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ABSTRACT Continuous measurement of blood pressure is crucial to the assessment of many medical

conditions. However, the current clinical gold standard involving an arterial catheter, occluding cuff, and

other invasive procedures are performed in hospital settings while home-based devices can provide only

intermittent measurement and are not as reliable. Therefore, there is a significant need for continuous non-

invasive blood pressure (cNIBP) monitoring in the daily life. Pulse transit time (PTT)/pulse arrival time

(PAT) - based blood pressure measurement has proven its potential to address this need. In this article, we

present state-of-the-art devices and recent literature related to measurement technologies used in PTT/PAT

- based methods for cNIBP monitoring. Various physiological signals which could be used to enable cNIBP

in the home setting are categorized into two groups (i.e., proximal waveforms and distal waveforms) and

are thoroughly discussed and compared. Given insightful analysis of these waveforms, we highlight their

combinations to derive PTT/PAT values for BP measurement then discuss challenges presented from the

cuffless and PTT/PAT - based nature of these devices. Finally, we conclude with future directions needed

for home-based cNIBP adaptation and present societal broader impacts.

INDEX TERMS Continuous Non-Invasive Blood Pressure, Proximal waveform, Distal waveform, Pulse

Transit Time, Pulse Arrival Time, Healthcare IoT.

I. INTRODUCTION

Continuous blood pressure monitoring in patient settings

involves an invasive, oftentimes painful procedure that car-

ries risks [1]. If done with an arterial line, it is painful to

place and must stay affixed, increasing patient discomfort and

possibility of infection. There is currently no good solution

for continuous blood pressure monitoring in the outpatient

setting which has been shown to be extremely beneficial to

patient outcomes given blood pressure variability throughout

the day. Recently, continuous non-invasive blood pressure

(cNIBP) has become a viable option for patients needing

long-term monitoring and preventive care, ideally in the

home setting. The landscape of non-invasive blood pressure

has been dominated by techniques reliant on Korotokoff

sounds and oscillometry for more than 100 years [2]. Though

these techniques were proven to be grounded on well-

studied physiological phenomena, they lack the continuity

that cNIBP could provide such as additional insights to

prevent and understand diseases [3].

Blood pressure (BP), or pulse wave, is a dynamic physio-

logical parameter that changes over time due to factors such

as age, activity, and mental stress [4], [5]. Discrete BP mea-

surements cannot fully reveal these dynamic characteristics

of BP on individuals; hence, continuous BP monitoring can

become much more informative if it is widely available and

easy to obtain. Furthermore, cNIBP sensors can be feasibly

designed to be cuffless and wearable. The Penaz method

(volume clamp) and tonometry [2], [6] are popular cNIBP
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methods. The Penaz method is cuff-based and optically mea-

sures the arterial volume in a limb, such as a finger or a toe,

by applying pressure via an occluding cuff. The accuracy of

volume clamp methods is known to be sensitive to the auto-

matic recalibration process. Specifically, the volume clamp

method often overestimates systolic BP [6]. Additionally,

continual use of volume clamps increases the risk of venous

congestion in the measuring site, and repeated and long-term

wear to the same region become very uncomfortable and

even painful for the subject, making this method not viable

for long-term wear [6], [7]. Tonometry measures arterial

pressure by applying force over a superficial artery to distort

the vessel. This can be performed through a wristband or

with a hand-held instrument and records pulsatility from

applied force flattening the chosen superficial artery, which

overcomes issues with blood vessel occlusion [2]. However,

tonometry methods can become problematic as they are

sensitive to imprecise placements of the device and easily

result in inaccurate readings, especially with patient move-

ment. Hence, establishing a calibrated baseline of tonometry

readings remains challenging. The tonometry method may

need to be paired with an occluding cuff to obtain calibrated

results [3], [6].

Thus, to make cNIBP possible, alternative schemes are

required. The use of pulse wave velocity (PWV) or its re-

ciprocal, pulse transit time (PTT), is an attractive surrogate

for cNIBP. In principle, PWV refers to the velocity at which

pressure pulses propagate through the arterial tree. While

traveling toward the peripheral arteries, the arrival times of a

pressure pulse at two different sites (i.e., proximal and distal

sites) of the arterial tree are detected, which results in PTT

(Fig. 1.c). The PWV parameter was determined as the ratio

between the distance between the two measurement sites (D)

and PTT as shown in the follow equation.

PWV =
D

PTT
(1)

The propagation of blood in the artery is very similar to

that of the propagation of a compressible fluid. Indeed, the

elasticity of an artery is related to the velocity of the volume

pulses propagating through it, which can be described by the

Moens-Kortweg (MK) equation [8]:

PWV =

√

hE0eaP

ρd
(2)

where h is the thickness in an elastic artery, d is the diameter,

and ρ is the blood density. E0 is the zero-pressure modulus

in mmHg, and a is a constant that depends on the particular

vessel (typically 0.016 mmHg−1 to 0.018 mmHg−1). From

(1) and (2), it indicates that high BP corresponds to high

PWV, which in turn means a low PTT value. Given PTT/PAT-

based method’s potential for cNIBP, the following are com-

monly used steps for practical PTT/PAT-based cuffless BP

monitoring [2], [9]:

1) Obtain proximal waveforms and distal waveforms.

2) Calculate PTT from the waveforms, either from foot-

to-foot or peak-to-peak of the waveforms.

3) Calibrate various parameters to derive the relationship

between PTT and BP.

Although PTT-based methods are promising, the wave propa-

gation theory behind PTT via the MK and Hughes Equations

is a subject of controversy. Experimental results showed that

the elastic modulus E used in the MK equation depends not

only on BP but also on the age of the central arteries [10],

while BP and smooth muscle (SM) mainly affect the periph-

eral elasticity [11]. Therefore, reliance on the relationship

between E and BP alone greatly impacts the accuracy of

PTT/PAT-based BP estimation methods.
As described above, PTT has been proven as a powerful

physiological parameter to derive BP with strong physio-

logical mechanisms as evidenced by its involvement in the

MK equation. Apart from PTT, pulse transit time (PAT)

has captured great interest and thus been interchangeably

used with PTT, which can create confusion between research

questions, protocol development, and findings [12]. The dis-

crepancy between these two is intuitively mentioned in a

recent published book about cNIBP [2]. From the book, PTT

is described as the time that an arterial pressure wave requires

to propagate along the walls of a given segment of the arterial

tree while PAT is the time at which an arterial pressure wave

arrives at a certain point of the arterial tree. PAT can be

measured as the time delay between the R-wave peak of the

ECG signal and a particular point of the photoplethysmogram

(PPG) signal, as shown in Fig. 6a. PAT is equal to the sum of

PTT and the pre-ejection period (PEP) delay:

PAT = PTT + PEP (3)

where PEP is the time needed to convert the electrical signal

into a mechanical pumping force and isovolumetric contrac-

tion to open the aortic valve. PEP can be calculated by the

delay between R-wave of ECG and impedance cardiogram

(ICG) or the use of combination between phonocardiogram

(PCG) and ICG signal [2], [6]. Due to its complexity when

multiple physiological signals needed to get the PEP value,

the use of PAT to estimate BP gains popularity. However,

the accuracy of using PAT is still controversial [13]. Thus,

another alternative approach requiring less physiological sig-

nals is proposed in [14]. The study shows that PEP accounts

for 7% of the RR interval for approximately 20% of PTT

measured at the fingertips at rest. In this review, we will

cover measurement technologies using either PTT or PAT to

estimate BP.
There have been numerous review papers summarizing

various aspects of cNIBP (e.g., relationship among BP, PWV,

and PTT/PAT; different BP models and algorithms to derive

BP; and its feasibility for telemonitoring). Specifically, a

theoretical exploration of PTT, PAT, and PWV to BP is rigor-

ously investigated in [3], [15] while other review papers [16],

[17] briefly mention about it. However, these works [16], [17]
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are more focused on cNIBP’s feasibility for telemonitoring,

revealing challenges this technology needs to overcome in

order to apply it to practical scenarios. Besides, cNIBP based

on photoplethysmogram (PPG) has gained great interest as

several papers [12], [18], [19] solely review this method.

For instance, Wang and colleagues [18] intuitively provide

PPG sensing principles of operation, PPG sensor circuit

configurations for BP measurement, as well as different BP

models and algorithms for calculating BP values. Single-site

and multi-site PPG technologies are reviewed in [12], [19],

which provides audience a broad overview on the use of PPG

to derive BP. All those review papers show the theoretical

exploration and potential approaches of cNIBP. Nevertheless,

to the best of the authors’ knowledge, there is a lack of

a comprehensive review on various deployed physiological

signals as well as measurement technologies for cNIBP.

