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Abstract Static Authentication provides a secure frame-

work for a one-time authentication session, but fails to

authenticate the user throughout the session. This presents

the possibility of an imposter gaining access when a user

session is active and the user moves away from the system.

The goal of continuous authentication is to authenticate the

user right from the initial stages of log-in till log-out.

Intuitively, this can be implemented by extrapolating the

tried-and-tested static authentication techniques throughout

the session. However, extrapolating one-time authentica-

tion techniques poses new challenges of being computa-

tionally expensive, restricting the user’s movement and

postures in front of the system, depending on extra

expensive hardware and deviating the user from his work-

flow. In these situations, the user no longer remains unin-

terrupted by the authentication process in the background.

The proposed framework provides unobtrusive Continuous

Authentication, by alternating between two modes which

utilize hard and soft biometrics respectively, depending on

certain confidence parameters. We use facial features as the

hard biometric trait for recognizing the user. Employing

face recognition for extended periods of time produces

noise, which is dampened by using a supervised machine

learning algorithm. The color of user’s clothing as the soft

biometric trait relieves the CPU of comparatively high

computation and relaxes constraints on the user’s upper

body movement.

1 Introduction

Authentication in the context of computer security is a

process which verifies the claimed identity of the user.

Upon successful authentication, the user may be granted

privileges enabled by a higher authority. A number of

elements together can decide the authenticity of the user.

These elements can be classified based on three factors

called authentication factors. Security research [1] has

determined that for a positive identification, atleast two of

the three authentication factors need to be satisfied. These

factors are:

• Knowledge factors Something the user knows (e.g.,

Username-password pair)

• Ownership factors Something the user has (e.g., ID

card, cell phone, security token)

• Inherence factors Something the user is (e.g., Finger-

print, retinal patterns, facial features)

The purpose of this work is to provide unobtrusive con-

tinuous user authentication techniques by taking into

account these authentication factors.

The process of authentication can be either static or

continuous. Static Authentication refers to the method of

authenticating a user at the time of log-in. In most cases,

knowledge-based methods such as passwords are used

since every user can verify his/her claim in a very conve-

nient manner. But passwords and knowledge factors lose

their credibility when shared, forgotten or stolen. Similarly,

ownership-based methods too can duplicated, stolen or lost.

When dealing with sensitive content, one might resort to

using additional equipment which verifies the user based

on his unique traits such as fingerprints or retinal patterns.

In this case, the only period during which the system is

very confident and fully aware of user’s identity claim is
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during the authentication period. Some computer systems

use a 2-factor authentication technique which verifies the

user’s password and facial features at the time of log-in and

assumes it is the same authenticated user till logout. But

when the user moves away from the system to take a break

without logging-out, it is susceptible to tailgating - where

an imposter takes the authenticated user’s place. This could

prove to be a critical security weakness in high-security

systems. In order to address this issue, the system needs to

continuously verify the user’s identity claim. This is the

goal of Continuous Authentication.

Biometrics is emerging as a favorable choice around

which Continuous Authentication systems can be modeled.

Biometric traits refer to the physiological or behavioral

traits of a user that can identify a user for a session. These

traits can be divided into the following two categories [2]:

• Hard Biometric traits These are physical traits of a user

that are assumed to be present universally and can

uniquely identify an individual. For example, finger-

prints, facial features, DNA and so on.

• Soft Biometric traits These are characteristics of a user

that ‘‘provide some information about the individual,

but lack the distinctiveness and permanence to suffi-

ciently differentiate any two individuals’’[3]. For

example, color of clothing/skin/eye/hair, gender and

other such factors.

The motivation for this work arises from the flaws in the

present-day authentication systems which solely rely on

static techniques. Consider the online marketplaces or

stores on mobile devices and personal computers. They are

enabled with a pre-authorized account in which the user is

not prompted for any credentials before making purchases.

Using this type of account circumvents the need to enter

account credentials before making a purchase. Thus, con-

venience for the user is achieved at the risk of an unau-

thorized person making fraudulent purchases. Another

instance would be web services such as email, file-sharing,

etc. that are accessible on public systems. Once again,

static authentication techniques are employed which do not

address the possibility of tailgating-a situation where a

person forgets to log out allowing unauthorized access to

their data.

