accessed
by users) were generated for every iteration. We first
discuss the tests performed to determine max_iat, the
sharing threshold. Then we compare the results of the
buffer management schemes (UAT and SHR) and, finally
we compare the batching schemes (BAT-UAT and BAT-
SHR). The area below the curves are filled in light gray
for schemes that do not use continuous media caching
and in dark gray for schemes that use continuous media
caching. Hence in all of the graphs, the light gray region
shows the benefit of continuous media caching.

8.1 Determination of best value for maz_iat
Based on the parameters described in the experimental
settings, we performed some tests by varying the value
of mazx_iat. As seen in figure 6(a), we observe that
the disk bandwidth requirement curve is trough shaped,
with the curve bottoming out at 60 sec. Below this
threshold value, we permit fewer number of sessions to
He shaketc)i and hence more accesses are directed to the

isk. ove this value, we try to share more sessions,
but since more buffers are occupied by the data that is to
be preserved over longer periods of time, less memory is
avallable for sharing of new requests and hence frequent
trips are required fo the disk. It is a very important
trade-off in this technique. Having determined the value
of maz_iat as 60 for the parameter values mentioned, we
modify equation (1) as follows:

R Arrival.Mean Buf fer.Size 2
maz-tat = 60 (5)
10 1280 Data-Rate

The constants in each of the paranthesis corresponds to
the default value of that parameter.
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Figure 6: Variation in disk bandwidth requirements

However as we fperformed more tests, we noted that
the performance of SHR scheme was still not satisfactory.
Closer investigation revealed that the effect of buffer size
is not linear but is complex. Hence we varied the indezr
(exponent) of the buffer size component in equation (5)

and plotted the required bandwidth as shown in figure
6(b). From this we determined that the optimal value for
the index is close to 1.5 and we arrived at the following
equation. A linear function of the other components
showed good behaviour.

. Arrival_Mean Buf fer_Size L5 2
maz-iat = 60 (8)
10 1280 Data_Rate

‘We found this heuristic to be satisfactory and have used
it in the tests discussed in the next few subsections.

8.2 Comparison of UAT and SHR

Here we analyze the behavior of UAT and SHR and dis-
cuss how continuous media caching helps to improve the
performance of the system. Figure 7(a) shows the effect
of the mean inter-arrival time on the disk bandwidth re-
quirement. For smaller values of mean inter-arrival time,
higher disk bandwidths are needed by UAT compare to
SHR to satisfy the requests. The disk bandwidth re-
quirement drops gradually as the mean inter-arrival time
increases. This shows the ability of continuous media
caching schemes to improve the number of concurrent re-
quests that can be handled by a system at high arrival
rates. ’
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Figure 7: Effect of Inter Arrival Time and Buffer Size

The effect of buffer size on the performance of the
schemes is studied in figure 7(b). In general if the buffer
space available is low, buffer management schemes ex-
perience poor performance. It can be observed that at
lower buffer sizes SHR is not able to exploit sharing but
as the buffer size available increases, SHR uses the extra
buffer to exploit sharing and hence begins to outperform
UAT. It can be noted that UAT does not utilize the avail-
able buffer resources to the maximum whereas SHR does.
Hence UAT requires a constant disk bandwidth while the
disk bandwidth for SHR reduces steadily with an increase
in buffer size. Qur heuristics have been carefully designed
such that the SHR scheme behaves like the UAT scheme
when the available buffer size is small and uses sharing
only if more buffer is available.
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Figure 8: Effect of Topic Parameters
Next we compare the effect that the number of topics
have on the performance of UAT and SHR. This test is
important since the probability of locating a required seg-
ment in memory with or without planning depends upon




the number of topics, i.e., the lesser the number of topics,
the higher the probability of finding a required segment.
It can be observed in figure 8(a) that the increase in band-
width is initially steep and then becomes more gradual.
It can also be noticed that SHR dominates the perfor-
mance (with a lesser disk bandwidth requirement) even
as the number of topics increases. Figure 8(b) explores
the effect of the length of the topic on the performance of
the different schemes. This is important due to the fact
that increasing the len%th of the topic results in a request
taking longer to complete and hence the number of con-
current customers in the system increases, which in turn
demands increased buffer and disk bandwidth. Thus the
disk bandwidth requirements of the two policies increases
with an increase in topic length. However if SHR is used,
some of the concurrent sessions are shared and hence the
disk bandwidth requirement for SHR is less than that of
UAT. Another important parameter to be studied is the
average data rate of the segments. In the MPEG-2 stan-
dards, the average data rate for a compressed high quality
video is around 2MB/s. Hence we have performed tests
for an average data rate ranging from 2-56MB/s. As ex-
pected, we note from figure 8(c) that with increasing data
rates, the disk bandwidth requirement increases. How-
ever we observe that SHR requires less disk bandwidth
than UAT. As the data rate increases, the gap between
UAT and SHR decreases. To prevent larger buffer space
beini occupied by caching huﬁe amounts of data, the

number of data accesses directed to the disk increases.
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8.3 Comparison of BAT-UAT and BAT-SHR.