In this context, our review aims to systematically elucidate

procedures to enable reliably ubiquitous cNIBP monitoring

via PTT/PAT. We first describe current state-of-the-art mea-

surement technologies to obtain desired physiological signals

(i.e., proximal and distal waveform) for cNIBP (Section

II). Next, discussion on waveform combinations to achieve

PTT/PAT value for BP estimation (Section III) as well as

challenges of cNIBP for telemedicine are presented (Section

IV). Finally, in the future direction (Section V), we provide

some anticipation and recommendations for cNIBP monitor-

ing in general and PTT/PAT-based methods in specific. It is

worth noting that there is an increasing number of papers

focusing on analyzing waveform morphology and using ma-

chine learning techniques to estimate BP from the derived

features. Since this review paper is about instrumentation

and PTT/PAT measurement techniques, such studies are not

discussed in detail.

II. NONINVASIVE MEASUREMENT TECHNOLOGIES

Obtaining the proximal waveforms and the distal waveforms

is the first step in PTT/PAT-based BP measurements. In this

section, we first review measurement technologies to derive

proximal waveforms and distal waveforms (Section II-A and

B, respectively) and present the morphology and properties

of those. The highlights of parts A and B are summarized in

Tables 1 and 2, respectively.

A. MEASUREMENT TECHNOLOGIES TO ACQUIRE

PROXIMAL WAVEFORMS

Proximal waveforms present cardiac electrophysiolgical in-

formation and are leading in time compared to distal wave-

forms due to the proximity of the sensor’s placement to the

heart. The following four signals are prominent proximal

waveforms for BP technologies (Fig. 1d). Table I summarizes

their signal morphologies, regions of interest, acquisition

methods, advantages, and disadvantages.

1) Electrocardiogram

Electrocardiogram (ECG, or EKG) is a widely used biosignal

in the medical field, especially in the clinical setting, for

cardiovascular-related diagnosis and vital monitoring [20].

This waveform is also a common proximal waveform used

in PTT/PAT-based BP derivation and is typically paired with

photoplethysmogram (PPG) in cuff-less, non-invasive ap-

proaches using PAT or PTT [21]–[23]. This signal measures

the small voltage changes in the electrical activity of the

heart over time in each cardiac cycle by using electrodes

attached on the body. In clinical settings, ECG electrodes

are placed across the chest (precordium), lower arms, and

lower legs with grounding electrodes to create a 12-lead

ECG system, providing the clearest waveform [24]. This

sensing technology is most commonly found in hospital and

clinical settings while recently-developed approaches aim to

be applicable for daily use in remote or home-based care

[21]–[23]. Some of these home-based approaches include

using 1-lead instead of 12-leads to record ECG and weaving

the electrodes into textiles for signal acquisition [25], [26].

The waveform includes P waves, QRS complexes, and T

waves, which provides more information about the heart than

other waveforms such as PPG that usually displays one or

two peaks. Current ECG methods for BP data acquisition

include those employing machine learning or deep learning

combined with PAT or PTT [27], [28].

2) Ballistocardiogram

The Ballistocardiogram (BCG) signal demonstrates the mo-

tion imparted to the body from the motion of the blood

and the heart during each cardiac cycle. These repeated

motions happen due to the rapid acceleration of blood when

it is ejected and transferred into other vessels of the body

during periods of relaxation and contraction, known as di-

astole and systole, respectively. In other words, BCG can

provide information about the overall performance of the

circulatory system, as it measures the mass movements, i.e.,

the mass of the circulating blood and the heart during the

cardiac cycle [29]. The BCG waveform comprises several

waves designated as H, I, J, K, and L. Although its mor-

phological patterns are clearly defined, the understanding of

this BCG wave is mainly based upon empirical correlations

with other measurements such as ECG, phonocardiogram

(PCG), and BP waveforms [30]. It is worth noting that BCG’s

morphology varies between subjects due to their postures,

i.e., sleeping or sitting. Recent advances in electronics and

sensing technologies have enabled sensors currently used

for BCG signal data acquisition through various configura-

tions and regions of interest (ROI), such as the wrist, ear,

and feet on a scale-like platform or embedded in bed/chair

[31]–[33]. For instance, a BCG-based sensor, namely mu-

Rata (Nagaokakyo, Kyoto, Japan), uses an ultra-sensitive

accelerometer to capture the bed’s vibrations generated by

a subject’s heart rate, respiration, and body movement. A

microcontroller is used to process the information and pro-

vides heart rate, respiratory rate, heart rate variability, stroke

volume measurements, and bed status indication [34]. Those

sensors embedded in bed/chair are considered non-contact

because they do not adhere to the body, which increases the
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FIGURE 1: The overview of sensor’s placement, proximal, and distal waveforms for cNIBP: (a) Common sensor’s placement

on body to acquire waveform for cNIBP (e.g., 1.-7.); (b) Commonly used calibration tools (cuff BP device, sphymomanometer,

volume clamp); (c) Schematic diagram of the pressure pulse wave velocity propagate through the arterial tree; (d) Proximal

and distal waveforms used to derive PTT value: proximal waveforms usually relates to cardiac-related activities signal,

including electrocardiogram (ECG), Ballistocardiogram (BCG), Phonocardiogram (PCG) and Seismocardiogram (SCG). Distal

waveforms usually used to measure pulse signal from artery peripheral, including photoplethysmogram (PPG), Speckleplethys-

mogram (SPG), impedance plethysmography (IPG), videoplethysmogram (VPG), Ultrasound (US), Magneticplethsmogram

(MPG), radar-based pulse (RBP) and mechanical-based pulse (MBP).

applicability and users’ comfort. Moreover, it can be used for

a wide range of users (e.g., adults and children) in various

care settings. However, it can be challenging due to the bed-

based setup. If more people lay on the bed, it can induce extra

motion, thereby causing errors in measurements. Another

approach uses microelectromechanical (MEMS) gyroscopes

to measure the angular Ballistocardiogram signal that is

indicative of rotational movement of a subject’s chest. The

main advantage of these sensors is that it is not affected

by gravity, which makes the measurement approximately

independent of the position or posture of the monitored

subject [35], [36]. Other types of sensors have also been

investigated for BCG-based monitoring such as piezoelectric

polyvinylidene fluoride (PVDF) sensors, electromechanical

film (EMFi) sensors, pneumatic sensors, and fiber Bragg

grating (FBG) sensors [37], [38]. While the use of PVDF

sensors has proven to possess some advantages (e.g., user’s

comfort, a wide range of applications), EMFi sensors also

have high sensitivity which is considered better than piezo

materials. However, with high intrinsic resistance and bubble

structures, the charge formed by a pressure applied to the

sensor can be preserve for a long time. Besides, with high

temperature (i.e., above 50 °C) applied, it may deteriorate the

material.

3) Phonocardiogram

In additional to methods of diagnosing heart-related issues

with the use of ECG or BCG, understanding the characteris-

tics of the heart sound (HS), also known as heart auscultation,

is another useful diagnostic method to get valuable infor-
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mation of heart valves and heart hemodynamic functions.

Phonocardiogram (PCG) is a diagnostic graphical method

of recording sounds with the help of a specific equipment,

namely phonocardiograph [39]. There are two dominant

types of heart sounds, which are denoted respectively as S1

and S2, corresponding to the beginning of the ventricular

systole and the onset of the ventricular diastole [40]. Auscul-

tation with a stethoscope provides clinical information (e.g.,

the timing, relative intensity, frequency, quality, tone, and

timbre) that can help in the diagnosis of the patient. PCG

is usually collected by an acoustic device (i.e., stethoscope)

attached at the surface of the chest wall, and it is used to

register heart sounds and murmurs in the diagnosis of heart

disease. With recent advancement in electronic technologies,

the digital stethoscope has been significantly assisting physi-

cians in managing and providing patient care [41].

4) Seismocardiogram

Seismocardiogram (SCG) is another non-invasive technique

that measures cardiac-induced mechanical vibrations on the

chest surface, including frequencies below the human hearing

threshold. It is characterized by several peaks and valleys,

and some of these displacements are associated with the

opening and closure of the aortic valve (AO and AC) and the

opening and closure of the mitral valve (MO and MC) [42].

There are many different methods used for SCG measure-

ment; however, the use of lightweight low-noise accelerom-

eters is most preferable as these sensors can be embedded

inside portable or even wearable systems. This allows unob-

trusive long-term monitoring of body accelerations in a wide

range of conditions. Sensors are most commonly placed on

the sternum or on its left lower border. However, other ROIs

around the chest are used for SCG signal acquisition. SCG

measurement methods and their placements are detailed in a

review paper recently published [43].

B. MEASUREMENT TECHNOLOGIES TO ACQUIRE

DISTAL WAVEFORM

In PTT/PAT-based BP measurements, the distal waveform

is lagging in comparison to the proximal waveform, repre-

senting a phase delay between these two. The phase delay

presents the change of blood volume that propagates from

two different sites. The fingers and wrists are the most domi-

nant positions to collect distal waveforms. In this section, we

review measurement technologies to obtain the distal wave-

form (Fig. 1d). Table II summarizes the following signals,

their regions of interest, acquisition methods, advantages, and

disadvantages.