A possible solution to this problem is verifying the

biometrics that characterize a user throughout a session.

But, most conventional biometric techniques have low

availability, i.e., they are hard to capture continuously since

the user cannot be assumed to remain in one particular

position for the duration of the session. For example,

methods such as fingerprint and retinal pattern recognition

prove to be inconvenient to the user since posture would be

restricted. Even facial features restrict the user to face the

camera and features not captured in the training data

surface as noise in practice. Continuous authentication

using biometrics forces log-in multiple times when the user

moves away from the data access point. This can occur in

the case of a medical practitioner accessing patient records

and moving away to treat the patient. Hence, solely using

conventional biometrics disrupts the user’s natural work-

flow and can be considered obstrusive.

This paper presents an approach towards implementing

continuous authentication on a personal system in an

unobtrusive manner. By unobtrusive, we mean the user

need not incur the cost of deviating from his normal

workflow to enjoy the benefit of continuous authentication.

Integrated in this implementation are modules—which

utilize hard and soft biometrics separately—to continu-

ously verify the user throughout the session. We use the

facial features of the user as the hard biometric trait, which

is captured using an image-based face recognition algo-

rithm—Eigenfaces. For the soft biometric measure, our

choice was to use the color of user’s clothing since it is

more tolerant towards the user’s posture. The control flow

of the system alternates between the hard and soft bio-

metrics module depending on the need to reinforce the

system’s belief.

We view this work as having three contributions.

(1) We provide an overview of the framework for

continuous authentication implemented as separate

modules. These modules emit individual confidence

as a function of one of the biometric trait being

captured at a given point in time.

(2) In order to use facial features, we augmented the

face recognition algorithm with a Support Vector

Machine to dampen noise. This is necessary primar-

ily for two reasons. First, face recognition algo-

rithms, including modern ones arent highly accurate.

Hence, the features not captured during training

surface as false recognitions, i.e., noise. Second,

when the face recognition database is biased—such

as when there exists only a single user or contains

face images of only one gender—falsely recognizing

an imposter becomes highly likely in some cases.

(3) We identify that the Support Vector Machine when

trained on a fixed number of features captured in the

past N frames, benefits from decaying old data and

learning to make more confident predictions based

only on the recent ones.

We readily acknowledge that this paper does not present

any fundamental contributions to the field of machine

learning or computer vision. Rather, we focus on inte-

grating the end-to-end machine learning and computer

vision algorithms on a personal system to provide contin-

uous unobtrusive user authentication. This is achieved by

writing the program in a high-level language which
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provides wrappers to various user interfaces or with the

operating system itself.

2 Related work

The study conducted by Klosterman et al. [4] in the design of

biometric-enhanced authentication system describes the

challenges posed by such a system. It points out that for

unobtrusive continuous monitoring of a user’s biometric

traits, the choice of trait should be such that it does not hinder

the user from working. A biometric measure such as facial

features of a user, hence make for an acceptable choice for

continuous unobtrusive monitoring, as compared to finger-

prints or iris patterns. Another important observation is that

biometrics are expensive to compute. In case of facial fea-

tures, the image processing and recognition algorithms can

be computationally much more expensive as compared to

password verification. This serves as a compelling reason to

interleave the authentication process using an alternative

measure which is: inexpensive to compute and allows user

more flexibility in posture. In our case, the alternative mea-

sure is the soft biometric information of the user.

Incorporating Soft Biometric traits for improved accu-

racy of recognition, for static authentication, was intro-

duced by Jain et al. [3]. It proposed a framework for

integrating the soft biometric information along with the

output of the primary biometric system, with fingerprint as

the primary biometric identifier and gender, ethnicity, and

height as the soft biometric variables.

Using Soft Biometrics for Continuous Authentication

has been studied using different types of Soft Biometric

traits such as color of clothing and skin [2], keystroke

dynamics [5] and electrocardiogram data [6]. Of these the

most relevant is the work by Niinuma et al. where they

implemented checking the color of shirt and skin contin-

ually to match the template created at the start of the ses-

sion [2].