The batching schemes also behave similar to the two
schemes discussed earlier, the main difference being that
requests for the same topic are grouped and hence the
overall disk bandwidth requirements is less in all cases.
The results of these tests are shown in figures 9 & 10. It
can be seen that the gray regions grow wider indicating
that the benefits from continuous media caching is even
larger if used in conjunction with batching.

We now discuss results of some additional tests which
are based on varying the batching parameters, i.c., toler-
able response time and scheduling period. The effect of
the maximum tolerable response time on the two batch-

ing schemes is shown in figure 11(a). Here we observe
that the drop in disk bancfwidth requirement for BAT-
SHR is steeper compared to BAT-UAT. This clearly indi-
cates that continuous media caching in conjunction with
batching takes advantage of relaxed response times. Fig-
ure 11(b) indicates more precisely how continuous media
caching increases the effect of sharing. While it can be
observed that, at low scheduling intervals, the effect of
sharing is not completely achieved by BAT-UAT through
batching, BAT-SHR achieves this by using continuous
media caching in conjunction with batching. Hence the
disk bandwidth required for BAT-SHR is almost the
same irrespective of the schedulin% period while BAT-
UAT requires relatively higher disk bandwidth at smaller
scheduling periods. As discussed earlier, in order to sat-
isfy the response time requirements, it might be necessary
to have smaller scheduling periods. To have better per-
formance (lesser disk bandwidth) at smaller scheduling

periods, BAT-SHR scores over BAT-UAT.
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Figure 11: Effect of Batching Parameters

Through all the above experiments, we have been able
to demonstrate that information about past and future
access can be used to exploit continuous media sharing,
thereby substantially enhancing the performance of mu%
timedia database systems even under a variety of condi-
tions.

9 Conclusion
Since the data rates in multimedia database systems
are very high, the I/O system could potentially limit the
number of concurrent sessions supported. In this paper,
we addressed this problem by exploring the potential ben-
efits of continuous media sharing. For our study, we con-
sidered the application of News-On-Demand-Service. B
effectively utilizing the advance knowledge of the muf:
timedia stream to be accessed, our continuous media
caching technique preserves buffers in a controlled fash-
ion for use by subsequent users requesting the same data,
thereby reducing disk accesses. We also presented heuris-
tics that help the system decide whether a new request is
to be shared with an existing one. Using continuous me-
dia caching we improved the UAT scheme to develop the
SHR scheme and, in conjunction with a batching scheme
BAT-UAT, created BAT-SHR, a new scheme that com-
pounds the effect of sharing. We have also done a prelim-
inary analysis of our schemes to determine the enhance-
ments necessary to support fast-forward and rewind but
have not included it here to keep the discussion short
(details can be found in [159)
We studied the impact of continuous media sharing by
measuring the disk bandwidth required for 95% of the re-
quests to succeed. We observed that the disk bandwidth
required for SHR is low in all cases. This verifies the
fact that SHR reduces the number of disk I/Os by pro-
moting sharing and can give good performance even at
low disk bandwidth. Similar observations were also made

25 30 35 40
nse Time (sec)

85



about BAT-SHR, substantiating the fact that continuous
media caching can provide significant performance gains
when used with batching schemes. In particular, tests
to study the eflect of scheduling period indicated that
the disk bandwidth requirement of BAT-SHR is constant
since sharing that could not be achieved through batching
is obtained via continuous media caching. SHR schemes
always performs better than UAT schemes and are as
good in the worst case.

Our sharing model is quite general and this technique
is useful when the pattern of data accesses is known in
advance and can be utilized by many other multimedia
applications like Video-On-Demand. It can also be used
in video database environments where there are a large
number of requests for some hot topics (e.g. home shop-
ping videos of newly released products). Currently the
data fetch/transfer time between a tertiary and a sec-
ondary device is high and this is one of the areas in mul-
timedia that needs immediate attention. Our technique
can be modified and used for efficient data management
on the secondary device in such an environment.
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