1) Photoplethysmogram

Photoplethysmogram (PPG) is an optical measurement com-

monly used in pulse oximetry in clinical settings for ob-

taining oxygen saturation information. This optical technique

measures the amount of blood flowing in a region of interest

(ROI) through the amount of optical absorption or reflection

in the optical path. In other words, the PPG detects the change

Camera

LED  

M

N

T

M

Video-to-Frames

F

RGB Extraction

(a)

(b)

(c)

Reflectance mode 

Transmission mode

PPG signal

FIGURE 2: Methodology of PPG waveform acquisition: (a)

Two different modes with the use of PPG sensor adapted

from [46]: Reflection mode and Transmission mode; (b) A

collected PPG signal with the smartphone through the camera

and LED; (c) Procedures to extract the PPG signal through

video collected by a smartphone.

of blood volume through a photoelectric technique [47].

PPG sensors can be classified into two separate measurement

configurations: transmission mode and reflection mode (Fig.

2a). In the transmission mode, the sensor setup includes a

light emitted diode (LED) on one side of the tissue serving as

the ROI and a photodetector (PD) on the opposite side of the

tissue. In this configuration, the emitted light is transmitted

through the tissue and modulated by the underlying vascu-

lature; the modulated optical energy is then detected at the

other side. In the reflection mode, the two components (i.e.,

LED and PD) are on the same side of the tissue, usually on

the same plane. The optical signal penetrates into the tissue,

and the PD will receive the reflected light back with some

fluctuations due to the tissue’s absorption. While the trans-

mission mode is mainly limited to the earlobe, fingertip, and

toe, the reflection mode is applicable to additional locations

as long as the ROI is a flat area (e.g. the forehead, forearm,

supraorbital artery, under the legs, and the wrist) [9].

As mobile device technologies are rapidly being developed

and improved upon, the typical features set in a smartphone

today include high resolution cameras, high-end processors,

built-in sensors such as accelerometer, orientation sensor,

light-sensor, microphone, and light-emitting diode flashes

(LEDs). Thus, instead of using it just as a device for storing

and visualizing measured data, smartphones could be a suit-

able platform in several areas related to patient health due to

its mobility, connectivity, and processing capabilities. Several

studies [48]–[50] have been using smartphone as a source of

collecting the PPG signal. It takes advantage of camera and
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TABLE 1: Proximal waveforms for BP Measurement

Signal Description ROIs Acquisition Methods Advantages Disadvantages

Electrocardiogram
(ECG) [20]–[24]

a graph of voltage versus time
of the electrical activity of the
heart

chest, lower arms,
and lower legs;
contact/non-contact
method to acquire
ECG [24]

PTT/PAT (acts as a prox-
imal signal, combined
with other signals) [20],
[22], [23]

high reliability of the
R-wave detection, ro-
bustness to motion ar-
tifacts, wearable ap-
plications [9], [44]

inconvenient to
setup, induce PEP
which results errors
in BP estimation
[2], [44]

Ballistocardiogram
(BCG) [29], [30]

the recording of motion im-
parted to the body by the mo-
tion of blood and the heart
during each cardiac cycle

wrist, ear, feet on
scale-like platform
and embedded in
bed/chair [31]–[33]

PTT (acts as a prox-
imal signal, combined
with ECG and PPG; J-K
amplitude-based BP esti-
mation

Easy to set up, signal
can be acquired in var-
ious body’s locations,

BCE’s morphology
significantly
changes based on
sensor’s location,
susceptible to
motion artifact
[35], [37]

Seismocardiogram
(SCG) [42], [43]

a non-invasive technique that
measures cardiac-induced
mechanical vibrations at the
chest surface including those
below the human hearing
threshold

the sternum, its left
lower border, or the
chest wall [42], [43]

PTT (from AO of SCG
to peak of PPG); RAC
interval (AVC point of
SCG to the R peak of
ECG

inexpensive and
unobtrusive, the signal
can be accurately
measured by phone’s
built-in accelerometer
[45]

require precise lo-
cation of sensor and
the axes orientation
to get high quality
signal; sensitive to
motion artifact

Phonocardiogram
(PCG) [39]–[41]

diagnostic graphical method
of recording sounds, echoes
that accompany mechanical
vibrations originating in the
heart and vessels

a stethoscope placed
in the surface of chest
wall

PTT/VTT (time interval
between S1 of PCG and
the peak of PPG)

Inexpensive, easy to
set up

low amplitude, sus-
ceptible to motion
artifact

Abbreviations: ROIs = region of interests, PEP = Pre-ejection period, AO = The aortic valve opening in the SCG signal, PTT = pulse transit time, VTT =
vascular transit time, PAT = Pulse arrival time, AVC = The aortic valve closing in the SCG signal, PCG = Phonocardiogram, BCG = Ballistocardiograph, PPG

= Photoplethysmogram, SCG = Seismocardiogram.

built-in LEDs from the smartphone. Subjects cover a smart-

phone camera lens with their fingertip, try to hold their finger

steady, and press without additional force as shown in Fig. 2b.

The raw video with the size of N ×M pixel is collected and

then extracted into different T frames containing different

channels (i.e., red, blue, and green channel) as described in

Fig. 2c. Thus, the PPG signal subsequently is calculated by

taking the average brightness of either red or green channel

in each frame [50], [51].

Since the volume and distension of the arteries can be

related to the pressure in the arteries, the PPG signal produces

pulse waveforms that are morphologically similar to pressure

waveforms [9]. Therefore, many studies have been inves-

tigating alternative methods to estimate BP through either

only PPG signal or the combination of PPG signal and other

physiological signals such as ECG, BCG, PCG, and IPG,

which are comprehensively reviewed in Section III.

2) Speckleplethysmogram

Speckleplethysmogram (SPG) has been recently used as an

alternative to PPG for measuring heart rate variability (HRV)

[52], [53]. SPG is an optical method based on laser speckle

contrast imaging (LSCI) to monitor changes in blood flow

[54]. This technique is also referred to as Affixed Transmis-

sion Speckle Analysis (ATSA) [52]. SPG devices utilize a

laser source that emits a scatter of small rays through the

thickness of the tissue into a CMOS camera on the other

side, depicted in Fig. 3a. The camera records a raw video

with at least 30 frames per second (fps) and runs image

processing techniques to identify the speckles from the laser

(a) (b)

FIGURE 3: Hardware component description: (a) Hardware

configuration of the SPG/PPG Finger-Clip; (b) Physiological

view of vessel during SPG and PPG measuring; adapted from

[52].

in the red channel of each frame. To measure, the user

places a finger tip in the clip-on, which further improves

signal quality by reducing motion artifacts. The amount of

speckles detected in the image correlates to the volume of

blood present at that time point, and the change over time

forms the SPG waveform. Studies comparing the signal to

PPG report a higher signal to ratio (SNR) to the latter in

situations with more motion and colder climates [52], [53].

In terms of light exposure, SPG has not been compared to

PPG in this aspect, but SPG tests are currently conducted in

dark rooms. Similar to PPG, SPG could be measured through

smartphones as there are methods using LSCI for skin blood

flow acquisition [54], [55]. Although smartphones and low-
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grade cameras, even with the newest models, cannot capture

raw images at a fast enough rate to create a video with 30

fps, the algorithms in [54], [55] can be used on standard mp4

videos to derive SPG by adjusting the camera’s parameters to

have the speckles recorded shown larger than a pixel.

3) Mechanical-based pulse measurements

The arterial pulse is an important vital sign, containing a

wealth of cardiovascular information such as systolic BP

(SBP) and diastolic BP (DBP). The pulse is produced as a

result of the sudden ejection of blood into the aorta and its

transmission throughout the arterial system [56], and it is

expanded in response to the blood volume change through

vessel (Fig. 4b). The arterial pulse rate can be palpated in any

of the body’s accessible sites, including the carotid artery,

brachial artery, and radial artery (Fig. 4a). To monitor the

epidermal pulse waves, several non-invasive methods have

been studied. From the remarkable advances in technology,

mechanical-based pulse measurement (e.g., capacitive, ferro-

electric, or piezoresistive sensors) have been made into non-

invasive health-monitoring devices with ultraconformal and

stretchable capabilities [57]–[59].
For BP monitoring, although tonometry suffers of some

limitations, this method inspired several research groups to

develop alternatives in the arterial pulse detection, creat-

ing tonometry-based BP measurements that are more con-

formable to the body. Meng et al. [60] demonstrated a weav-

ing constructed of self-powered pressure sensors (WCSPS)

for continuous monitoring of pulse wave velocity (PWV)

and BP. The system achieved a sensitivity of 45.7 mV Pa−1,

and no performance degradation was observed after 40,000

cycles of continuous operation. Fig. 4c shows the WCSPS

were directly worn at the fingertip and wrist. The authors

simultaneously measured the pulse waves from the subject’s

fingertip and ear, thereby identifying the PTT interval as

the time difference between two pulse waves. The study

was tested on 100 participants with different health statuses

and showed minimum discrepancy between SBP and DBP

measured by the WCSPS versus a cuff-based BP device (1.41

% and 0.87% respectively). Luo et al. [61] proposed a flexible

piezoresistive sensor (FPS) patch and epidermal ECG sensors

for cuff-less BP measurement with PTT as shown in Fig. 4d.