They conducted experiments where the user was asked

to enact 6 typical scenarios a user may normally exhibit

such as turning head in different directions, stretching arms

or walking away. A measure of the system’s performance

for soft biometrics was made by evaluating two main

parameters-False Reject and False Accept. Their experi-

mental results indicated an overall False Rejection rate of

4.16% and a False Accept rate of 0% over the considered

scenarios. While this model yields fairly good results, it

leaves scope for improvement of recognition by consider-

ing temporal information. This implies a decay of data

beyond a certain time in the past. We exploit this temporal

information by using a supervised machine learning algo-

rithm, to improve the accuracy of recognition of user in the

Hard Biometrics phase.

3 Background

In this section we briefly go over the algorithms imple-

mented in the system. This is essential to understanding the

individual roles played by the components of the proposed

continuous authentication system.

3.1 Face detection using Viola–Jones algorithm

The face detector proposed by Viola and Jones [8] com-

bines four key concepts [9]:

• Simple rectangular features, called Haar features

• An Integral Image for rapid feature detection

• A variant of the learning algorithm AdaBoost

• Cascaded architecture

The features that Viola and Jones used are based on Haar

wavelets. Haar wavelets are single wavelength square

waves (one high interval and one low interval). In two

dimensions, a square wave is a pair of adjacent rectan-

gles—one light and one dark. The actual rectangle com-

binations used for visual object detection are not true Haar

wavlets. Instead, they contain rectangle combinations bet-

ter suited to visual recognition tasks. Because of that dif-

ference, these features are called Haar features, or Haarlike

features, rather than Haar wavelets. The presence of a Haar

feature is determined by subtracting the average dark-

region pixel value from the average light-region pixel

value. If the difference is above a threshold (set during

learning), that feature is said to be present.

To determine the presence or absence of hundreds of Haar

features at every image location and at several scales effi-

ciently, Viola and Jones used a technique called an Integral

Image. Using this technique, rectangular features can be

evaluated in constant time, which gives them a considerable

speed advantage over their more sophisticated relatives.

Viola and Jones combined a series ofAdaBoost classifiers

as a filter chain, that is especially efficient for classifying

image regions. Each filter is a separate AdaBoost classifier

with a fairly small number of weak classifiers. The cascade

architecture has interesting implications for the performance

of the individual classifiers. Because the activation of each

classifier depends entirely on the behavior of its predecessor,

the false positive rate for an entire cascade is:

F ¼
Y

K

i¼1

fi ð1Þ

Similarly, the detection rate is:

D ¼
Y

K

i¼1

di ð2Þ

Thus, to match the false positive rates typically achieved

by other detectors, each classifier can get away with having
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surprisingly poor performance. At the same time, however,

each classifier needs to be exceptionally capable if it is to

achieve adequate detection rates.

3.2 Face recognition using Eigenfaces

3.2.1 Face recognition using Eigenfaces

Eigenfaces is a face recognition algorithm that was first

described by Turk and Pentland [7]. It works to capture the

variations present among the images of faces, that form the

training set. It uses this information to create a face model

where each image is represented as an eigenvector in what

is called a PCA subspace. Recognition of a test face is

carried out by converting the test image into a similar

eigenvector and then comparing its distance from all others

in the subspace. The person corresponding to closest image

is said to be the person recognized in the test image. It

encodes the complete face characteristics, as opposed to

capturing features of the face separately.

3.2.2 Eigenface generation

Eigenfaces are generated in the following manner, as

described in [7]:

1) During the account creation phase, a series of face

images are captured and preprocessed. Hence a

training dataset S of preprocessed face images

containing s1; s2;...sM is prepared. Each image is then

converted to a vector of size N by concatenating all

the pixels row by row. These vectors are put into a

matrix T with each row representing an image.

2) The average of all vectors w is calculated and

subtracted from each of the vectors in T to obtain

vectors /i; i ¼ 1; 2;...; n.

3) The eigenvectors uk and eigenvalues kk; k ¼ 1;...;M

of the co-variance matrix C are calculated. The

covariance matrix itself is found by:

C ¼
1

M

X

M

n¼1

/n/
T
n ð3Þ

4) Since the dimension of C is very high (of the order of

the number of pixels in the image), another matrix L

as analyzed in [7] with the dimensions M �M is

constructed,

L ¼ ATA ð4Þ

where

A ¼ f/1;/2; :::;/Mg ð5Þ

5) The eigenvectors vl of the matrix L are determined

such that,

ul ¼
X

M

k¼1

vlk/k ð6Þ

where l ¼ 1; :::;M.