The time interval between the R peaks of the ECG signal

and the maximum points of the arterial pulse were calculated

and correlated with BP simultaneously recorded by a BP

standard device. The FPS was developed with the integration

of multiple materials, including a PI substrate, a pair of

interdigitated Au electrodes, carbon-decorated fabric, and

PEN encapsulation, letting the sensor maintain mechanical

flexibility. The DBP of the FPS/ECG-based method showed

< 4 mmHg mean absolute difference compared with the

benchmark. Dagdeviren et al. [62] proposed a piezoelectric

sensor developed on an elastomer substrate with ultrathin

inorganic piezoelectric and semiconductor materials. To de-

termine PWV for BP measurement, three configuration cases

were tested. Two sensors were placed on: 1) the carotid

artery of neck and lateral epicondyle vessel of the arm; 2)

the lateral epicondyle vessel and radial artery of the wrist;

and 3) near epicondyle vessel and radial artery (Fig. 4e). The

PWV values from setups 1, 2, and 3 were ∼5.4 ms−1, ∼5.8

ms−1 and ∼6.5 ms−1 respectively. Thus, these results were

comparable with the typical aortic PWV (∼4.5 ms−1) mea-

sured by tonometry. In addition to these sensors, fiber Bragg

grating (FBG) sensors have been used for mechanical-based

pulse measurement. Haseda et al. [38] presented an FBG

sensor fabricated in plastic optical fibers to obtain pulse wave

signals at brachial artery locations. The authors recorded

the pulse wave signal and reference BP simultaneously in

four subjects with 120 recordings in total, then partial least

squares regression was deployed to estimate BP. However,

due to a small number of participants, the accuracy of BP

estimated via FBG sensory signals was not high (e.g., the

correlation coefficients of SBP and DBP are less than 0.80).

4) Impedance Plethysmogram

Impedance plethysmogram (IPG) is an electrical impedance-

based, non-invasive medical diagnostic signal which records

small changes in the blood volume in terms of the electrical

bioimpedance of a body part (e.g., chest, limb, and calf).

The impedance measured in IPG provides information about

the tissue property of the body, and hence it can be used to

indirectly study and analyze the tissue health and function-

ality of a human subject [63]. To collect the IPG signal, a

tetrapolar configuration is usually deployed as shown in Fig.

5a. Specifically, four conductive electrodes are place around

the body part or limb. An AC current with low amplitude

(5 mA) and low frequency (50 kHz – 100 kHz) is passed

through the two outer electrodes, and the change in electrical

impedance is measured across the inner electrodes. While

this method holds potential for BP diagnosis, the most signifi-

cant challenge for the IPG technique is the optimal placement

of the electrode array because the current distribution will

be affected by body tissue and muscle [64]. Moreover, the

signal is susceptible to motion artifacts [65] and attenuated

due to the skin electrode impedance error [63]. In IPG theory,

a shunting impedance (Zb), including the impedance of artery

(Za) and tissue (Zt) in parallel, is produced as shown in the

following equation for each pressure pulse induced by the

blood flow through the limb.

Zb = ρb
L

∆A
(4)

where ∆A is the area of the artery that increases when an

extra amount blood goes to the limb. L is the length of the

segment being measured. ρb is blood resistivity. Given this

equation and combining it with the PTT-based BP measure-

ment approach, Huynh et al. [44] proved IPG’s relation to BP,

and the IPG obtained has been used to measure a proximal

waveform for PTT estimation through the central arteries.

This relationship is depicted in the following equation:
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(a) (b)

(c)

(d)

(e)
Temporal artery

Carotid artery

Brachial artery

Radial artery

Femoral artery

Popliteal artery

Posterior tibial artery
Dorsails pedis artery

FIGURE 4: Mechanical-based pulse measurement overview and recent studies: (a) Accessible arterial pulse sites; (b) Schematic

illustration to detect pulse on a human’s neck with a microhair sensor. Adopted from [57]; (c) Representative pulse waveforms

and locations for measurement with the WCSPS. Adopted from [60]; (d) The sensor patch containing FPS and epidermal ECG

sensors for BP measurement. Adopted from [61]; (e) Illustration of PWV parameter determination with two pair piezoelectric

sensors. Adopted from [62].

P (t) = P0 + ρ
D2

PTT2
ln [1 +K(Z0 − Z(t))] (5)

K is a constant and is equal to Za0/Z
2

0
. At the pressure P0,

Za0 represents the arterial impedance. Z0 is the impedance of

the body segment while P (t) can be replaced by SBP or DBP.

5) Radar-based pulse measurement

Radar in the medical setting can be used to measure ar-

terial pulse waves, ventricular motion, and pulse-pressure,

which are parameters correlated with blood pressure [67]–

[70]. Pulse waves are generated by the radar machine and

pass through the aortic artery, generating vasomotion. This

movement is detected on the surface of the body by the

device through two methods: with or without any contact

antennas on the subject. Random body motion is considered

and filtered out through Doppler radar methods [67]. Low

noise amplifiers are applied to increase readings of cardiac-

related motion. Applications of this system include antennas

on the user’s sternum, non-contact units from a distance, and

a wearable wrist device [67]–[70]. Currently, the signal is

robust in stationary positions before and after exercise for

non-contact and wearable devices and has potential for long-

term CNIBP monitoring for remote healthcare. However,

safety is a concern for radar systems as the device emits

continuous waveforms propagating into the subject body;

thus, the range of frequency should be closely monitored to

allow continuous measurements without injury [67]–[70].

6) Video Plethysmogram

Video Plethysmogram (VPG) is a proven method for BP

acquisition in contactless and non-invasive measurements

using video analysis as the medium [71], [72]. This technique

has potential to be used in remote health monitoring in

hospitals, elderly homes, workplaces, and with drivers to

detect anomalies in health conditions [72]. Similar to PPG,

VPG monitors BP from the reaction of light on the ROI. Light

emitted on the tissue is absorbed and then partially reflected

on the surface with the amount of absorbed light varying

depending on the hemoglobin present in the bloodstream at

that time [71]. The peak of light absorption corresponds to

a reflected green light being captured by the video camera,

which is positioned at a fixed distance facing the ROIs (Fig.

1). Thus, recording and analyzing the green channel of the

video frames reflect the change of blood present [72]. This

method is prone to noise when the user is in motion or the

camera used does not meet the proper requirements. Thus,

when measuring, the patient is sitting in a fixed position in

front of the camera. For better readings, using the forehead

as the ROI provides higher SNR than the palm in PTT-based

methods. Elevation of the ROI compared to the heart is also

considered in VPG BP measurements [73].

7) Magnetic Plethysmography

Magnetic plethysmography (MPG) detects fluctuations

caused by blood flow in an emitted ambient magnetic field

encompassing the monitored blood vessel for PWV measure-

ments. This is achieved through using MPG transducers in

an arterial-compliance probe to create a local PWV reading
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(a)

(c)

(b)

FIGURE 5: The genesis of IPG measurement and its config-

uration: (a) Tetrapolar configuration of electrodes.; (b) Dis-

tribution of two pair IPG signals with different distance for

PWV measurement. Adopted from [66]; (c) Block diagram

of the proposed PTT-IPG-based BP model with the use of

IPG signal and PPG signal. Adopted from [44].

[74]–[76]. MPG is another potential approach to clinical non-

invasive BP acquisition and is a comparable and less expen-

sive BP method to ultrasound. The device is composed of

at least one magnet, either an electromagnet or a permanent

magnet, with an excitation coil and potentially a compensa-

tion coil that helps facilitate control over the magnetic field

generated. This is for ensuring an easy magnetic biasing

near the sensor while producing a strong enough field to

encompass the artery beneath the skin. An electromagnet is

more flexible in design than a permanent magnet, which is

ideal for making compact devices without undermining the

output quality from the relative geometry of the system being

changed [74]. MPG has been demonstrated to be used in

carotid and radial probes and finger cuff PWV approaches for

BP measurement. To create a PWV reading using MPG, two

single probes or one single dual probe is used. For the single

probes, one was placed on the carotid artery and the other

on the radial artery separate locations while the dual probe

can measure PWV within a small distance (23 mm distance

apart) [74], [76].