To recognize a face, the face image is transformed into its

eigenface components. The input image snew is compared

with the mean image and their difference is multiplied with

each eigenvector of the L matrix. Each value represents a

weight and would be saved on a vector X.

xk ¼ uTk ðsnew � wÞXT ¼ ½x1;x2; ::;xk� ð7Þ

The Euclidiean distance e is minimized to determine which

face class the new face belongs to. It is computed as fol-

lows [10]:

ek ¼k X� Xk k ð8Þ

If ek is below an established threshold he, then the input

face is considered to belong to that respective class.

3.3 Noise dampening using support vector machines

Using the output produced by the face recognition module,

the goal is to dampen the noise, by taking advantage of

certain features like

• Temporal information

• Confidence in prediction of recognized face, which in

case of Eigenfaces is the Mahalanobis distance of the

projected point from its nearest neighbour

• Patterns inherent in the noise

The following theory on Support Vector Machines is as

discussed in [11] Noise attenuation is achieved by training

a classifier on existing data represented as:

D ¼ fðxð1Þ; yð1ÞÞ; ðxð2Þ; yð2ÞÞ; . . .; ðxðmÞ; yðmÞÞg ð9Þ

where ðxðiÞ; yðiÞÞ represents the ith training example in a set

of m training examples and xðiÞ 2 Rn
; yðiÞ 2 fþ1;�1g. We

generate a hyperplane represented as:

hw;bðxÞ ¼ gðwTxþ bÞ ð10Þ

where

gðzÞ ¼
þ1 if z� 0

�1 if z\0

�

ð11Þ

The primal optimization problem for finding the optimal

margin classifier can be stated as:

min
c;w;b

1

2
k w k2 ð12Þ

subject to the constraint

yðiÞðwTxþ bÞ� i ¼ 1; :::;m ð13Þ
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When we construct the Lagrangian for this optimization

problem, we have:

Lðw; b; aÞ ¼
1

2
k w k2 �

X

m

i¼1

ai½y
ðiÞðwTxðiÞ þ bÞ � 1� ð14Þ

where ai is a Lagrange multiplier. To find the dual form,

we need to minimize L which is obtained by differentiating

this equation with respect to w and b. Therefore, by taking

the derivative with respect to w and setting it to zero:

rwLðw; b; aÞ ¼ w�
X

m

i¼1

aiy
ðiÞxðiÞ ¼ 0 ð15Þ

) w ¼
X

m

i¼1

aiy
ðiÞxðiÞ ð16Þ

Similarly, the derivative with respect to b:

o

ob
Lðw; b; aÞ ¼

X

m

i¼1

aiy
ðiÞ ¼ 0 ð17Þ

Plugging this back into Eq. 14, we get

Lðw; b; aÞ ¼
X

m

i¼1

ai �
1

2

X

m

i;j¼1

yðiÞyðjÞaiajðx
ðiÞÞTxðjÞ ð18Þ

Putting this together with the constraint ai � 0, we obtain

the following the dual optimization problem:

max
a

WðaÞ ¼
X

m

i¼1

ai �
1

2

X

m

i;j¼1

yðiÞyðjÞaiajhx
ðiÞ

; xðjÞi ð19Þ

subject to the constraints

ai � 0; i ¼ 1; 2; :::;m ð20Þ

and

X

m

i¼1

aiy
ðiÞ ¼ 0 ð21Þ

It can be verified that the conditions required for p� ¼ d�

and the KKT conditions to hold are satisfied in this opti-

mization problem. By finding the a’s given in Eq. 19,

which maximizes WðaÞ, the optimal w’s can be represented

as a function of a’s. Having found w�, by considering the

primal problem, we obtain the orientation of the hyper-

plane. The optimal value of intercept term b can be cal-

culated as:

b� ¼ �
maxi:yðiÞ¼�1w

�TxðiÞ þ mini:yðiÞ¼1w
�TxðiÞ

2
ð22Þ

Suppose the model’s parameters w and b are fit to the

training set, a prediction would require calculate wTxþ b

for a new point x. This quantity can be written as:

wTxþ b ¼
X

m

i¼1

aiy
ðiÞxðiÞ

 !T

xþ b ð23Þ

¼
X

m

i¼1

aiy
ðiÞhxðiÞ; xi þ b ð24Þ

Thus, if the value of a’s have been calculated, in order to

make a prediction, a quantity that only depends on the

inner product of the new point and training data needs to be

calculated. Let this quantity be represented as hx; zi. Given
a feature mapping /, this inner product can be entire

replace by h/ðxÞ;/ðzÞi. A Kernel can now be defined as:

Kðx; zÞ ¼ /ðxÞT/ðzÞ ð25Þ

In our proposed solution, we use radial basis function as the

kernel:

Kðx; zÞ ¼ exp
k x� z k2

2r2

� �

ð26Þ

In the next section we show how the model obtained is

used to solve the learning problem.

4 Design and implementation of the continuous

authentication system

In this section, we first look at the high-level overview in

Sect. 4.1, in terms of the modules used and design choices.

In Sect. 4.2 we discuss the implementation details of the

proposed system.

4.1 Architecture

The control flow in the proposed work exists in the fol-

lowing three states:

(1) Conventional password log-in

(2) Hard biometrics mode

(3) Soft biometrics mode

These states are implemented by designing the system as

shown in Fig. 1.

Upon successful password log-in, the control alternates

between the hard and soft biometrics mode. These transi-

tions are made depending on confidence parameters hH and

hS respectively.

4.1.1 Hard biometrics

Systems solely relying on knowledge-based authentication

factors such as passwords are vulnerable when the account

credentials are stolen. This is circumvented by capturing
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hard biometrics traits after a conventional password log-in.

Use of these traits allows robust authentication based on

features that are unique per user.

The proposed work uses facial features of the user as the

hard biometric trait. By using facial features, we are able to

authenticate the user in an unobtrusive manner. Alterna-

tives such as retinal patterns and finger-print recognition

prove inconvenient since they distract the user when

employed continually. These alternatives also require

additional expensive hardware and increase the cost of the

system.

Face recognition using Eigenfaces [7], an image-based

face recognition algorithm is used to determine the

authentication state by capturing the facial features of the

user from a live video stream. Eigenfaces works by

learning facial parameters of the user during training. It

finds a PCA subspace whose basis vectors correspond to

the variance in the face images. During testing, the face

image captured from the web-cam is projected into the

PCA subspace and components of the eigenvectors that

represent the face image are calculated. The nearest

neighbor of this projected point is then presented as the

recognized user.

We are however limited by the drawbacks of Eigen-

faces, such as its low accuracy when lighting conditions

differ or the user is viewed at different angles. Although

more advanced algorithms for image-based and video-

based face recognition are available, we attempt to over-

come the drawbacks presented by Eigenfaces as explained

in the next section. Moreover, since we have laid out a

generic framework which interfaces with a face recognition

module (Eigenfaces in this case), it can be replaced with a

better performing module without causing side-effects.

4.1.2 Noise dampening

Image-based face recognition algorithms do not take into

account recognition over a video stream and are not

designed to meet real-time constraints. Advances in video-

based face recognition algorithms are designed to recog-

nize faces after processing the recorded video sequence.

But, the need to continuously authenticate the user requires

face recognition to meet real-time constraints on a live

video stream.

Eigenfaces recognizes the user by predicting

userrecognized for each frame in the video stream. If the

output over an extended period of time is represented by

1fuserrecognized ¼ userauthenticatedg 2 f0; 1g ð27Þ

for each prediction, the output appears as shown in Fig. 2.

The data used to produce the figure was obtained with the

authenticated user in front of the system under conditions

deviating from normal. Since Eigenfaces is an image-based

face recognition algorithm, the changes in user’s postures

were exhibited as false negatives. False positives also

easily surface, such as in the scenario where in only a

single user is registered. When the Eigenfaces algorithm

projects any user’s facial traits on to the PCA subspace, this

single registered user is always the nearest neighbour to the

projected point. Hence, all predictions made by the Ei-

genface algorithm for any user other than the registered

user are false positives, and we say that the database is

biased in such a case. The noise - false positives and false

negatives leads to the authenticated user being recognized

as an imposter or vice-versa.

We show that the factors that help dampen this noise

are:

Fig. 1 Continuous

Authentication system overview
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• Confidence in prediction by the face recognition

algorithm

• Temporal patterns exhibited by authentication predictions

• Time since user’s last confident authentication

Our proposed technique overcomes these drawbacks using

a supervised learning algorithm by training over features

numerically expressing these factors.

4.1.3 Soft biometrics

Hard biometric traits provide confident predictions using

unique-per-user features at the cost of:

• Consuming more time for processing each frame

• Restricting the user’s postures and movements

• Falsely rejecting user due to occlusion and contrasting

changes in facial expression.

Using Soft biometrics, we are able to overcome these

drawbacks and provide unobtrusive continuous

authentication.

When the confidence of the system in the hard bio-

metrics mode exceeds a given threshold, the control flow

transitions into this mode. Just before entering this phase,

the soft biometric traits of the user are enrolled in a tem-

plate [2]. This allows the system to authenticate the user

using relaxed unique-per-session traits.

The proposed solution uses color of the user’s clothing

as a soft biometric trait. During template enrollment, the

Hue-Saturation-Value(HSV) of the clothing is recorded.

The soft biometric confidence is then calculated as the

similarity between this enrolled template and the HSV of

the user’s clothing in every subsequent frame. When this

confidence falls below a certain threshold, the control flow

enters the hard biometrics mode.

4.2 Implementation

The proposed continuous authentication system is imple-

mented on GNU/Linux, with majority of the code written

in C?? and house-keeping tasks for creating and reorga-

nizing training data written in Python 2.7. We use OpenCV

[12] for image processing tasks. Using its support for

Viola-Jones object detection algorithm and Eigenfaces, we

were able to implement face detection and recognition,

respectively. Our choice of the supervised learning algo-

rithm is Support Vector Machine [13], implemented using

libSVM [14].

Our solution involves an account creation phase(Train-

ing) and a continuous authentication phase(Predicting). In

the account creation phase, a username-password combi-

nation is registered and the facial features of the user are

captured for Eigenfaces training. Since Eigenfaces is an

image-based face recognition algorithm, the images used

are obtained as a sequence of frames captured at regular

intervals from a video device. These images are converted

to grayscale, equalized and the detected face-image in the

frame is cropped out and resized to fixed dimensions. The

parameters learnt from Eigenfaces training over these

images and the username-password combination are stored

in an XML file.

The control flow in the continuous authentication phase

can be viewed to exist in Hard or Soft biometrics mode. As

seen in Fig. 3, the user begins a session by entering the

right username-password combination. This initiates the

Hard Biometrics phase where T frames are used to con-

struct a feature vector X. The Support Vector Machine

represented as y ¼ gðwTxþ bÞ predicts y 2 f�1;þ1g.

These series of predictions are represented in the form of a

bit-vector hb0b1b2. . .bNi. Confidence of the system in hard

biometrics mode hH is formulated as:

hH ¼
No: of bits enabled

Length of bit � vector
ð28Þ

¼

PN
i¼0 1fbi ¼ 1g

N
ð29Þ

When this hard-biometrics mode confidence hH exceeds a

given threshold sH , the control flow transitions to the soft

biometrics mode.

The Soft biometrics mode as seen in Fig. 4 begins by

creating an enrollment template n based on N frames. This

template contains the Hue-Saturation-Values (HSVs) of

color of the user’s clothing. Every subsequent N frames are

then used to create an average template l. The templates n

and l are represented as vectors

n ¼ ½cn;0 cn;1 . . . cn;C� ð30Þ

Fig. 2 Output of Eigenfaces versus time as described by the indicator

function
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l ¼ ½cl;0 cl;1 . . . cl;C� ð31Þ

where ci;j represents the HSV for color j in template i. The

confidence of the Soft Biometrics mode hS is calculated

based on the similarity between n and l. The similarity is

formulated as the normalized root mean square difference

between n and l as shown in Eq. 32.

hS ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

PC
i¼1ðcn;i � cl;iÞ

2

n

s

ð32Þ

When this confidence hS falls below the specified threshold

sS, the control moves back to Hard biometrics mode where

the decision to log-out is made.

5 Results and discussion

In this section, we study the performance and discuss the

design choices made for each module described previously

in the Sect. 4.1. For the rest of the section, the face

detection and face recognition algorithm implies Viola-

Jones’ method and Eigenfaces respectively.