8) Ultrasound-based pulse measurement

Ultrasound (US) is a clinical approach to monitor BP in a

non-invasive and non-occlusive manner. This technique can

not only monitor blood velocity and blood volume flow but

also report the probed vessel’s wall thickness and diameter

waveforms (Fig. 4b) [77]–[79]. In non-invasive cuff-less

approaches, a US probe is held against the carotid artery and

continuously measures while in contact (Fig. 6a). The carotid

artery is chosen due to the ROI possessing a strong central

DBP and SBP compared to more commonly used brachial

measuring in clinical practice as well as many models and

equations existing to detail the tissue of the throat [79]. PWV

is used in US methods opposed to PTT as the accuracy

of PTT can be prone to error from incorrect measurement

and difficulty with small transit timer, especially in the ROI

[80]. The method of deriving cuff-less carotid BP from this

signal varies depending on the angle, pressure, calibration,

and pairing with other sensors. US based BP acquisition

demonstrates a good SNR in stationary positions.

III. PTT/PAT-BASED BP METHOD: STATE OF THE ART

With a variety of proximal and distal waveforms described

in Section II, we review recent state-of-the-art approaches

reported in literature that deploy different combinations be-

tween proximal and distal waveforms to enable PTT/PAT-

based BP monitoring. It is categorized based on the proximal

waveform used. In this section, we also summarize studies

using single waveform acting as a distal and proximal wave-

form to derive the PTT value for cNIBP. Table 3 reports key

details of the experiments reported in Section III.

1) Using ECG as a proximal waveform

As an ECG signal has distinct peaks (PQRST) in its wave-

form and is simple and inexpensive to obtain, it is usually

used as a proximal waveform for BP acquisition, being paired

with PPG, SPG, radar, and VPG. PAT is defined as the delay

between the QRS peaks in ECG and the corresponding points

in PPG. Cattivelli et al. [21] uses the MIMIC database to

test their algorithm based on PAT to improve auto-calibration

and robustness of ECG-PPG based SBP and DBP estimation.

The configuration reported SBP within a standard deviation

of 7.77 mmHg and DBP within 4.96 mmHg and needed re-

calibration each hour [21].

Alongside PAT methods, PTT can be used to estimate

arterial BP by measuring the time interval between the R-

wave of an ECG waveform and the corresponding point in a

PPG signal as shown in Fig. 6a [22], [23]. Shriram et al. [22]

used PTT in their ECG-PPG configuration to estimate SBP.

With attached electrodes and LED/photo detector sensors

on a subject, the BP compared to the reference sphygmo-

manometer had a mean and standard deviation of -0.34±3.1

mmHg [22]. This method demonstrates PTT from ECG and

PPG as an easier method of measuring for the comfort of

patients and portability for continuous, long term monitoring;
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TABLE 2: Distal Signals for BP Measurement

Signal Description ROIs Acquisition Methods Advantages Disadvantages

Photo
plethysmography
(PPG) [9],
[46]–[51],
[81]–[84]

an optical technique that mea-
sures the change of blood vol-
ume by photoelectric tech-
nique as well as measures the
oxygen saturation in the blood

Transmission Mode:
earlobe, fingertip, toe
Reflectance Mode:
forehead, forearm,
supraorbital artery,
under the legs, and the
wrist [46]

slope transit time [81],
arterial PTT [82],
blocking-free optical-
oscillometry [83],
arteriolar PTT [84]

inexpensive, simple
set up

external light and
cold temperatures
can add noise to
data

Speckle plethys-
mography (SPG)
[52]–[55]

an optical technique using
laser speckle contrast imaging
(LSCI) to monitor changes in
blood flow

finger [52], [53], wrist
[54], [55]

Laser Speckle Contrast
Imaging [52]–[55]

higher SNR compared
to PPG in situations
with more motion and
cold climates, wear-
able sensors [52], [53]

External Light can
affect data and add
noise [52], [53]

Mechanical-
based [56]–[62]

measuring the ejection of
blood into the aorta and its
transmission throughout the
arterial system and it is ex-
panded in response to the
blood volume change through
vessel; mechanical-based BP
measurements include capac-
itive, ferroelectric, or piezore-
sistivesensors

carotid artery, brachial
artery, radial artery

PTT [61], [62] and PWV
[60]

ultraconformal
and stretchable
capabilities

Precise placement
of measuring
technolgy is needed
for accurate results

Impedance
Plethysmography
(IPG) [44],
[63]–[66], [85]

an electrical impedance based
noninvasive medical diagnos-
tic procedure which measures
small changes in the blood
volume in terms of its elec-
trical bioimpedance of a body
part

finger [44], [85], wrist
[66]

PTT (with Proximal or
Distal Signals) [44],
[66], [85]

cuff-less approach to
BP acquisition

current affected by
body tissue/muscle
[64]; susceptible
to motion artifacts
[65]; skin electrode
impedance error
[63]

Radar [67]–[70] generated pulse waves that
pass though the aortic artery,
creating vasomotion that mea-
sure arterial pulse waves,
ventricularmotion, and pulse-
pressure, which are correlated
to blood pressure

sternum (aortic artery)
[67]–[69], wrist [70]

PAT and PTT with
bioimpedence and ECG
[67], pulse pressure
from stroke volume [68],
carotid-femoral PTT
[69]

non-contact or
wearable options
[68]–[70]; before or
after exercise long
term acquisition; no
individual calibration

distance of device
and user’s position
is limited for
more accurate
measurement,
bulky, stationary
[68], [69]

Video
Plethysmography
(VPG) [71]–[73]

the reaction of light absorbed
and reflected on the surface
of the skin on the regions of
interest

forehead [71], [72],
cheek [72], hand palm
[71]–[73]

PTT (with ECG) [71],
PTT with Distal Signal
(PPG or VPG) [72], rela-
tionship between the in-
ternal pressure and the
cross-sectional area of
the blood vessel [73]

non-contact; can
be used in remote
health monitoring
in hospitals, elderly
homes, workplaces,
and drivers

External light
adds noise to data;
equipment needs
to meet certain
requirements;
user’s position
must be precise,
stationary poses,
not ideal for long-
term monitoring

Ultrasound [77]–
[80]

deriving blood velocity, blood
volume flow, blood vessel’s
wall thickness, and diame-
ter waveforms from a probe
against region of interest

carotid artery [77]–
[80]

PWV [77], [79], force
sweep [78], Doppler [80]

carotid artery provides
strong central diastolic
BP and systolic BP;
PWV more accurate
than PTT acquisition

angle, pressure,
calibration
inaccuracies can
lead to issues with
data acquisition,
not wearable, needs
medical training for
accurate readings

Magnetic
Plethysmography
(MPG) [74]–[76]

detecting fluctuations caused
by blood flow in an ambient
magnetix field encompassing
the blood vessel

carotid artery [74],
[76], middle finger of
left hand [75]

PWV [74]–[76] less affected by optical
and biological charac-
teristics of living tis-
sue, wearable applica-
tions

signal not
investigated
thoroughly such as
PPG

PTT = Pulse Transit Time, SNR = Signal to Noise Ratio, PWV = Pulse Wave Velocity, ECG = Electrocardiogram
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FIGURE 6: Key features for BP estimation using different physiological signals: (a) Using the R-peak of ECG signal and PPG

signal’s peak and its derivative; (b) Using the R-peak of ECG signal and SPG signal’s peak; (c) Using BCG signal and PPG

signal; (d) Using PPG signal and PCG signal; (e) Using IPG signal and PPG signal; (f) Using SCG signal and PPG signal; (g)

Using ECG signal and PCG signal; (h) Using two Radar signals.

however, the sensor placement and exposure to lighting can

drastically affect accuracy. Additionally, the authors in [22]

stated that this method is not robust enough to calculate

DBP. The authors in [23] proposed a solution to derive both

SBP and DBP from PTT as well as test the limits of using

this method relative to motion artifacts. Linear regression

was applied to the PTT correlation between 3 channels of

ECG and 1 channel of PPG for continuous BP estimation

on 14 subjects in five positions (recumbent, seated, standing,

walking, cycling). The results demonstrate the abilities of

the proposed architecture and reported a lower correlation

function SBP mean and standard deviation for stationary

positions such as sitting (0.07±5.8 mmHg) with an increase

in positions with motion like walking and cycling (4.4±20.9

mmHg and 10.2±16.0 mmHg respectively) [23].

Another ECG dependent method includes SPG. ECG is

measured via sensors on the chest of the subjects and com-

pared in real time to SPG and PPG. The studies investigating

SPG in vitro have shown an improved SNR and robustness

to motion artifacts and temperature tests compared to PPG,

where the latter produces noisy waveforms [52], [53].