5.1 Hard biometrics

In the Eigenface training phase, for the dataset to be

centered during PCA, an average image as shown in Fig. 5

is computed by calculating the mean of the pixels of all the

images in the training data set. The faces are then repre-

sented as a composition of the average face and a weighted

average of the eigenface features as seen in 6. For example,

a person might be characterized as the average image plus

20% from eigenface 1, 12% from eigenface 2 and so on.

Figure 5 and 6 were generated using 250 images, with

10 users contributing 25 images each. It can be seen that

the average image shows a smooth face structure, the first

few eigenfaces shows some of the dominant traits and later

on mostly noise is captured and hence the contributions

from these are negligible.

Figure 7 was obtained by running the continuous

authentication system in hard biometrics mode under nor-

mal conditions, where the user is present in front of the

Fig. 3 Control flow in Hard Biometrics mode

Fig. 4 Control flow in soft biometrics mode

Fig. 5 Average image generated by Eigenfaces
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system. It shows the graphs for time taken to detect a face,

recognize a face and to perform both over time (repre-

sented as frame numbers). The average time taken to

process each frame for the task of face detection on an

entire frame and face recognition for a face image are

shown in Table 1.

In practice, all operations (including face recognition

using Eigenfaces) on the image are performed by retrieving

the face resized to a fixed height and width.

As mentioned earlier, the accuracy of Eigenfaces is

affected by contrasting changes in posture and poor illu-

mination. This can be seen in Fig. 8 where the y-axis

represents the function 1fuserrecognized ¼ userauthorizedg and

UID refers to the User-ID of the respective users in the

database. In the experiment, the user frequently changed

the position and orientation of the face, causing a lot of

noise to appear in the recognition. A similar result was

observed when running the face recognition module in

poor lighting conditions.

5.2 Soft biometrics

Figure 9 empirically justifies our reason to transition into

soft biometrics mode whenever possible. We observed that

after retrieving the face image of the person in front of the

system, the soft biometrics consumes half as much time as

face recognition. Note that the time represented for both

the observations in Fig. 9 includes the time taken to pre-

process the frame and retrieve the face image. There are

instances when face recognition takes relatively significant

time to predict a face, such as in frame 155 in Fig. 9. This

occured because the detected face was a false positive.

While the soft biometrics module only retrieves a noisy

data point for such a frame, face recognition additionally

incurs an overhead cost in such a case.

The average time consumed per frame as observed can

be seen in Table 2. As shown, an accuracy of 80% was

achieved during the Soft biometrics mode, which is higher

than that achieved in the Hard biometrics mode. This is

because, in the Soft biometric mode, only the color com-

position of the rectangle that captures the shirt, and the

stored template are compared. This computation puts rel-

atively less load on the processor as compared to face

recognition.

In Fig. 10a, b, the confidence over time was observed in

two cases - when the authenticated user was in front of the

Fig. 6 The first few dominant Eigenfaces

Fig. 7 Comparison of the facial features processing tasks

Table 1 Facial features processing time

Average time

taken

Face detection 0.0224

Face recognition 0.0454

Fig. 8 Accuracy of face recognition achieved using Eigenfaces
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system and when he is tailgated by an imposter. By

increasing T , the comparison of the template at time t with

the enrolled template, can be smoothened out. This can be

seen in both the figures where the peaks are dampened out

as a result of increasing T .

Our solution overcomes this by extracting temporal

information and the confidence estimated by the face rec-

ognition algorithm. Various situations were modeled and

the data extracted was used in training to develop a clas-

sifier. The output produced by this classifier is then rep-

resented as confidence, which can be seen in Fig. 11b.

5.3 Noise dampening using SVM

Figure 11a captures the output of indicator function as

described earlier. As seen from this figure, the immense

noise in the data cannot solely be the basis for predicting if

the user in front of the system is the authenticated user.

This noise exists as a result of false positives and false

negatives from the prediction.

Our solution overcomes this by extracting temporal

information and the confidence estimated by the face rec-

ognition algorithm. Various situations were modeled and

the data extracted was used in training to develop a clas-

sifier. The output produced by this classifier is then rep-

resented as confidence, which can be seen in Fig. 11b.

In this work, the temporal information is extracted based

on a fixed number of previous frames rather than a time

period of fixed length. This is not only because the number

of frames processed varies among these time periods, as

seen in Fig. 12, but also because it is dependent on the

system’s resources and other conditions.

5.4 Continuous authentication mode

In this subsection, we briefly look into how the control flow

jumps between the hard and soft biometrics modules.

Figure was plotted by alternating the authenticated user

and an imposter in front of the system. This resulted in a

transition from hard to soft biometrics when the system

was confident, and the other way round when the system

needed to re-enforce its belief. Figure models the real-

world condition wherein the authenticated user, after log-

in, takes a break and moves away from the system and an

Fig. 9 Comparison of face recognition and Soft biometrics

Table 2 Face recognition vs. Soft biometrics

– Average time Accuracy

Face recognition 0.12 60–80%

Soft biometrics 0.045 80% ðhS ¼ 0:75Þ

Fig. 10 Soft biometrics authentication a authenticated user is in front

of the system b authenticated user is tailgated
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imposter takes his place. Thus, the soft biometrics mode

confidence drops which activates the hard biometrics

module. The predictions made, at this stage, prove that the

authenticated user has been tailgated (Fig. 13).

Another notable result as published in [15, 16] is the

performance of the Viola-Jones face detection and Eigen-

faces face recognition algorithms when ported on to a

GPU. As per [15], a CPU-GPU cooperative implementa-

tion of the Viola-Jones face detection algorithm on

GTX280 graphics card achieved speed-ups of over 20� as

compared to its implementation on the Intel Core 2 Duo

CPU alone. As for Eigenfaces, it was shown by [16], that a

highly parallelised implementation of Eigenfaces achieved

highest speedups on GeForce GTX 480 for database of

15,000 images. A speedup of 207� was achieved for

Fig. 11 Comparison of system’s output with and without SVM

a output received from the Face recognition module b confidence

estimated by SVM using Face recognition data

Fig. 12 Frames processed with respect to time

Fig. 13 Final confidence predicted by the complete system

CSIT (June 2014) 2(2):129–140 139

123



extraction of feature vectors in training process while the

same for the recognition pipeline was shown to be 330�.

Overall testing process yielded a speedup of 165� (testing

over 40 images). The OpenCV implementations of both

these algorithms can be modified to run on a GPGPU

architecture to achieve a boost in their performance,

thereby improving the performance of the proposed Mul-

timodal Continuous Authentication System, if the parall-

elized implementations are considered.

6 Conclusion

In order to continuously authenticate the user, we presented

an approach of alternating between two modes - Hard

biometrics and Soft biometrics. The control flow transti-

tions between these modes depending on the need to re-

enforce the system’s belief. Efforts made to increase the

accuracy of face recognition algorithms fail to take into

account the need to continuously recognize the user

throughout a session. The result of this was seen in Sect. 5,

where the predictions made become noisy due to variations

in postures, since the user is unaware of the recognition

process in the background. By learning from temporal data

using Support Vector Machines, we attenuate this noise

and make confident predictions over a stretch of time. The

framework used also provides flexibility in replacing as

well as extending the current setup to include other mod-

ules by transitioning based on only confidence of each

mode.

Our future work in this field involves enhancements

such as:

• Taking advantage of the enormous speed-ups when

face detection and recognition are processed on the

GPU.

• The training of the user’s face model can be improved

by introducing Online Training where each time the

user is authenticated with a high level of confidence, a

few face images are captured and the face model is

retrained.

• The whole system can be implemented on a distributed

architecture, with the face database in a central

repository and the users logging in via different nodes

associated with this central repository. The Client -

Server architecture may be implemented for this.

• The Soft Biometric Traits may be expanded to include

more features such as the complexion of the user, eye

color or other facial features like facial hair.

• Support for multiple users sharing a certain account;

this may require a biometric hand-off [4] to occur

between users.

• Improve accuracy of face recognition under varied

lighting conditions by implementing recognition using

a different algorithm or approach since face recognition

has been implemented as a separate module.

• Make provision for recognizing any kind of tampering

occurring to the video feed, so as to prevent authen-

ticating imposters. This can be done by restricting

access to the webcam feed via parameters that define

access to it.
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