ECG is also demonstrated to be useful in radar BP systems

[67]. In a radar BP system with contact, an antenna is

attached to the subject, typically the sternum to acquire the

arterial pulsation from the aortic arch. [67] includes this in

their system paired with bioimpedance and ECG electrodes

to accurately measure PTT and PAT during exercise. From

the arterial pulse across the carotid and subclavian arteries

and a bipolar lead from ECG, PTT is calculated over the

central elastic arteries, reducing changes in the measurement

from vasomotion produced in peripheral arteries. The system

is successful in estimating BP at the central proximal arteries

without a cuff, and the sensors can be hidden under clothes

[67]. However, this system can be uncomfortable for users

to wear for long term testing and is susceptible to issues

regarding electrodes on the body such as adhesiveness to the

skin.
ECG in VPG systems are used for PTT measurements

[71]. By capturing areas on the face and/or hand, cuff-less

BP can be derived with VPG in different methods. One

technique includes using ECG to calculate PTT between the

R peak of the ECG signal and the foot of the VPG signal in

the forehead. The forehead VPG signal is used as the SNR

is higher relative to the palm [71]. Using PTT from ECG

and VPG on three subjects, [71] demonstrated total absolute

mean error and standard deviations of 9.48±7.13 mmHg and

4.48±3.29 mmHg, for SBP and mean arterial pressure re-

spectively.
ECG signal used as a proximal waveform also is combined

with IPG signal. Liu et al. [85] designed an IPG ring that,

when recorded simultaneously with an ECG signal, was able

to estimate BP through the PTT method. The PTT interval

in this experiment was defined as the time delay between

the R peaks of the ECG signal and the peaks of the IPG

signals. The obtained results showed that the change of SBP

had a better relationship with the change of the PTT induced

by IPG than that of PTT derived by PPG signal and ECG

signal, forming the Pearson correlation coefficients of 0.700

and 0.45 respectively.

2) Using BCG as a proximal waveform

BCG is also known to be closely correlated with arterial

BP [30]. Thus, many studies have working on deriving BP

measurements through the BCG’s combination with other

physiology signals such as ECG, PPG, and others. Kim et

al. [86] proposed a method based on PTT to estimate BP

through BCG signals collected by a scale-like platform. In

this study, the time difference between proximal and distal

sites are considered as the time interval between BCG and

a non-invasive measured finger BP waveform. Yousefian et

al. [32] developed a wristband with built-in BCG and PPG

sensor to investigate the potential of wearable BCG to enable

cuff-less BP monitoring. The authors create a PTT method
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which both the BCG and PPG signals are acquired by a

wristband as proximal and distal timing reference (Fig. 6c).

The result reveals that BP estimated through a wrist PTT is

close to both SBP and DBP with the mean absolute error

of 5.1 mmHg and 7.6 mmHg respectively. While doing

thorough research about the BCG signal’s morphology, C.

Kim et al. [87] presented an association between the J-K

amplitude and PTT, enabling independent monitoring of SBP

and DBP via the J-K amplitude. A chair-based platform

used for BP monitoring was proposed by [33]. Two BCG

signals are measured through sensors located in chair’s back

and seat plates. The authors then extract an instantaneous

phase different (IPD) as a feature to estimate BP. The result

shows that IPD could estimate more accurate readings of BP

compared to PTT.

3) Using PCG as a proximal waveform

Since the variation in the cardio hemodynamic is reflected

directly on various physiological signals, including the PCG

signal, several attempts have been made to estimate BP

through PCG signal. Shukla et al. [88] proposed a new

approach to measure BP using vascular transit time (VTT),

defined as the time interval between S1 and the peak of

a PPG signal. The authors conducted an experiment on 7

subjects and yielded the accuracy of 95% compared with

reference BP. With the same approach, Hsiao et al. [89] de-

signed an auscultation sphygmomanometer that continuously

monitors both PCG and PPG, aiming to estimate BP. The

study shows that the error in SBP is 6.67±8.47 mmHg for

the range of normal BP. Esmaili et al. [90] presented an

approach with the PTT method using PCG and PPG signals

simultaneously (Fig. 6d). The obtained results are promising

as the correlation coefficients were equal to 0.89 and 0.84

for SBP and DBP respectively. A correlation between PTT

derived directly from a reference BP and both systolic (S12)

and diastolic (S21) duration, the SBP and DBP are then

calculated by the value of PTT [91]. The results are very

close to the Association for the Advancement of Medical

Instrumentation (AAMI) standard and listed in the summary,

Table III.

4) Using SCG as a proximal waveform

As described in Section II.A, SCG holds great potential for

cNIBP. Carek et al. [92] proposed a wearable device, named

SeismoWatch, as shown in Fig.7a, that can obtain a low root

mean square error of 2.9 mmHg for DBP. Specifically, the

authors developed a wrist-watch BP monitor with simultane-

ous recordings of PPG and SCG. The watch was held against

the sternum to detect micro-vibrations (SCG signal) and the

travel time (PTT) was measured by the time delay between

the AO and PPG signals (Fig. 6f). A smartphone-based BP

monitoring application was presented in [45] with the use

of SCG and PPG simultaneously recorded by the built-in

smartphone accelerometer and camera respectively. The PTT

interval calculated as the time delay between AO and the

wavefront of the PPG signal and was utilized to estimate

(a)

(b) (c)

FIGURE 7: cNIBP using SCG waveforms: (a) A wrist-watch

BP monitor with PPG sensor and accelerometer sensor em-

bedded. Image courtesy of Carek et al., [92]; (b) Smartphone-

based BP monitor. Adopted from [45]; (c) An ultrathin and

stretchable E-tattoo simultaneously measure ECG and SCG

for BP. Adopted from [93].

the BP. While one finger covers the camera to collect PPG,

a user holds the phone and press it on the left side of the

chest to record SCG as described in Fig.7b. The study showed

the Pearson correlation coefficient of BP across participants

between 0.20 and 0.77 with an RMSE of 3.3±9.2 mmHg for

DBP. A recent study [93] leveraged electronic advancements

to develop an ultrathin and stretchable e-tattoo for SCG

sensing and BP measurement (Fig.7c). The study showed

the correlation between SBP and DBP with the RAC interval

(i.e., time interval between R peak of ECG and AC point of

SCG) with the coefficient of -0.772 and -0.858 respectively.

5) Single Waveform-Based Methods

While many techniques utilize two different waveforms (i.e.,

proximal and distal waveform) at different body’s locations

in their PTT methods, there are some emerging methods that

use one type of waveform from different ROIs to form PTT.

Authors in [68] reported a non-contact 2.45 GHz quadrature

Doppler radar system to track chest displacements from

cardiac motion in order to derive pulse pressure with carotid-

femoral PTT (cf-PTT). Using the waveform reflected from

the subject, the signal is filtered using arc-tangent demodula-

tion for absolute displacement, which can be used regardless

of distance between the user and the device [68]. From sitting

and laying down at a fixed distance from the radar, two sub-

jects were used to validate the technique and were successful

in measuring cardiac motion within millimeters of accuracy.

In spite of this, the proposed architecture needs to be individ-

ually calibrated to provide accurate results and the orientation

between the device and user must be considered. Another

non-contact Doppler system is used in [69]; however, static
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and beat-to-beat SBP and DBP are measured from capturing

the vasomotion of the central aortic artery to calculate cf-

PTT. This value is calculated from the difference of the

ejection duration of the cardiac pulse and the first systolic

peak (Fig. 6). The architecture of the device comprises a pair

of antenna arrays, a frequency synthesizer, and a digital-IF

receiver. From the calculated cf-PTT, the static BP errors are

within 3 mmHg, and the beat-to-beat BP measurements are

about 98% accurate [69]. This device has less flexibility than

[68] in regards to subject position and radar distance from

ROI, but it does not require individual calibration.

With only PPG signals simultaneously collected at differ-

ent locations in the body, there are some attempts to predict

BP. Tabei et al. [82] used two PPG signals collected by

two identical smartphones in two hands. The PTT, which

was previously defined as the time taken for the blood to

travel between the proximal and distal arterial sites, was

then calculated as the time interval between two peaks of

two PPG signal. The error for systolic blood pressure (SBP)

and diastolic blood pressure (DBP) estimation is 2.07±2.06

mmHg and 2.12±1.85 mmHgrespectively, which achieved

the AAMI/ISO standard criteria for BP measurement. An-

other study [84] presented the use of a PPG sensor at multi-

ple wavelengths for BP measurement. The authors revealed

arteriolar PTT (i.e., time difference between the pulse wave

arrivals in the capillary and arterial layers) achieved higher

performance than the arterial PTT method.

Another single waveform-based method is a wrist-worn

device that records two IPG signals was proposed by Huynh

et al. [66] to estimate the BP. The authors characterized vari-

ous distances between two IPG signals, and the different PTT

intervals were calculated by the time differences between the

peak, middle, and foot points of the IPG waveforms (Fig.

5b). The group average correlation coefficients and RMSE

between SBP and DBP from the proposed device and the

standard device was listed in the Table III. Likewise, the

authors presented another wearable device that estimate BP

through IPG and PPG recorded simultaneously in the finger

[44] (Fig. 5c). In this study, they calibrate the time difference

between two sensors due to a small distance between the

wrist and the finger, inducing a different phase shift. This

prevents the PTT value from being significantly fluctuated.

The results are slightly improved in terms of the correlation

coefficient compared with their previous work in [66].

An additional single waveform-based approach is the per-

pendicular US velocimetry (PUV) approach which samples

raw radio-frequency-data frames using high frame rate and

particle image velocimetry, creating a dataset of high preci-

sion 2D or B-Mode velocity vectors [77]. The perpendicular

element of US allows for tracking diameter changes in the

blood vessel while simultaneously measuring flow, pressure

waveforms, and local PWV in large arteries, which was

unable to be realized with Doppler US techniques. PWV,

a reciprocal value of PTT, is calculated using the flow-area

(QA) method, which measures PWV from the ratio between

the change of flow and the change in cross-sectional area.

Using a phantom vessel submerged in water, [77] validated

the QA method with the resulting waveform being a variation

of 0.3 m/s from the reference PWV; however, this method

increases in inaccuracy with reflections in the data, non-

uniformed tissue around the vessel, and limited computation

of device.

MPG can calculate BP through just its waveform by utiliz-

ing a pair of probes embedded with transducers to calculate

local arterial PWV. Chandrasekhar et al. [74] proposed a sin-

gle and a dual element probe design using a Giant Magneto

Resistance sensor to create an electromagnet based MPG

transducer. The single MPG transducer was validated in-vivo

testing of carotid to radial artery PWV against an occlusion

test while the dual element MPG transducer is proposed to

measure PWV in 15mm sections of the artery. Later, the

same research group presented an arterial compliance probe

with dual MPG transducers for non-invasive BP monitoring

[75]. The transducers were placed 23mm apart in the probe

and were composed of Hall-effect sensors and permanent

magnets. Using 20 subjects with a phantom artery as refer-

ence, the method was tested on the carotid artery before and

after exercise while the users were at rest. This resulted in a

Pearson correlation coefficient of r= 0.72 between the local

PWV and the Brachial BP reference and a lower correlation

for pulse pressure (r = 0.42). Another method for MPG uses a

finger cuff for measurement [76]. This is performed by using

time varying magnetic fields and monitoring the change of

impedance from the exciting coil, which is related to the

change of blood volume in the ROI. Compared to a US

Doppler blood flow velocity recording, the authors report

Pearson correlation coefficients of r = 0.9355 and p < 0.01.

Using only distal waves, a bi-modal probe combining a

US probe and 2 PPG sensors is introduced in [79] and

demonstrates the ability to measure diameter values and local

PWV of the carotid artery with distal waveforms, resulting in

real-time carotid BP without prior calibration using subject

or population-specific parameters. To achieve a calibration

free technique, the US probe reports the difference in the

SBP and DBP as well as the DBP while the two PPG sensors

calculate the local PWV and feed these results into the P–β
model in [79]. The absolute error compared to a brachial-

based cuff for carotid DBP was less than 10 mm-Hg in 82%

of the 83 subjects, non-hypertensive and hypertensive, while

the SBP was lower than the reference [79]. Further testing

with a catheter reference may give more accurate results for

the success of this method.

Lastly, apart from those using VPG and another waveform

(e.g., ECG) to derive BP, some have carried approaches

reliant only on VPG. Nitzan et al. [94] utilized a parameter,

specified as PTTD (PTT using only distal signals), which

is the PTT difference between VPG pulse arrival to a toe

and finger. However, the resulted VPG signals were prone to

noise and motion artifacts. In parallel, authors in [72] used

only one VPG from a ROI to calculate BP without PTT.

A single VPG signal was recorded and processed with a

bandpass filter and linear fitting, making two variations of
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the signal, and forming an index, Tbh, from the difference in

the minimum points. This technique demonstrates a higher

performance with VPG measured from the right palm rather

than from the forehead or right cheek due to noise from

the nervous system in the face [72]. PTTD between the two

VPG signals resulted in PTT and SBP correlation coefficients

(-0.6045±0.0399), which are lower compared to the first

method (-0.7163±0.0761) [71].

IV. DISCUSSION

This review aims to provide highlights of technologies using

PTT/PAT as the parameter to derive continuous, non-invasive

cuff-less blood pressure. There are numerous combinations

between two signals or multiple signals that have been uti-

lized to acquire PTT/PAT. However, several aspects (e.g.,

transmission distance and the starting and ending points of

the time delay) should be taken into account to achieve high

accuracy for enabling cNIBP monitoring. To the best of our

knowledge, a combination between ECG and PPG signals

is the most commonly-used pair to derive PTT/PAT value.

The starting point of the time delay is the R-peak of ECG,

while the ending point varies from the peak of PPG to the

first/second derivative of the PPG signal. As aforementioned

the PTT and PAT values are interchangeably used for time

delay between two signals. However, with the pre-ejection

period (PEP) included, it should be careful to choose either

PTT or PAT for BP estimation as it may vary the accuracy of

each method [2].

cNIBP techniques have varying levels of success depend-

ing on the reliability of the signal, noise level, sensor place-

ment, wave propagation, calibration, and evaluation param-

eters. The two biggest challenges to make cNIBP practical

have been determined as the need for frequent calibration as

well as the susceptibility to motion artifacts of electrophysi-

ological signals in the daily life. The reliability of a method

is validated with thorough testing scenarios, amount of data,

and the gold standard for comparison. The noise level, typi-

cally quantified as SNR, also factors into the reliability of the

signal morphology and refers to the motion artifacts that can

affect the signal quality, such as other biosignals and motion

from the body. Sensor placement is another key component

in signal reliability since the sensor must be able to obtain

blood pressure while considering the physics and biology

of the region of interest. The wave propagation theory used

has these physiological conditions factored into the equation

or results, and the sensor may require calibration to reflect

these constraints correctly. The evaluation parameters quan-

tify how reliable the signal is in acquiring cNIBP.

Based on their abundance of use in literature, the most

prominent proximal and distal waveforms in PTT/PAT-based

cNIBP development are ECG and PPG. Many have used

ECG or PPG in the PTT equation or as a reference signal

for evaluation parameters, as demonstrated in Table 3. The

widespread use of these signals is due to their inexpensive

setup. ECG, in particular, has a very informative waveform,

showing the P wave, QRS complex, and T wave, and is a

reliable method for R-wave detection [9]. While they are the

most commonly used in cNIBP approaches, they also have

drawbacks that make them unreliable. The PPG signal can

become affected by noise in cold and/or bright environments

[53]. ECG also needs to be paired with another signal to

derive SBP and DBP accurately [21]–[23]. For example, SPG

has the potential for being a good replacement for PPG as it

has better SNR and can provide a strong signal in tests under

low-temperature environments.

Since PTT is a relative parameter that correlates with BP,

the method needs calibration to calculate the absolute value

of blood pressure [3], [96]. In other words, the calibration

process is needed to precisely choose different parameters

for the model and to find the relationship between the actual

BP and the PTT measurements over a wide range of BP

values [2]. There have been numerous methods (e.g., physical

exercises, valsalva maneuvers, and cold pressor) deployed

that would perturb an individual’s BP and resulted in large

variations of BP values induced by a set of interventions

[9]. Regarding the BP perturbance-induced method, several

aspects of calibration should be cogitated, such as the calibra-

tion process, calibration frequency, and whether the process

is done by population or individuals. For instance, calibration

can be conducted either one-time at the beginning or period-

ically throughout a period. The main drawback of one-time

calibration is not to provide a large enough range of reference

BP value. This may result in inaccurate BP calculation during

extreme cases (e.g., hypertension or hypotension). Although

periodical calibration improves accuracy, it may cause incon-

venience to users.

Regarding database availability, although numerous stud-

ies have worked on cNIBP, there are few publicly available

databases. The first database is the Multiparameter Intelligent

Monitoring in Intensive Care (MIMIC) Database [97]–[99],

which contains thousands of recordings simultaneously col-

lected on the patients. Each set of databases includes multiple

physiological signals such as PPG signals, ECG signals, and

arterial blood pressure (ABP) at a sampling frequency of

125 Hz. Several papers [100]–[102] have used the MIMIC

database to derive PTT values. It should be noted that the

PPG and ECG signals are not perfectly synchronized since

they are collected from multiple sources and electronic hard-

ware, and additional time delays could be included, leading

to erroneous conclusions [103]. Another recently published

database [104], named PPG-BP, contains 657 data segments

from 219 subjects, between the ages of 21 and 86 years.

The database includes PPG signals collected along with BP

readings. The database covers several diseases such as hyper-

tension, diabetes, cerebral infarction, and insufficient brain

blood supply. Since only PPG signals are recorded with BP

readings, the PTT/PAT-based method for BP measurement is

barely applicable as it requires at least two signals recorded

in two separate sites of the body. However, this database still

holds potential value for further investigation in using PPG

signal as a surrogate of BP measurement, especially with

pulse wave analysis that relies on the crafted features of a
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TABLE 3: PTT-based BP measurement

# Sensors Parameters Measured Activities
Error±Standard Deviation in mmHg

Pearson coefficient Ref.

SBP DBP MAP

22 BCG+PPG PTT(from I and J wave col-
lected in wrist to the foot of
PPG wave)

Cold pressor, metal arith-
metic, slow breathing and
breath holding

7.61 5.11 N/R 0.81 SBP and
0.79 DBP

[32]

22 BCG+PPG
+ECG

PTT(from I wave of BCG
to the foot of PPG wave)

Metal arithmetic, cold pres-
sor and post-exercise state

7.32 5.72 N/R 0.8 SBP and 0.87
DBP

[87]

15 BCG
+finger
cuff

PTT(from I wave of BCG
to the peak of BP collected
by a finger cuff)

Deep breathing and sus-
tained hand grip

130.2±16 89.5 ±11.11 105.1 ±11.8 0.65±0.15 SBP
and 0.60±0.17
DBP

[86]

15 IPG*2 PTT(from the peak of IPG
1 to the peak of IPG 2)

Handgrip exercise 7.3±2.152 5.17±1.812 N/R N/R [66]

15 IPG+PPG PTT(subtraction between
PTTc obtained when two
sensors at the same place
and PTTm obtained when
two sensors apart)

Handgrip exercise 8.47±0.912 5.02 ±0.732 N/R 0.88±0.07
for SBP and
0.88±0.06 for
DBP

[44]

20 IPG+ECG PTT(from the R peak of
ECG to the peak of IPG)

Cycling N/R N/R N/R 0.727 for SBP
and 0.332 for
DBP

[85]

32 PCG+PPG PTT(from the S1 of PCG
to the peak/first deriva-
tion/second derivation of
PPG)

Physical exercise 6.22±9.441 3.97±5.151 N/R 0.89 for SBP and
0.84 for DBP

[90]

85 PCG+PPG VTT(from the S1 of PCG
to the peak of PPG)

Stretch arms 6.67±8.471 N/R N/R N/R [89]

4 SCG+ECG RAC(from the S1 of SCG
to the peak of ECG)

Valsalva maneuver - Exha-
lation with close noise and
mouth every 30s

N/R N/R N/R -0.772 for SBP
and -0.858 for
DBP

[93]

10 SCG
+acoustic
sensor

PTT(from the AO of SCG
to the peak of acoustic
waveform)

Valsalva maneuver and sus-
tained hand grip

N/R N/R N/R 0.58±0.14
for SBP and
0.57±0.13 for
DBP

[95]

9 SCG+PPG PTT(from the AO of SCG
to the foot of PPG)

Stationary biking with dif-
ferent intensities

N/R 3.3±9.2 N/R N/R [45]

13 SCG+PPG PTT(from the AO of SCG
to the foot of PPG)

Cold pressor N/R 2.91 N/R N/R [92]

25 ECG+PPG PAT(R peak of ECG and
peak of PPG)

N/R 7.77 4.96 N/R N/R [21]

23 ECG+PPG PTT(R-wave of ECG to
PPG)

N/R -0.3±3.1 N/R N/R BP SMM and BP
PTT was 0.983

[22]

14 ECG+PPG PTT(R peak of ECG and
peak of PPG)

recumbent, seated, stand-
ing, walking, cycling

N/R N/R N/R N/R [23]

6 Radar+ECG
+Bioim-
pedence

PTT(Rising Slope in
BioImp and the max 2nd
derivative of Radar)

exercise on a bicycle N/R N/R N/R -0.48 (p=0.0029) [67]

3 CW
Doppler
Radar

carotid-femoral PTT from
the central aortic pulse
wave

N/R 3±120 3±76 N/R N/R [69]

3 VPG+ECG PTT(R peak of ECG and
foot of VPG)

post-exercise (running) 9.48±7.13 N/R 4.48±3.29 -0.7163±0.0761
(p<0.05)

[71]

83 US+PPG*2 PWV (Distance from US,
Time delay from PPG peak
differences)

N/A N/A N/A N/A p<0.05 [79]

Abbreviations: # = number of subjects, ECG = Electrocardiogram, IPG = Impedance plethysmography, PCG = Phonocardiogram, BCG =
Ballistocardiograph, PPG = Photoplethysmogram, SCG = Seismocardiogram, VPG = Videoplethysmogram, US = Ultrasound, MPG =

Magneticplethsmogram, AO = The aortic valve opening (AO) in the SCG signal, PTT = pulse transit time, PWV = Pulse Wave Velocity, N/R = not reported,
SBP = systolic BP, DBP = diastolic BP, MAP = mean arterial pressure, 1 = MAE (mean absolute error BP), 2 = RMSE (root mean square error BP).
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single PPG waveform.

In terms of evaluation methods, metrics such as Pearson

correlation coefficient, ME, MSE, and RMSE are commonly

used in justifying the success and accuracy of a signal. Many

papers reviewed in Section II.C and II.D use these metrics

to evaluate the experimental results, as reported in Table 3.

Although these metrics are used to compare with each gold

standard presented in each experiment, the numbers cannot

be translated to evaluate various methods across different

researches due to different gold standards, experimental se-

tups, and databases. Standardization of such methods can

make comparisons between signals and methods much more

straightforward. This is a challenge since the developed

techniques have different conditions and parameters to check,

making regulating difficult to perform. Using a base check,

such as recording subjects at rest before exercising with the

device, then comparing to data from open-access databases

and inferring some correlations, can help with this effort;

however, there are still gaps of knowledge that require further

investigation to examine methods accurately. To bridge this

gap, machine learning may have the potential to discover

more correlations that PTT/PAT-based methods are not able

to infer.

A discrepancy discovered through this review is the num-

ber of patients used to validate methods varies greatly among

papers ranging from two to three subjects to over a hun-

dred (see Table 3). This makes comparing methods, even

ones using the same signal to derive cNIBP, difficult since

each group has different testing conditions and levels of

completeness for their project (i.e. prototype and clinical-

grade products). Methods using more subjects can address

a wider range of features presented in a larger sample pop-

ulation and thus could provide better accuracy for home-

based applications of cNIBP. However, when comparing the

Pearson coefficient values in reported literature, there are no

noticeable differences amongst methods with a high number

of subjects versus a few. The real evaluation of these methods

needs to be obtained through a different method to ascertain

how effective the proposed methods will be in the daily life.

V. FUTURE DIRECTIONS

PTT/PAT-based BP measurement is currently an active area

of research, and many groups have developed methods that

may help not only improve the accuracy of future PTT/PAT-

based cNIBP, but also actualize this concept to be applicable

in reality. In this session, we provide some anticipation

and recommendations for cNIBP monitoring in general and

PTT/PAT-based methods in specific, with the concentra-

tion on 1) measurement techniques improvement; 2) deep

learning-based BP estimation and signal de-noising with

single-site measurements; 3) the application of cNIBP on

medical research; 4) experimental setup, protocol develop-

ment, and validation procedure.

Measurement instrumental and algorithmic enhance-

ment: As aforementioned, ECG is the most commonly used

signal in the PTT/PAT-based BP monitoring. With the use

of conventional electrodes, such as Ag/AgCl electrodes, it

usually causes skin irritation and discomfort [24]. Moreover,

ECG is measured from the potential between two electrodes

across the two sides of the heart by long wire connected

to acquisition, which is not conveniently wearable. To ad-

dress this issue, non-contact electrodes (NCE) integrated in

a portable ECG device are an alternative solution, which

possesses some advantages: 1) it is immune to signal degra-

dation for long-term measurement; 2) it reduces setting up

time and increases the ease of use as it does not require skin

preparation [24].

Collecting multiple signals for the PTT/PAT-based mea-

surement is sometimes cumbersome, which mostly stems

from the unwieldiness of hardware setup and the inconsis-

tency of signals during the measurement. A potential so-

lution is to use only easily-obtainable signals like PPG to

precisely infer signals that require bulky setup like ECG,

given that both types of signals are directly synchronized

with human cardiac cycles. In [105], a machine learning-

based approach was proposed to estimate ECG parameters

and the ranges of RR, PR, QRS, and QT intervals based

on the extracted time and frequency domain features from

a fingertip PPG signal. The method achieved a 90% accuracy

on a benchmark hospital dataset having clean PPG signals.

Furthermore, the authors in [106] proposed a signal model

to linearly reconstruct the entire ECG from PPG waveforms.

The method reached a subject-wise accuracy of 98% in

averaged correlation on a benchmark dataset of subjects with

different ages and weights. Nevertheless, the method still

has reconstruction deficiencies in subject independent modes

and does not take into account the PTT. Therefore, rigorous

evaluations on a wide range of ECG morphologies and ab-

normalities in real-world settings, as well as evaluations that

consider the inferred PTT, are necessary. The success of this

research direction will further enable low-cost blood pressure

measurement for continuous and long-term monitoring.

Deep learning based BP estimation and signal denois-

ing with single-site measurements: Over the past few

years, the deep learning field [107] has witnessed tremen-

dous advancements due to data availability, computational

resources, and better training algorithms. Deep neural net-

works achieved state-of-the-art performance in a wide range

of tasks, including image classification, audio synthesis, and

machine translation. Deep learning adapts to represent hierar-

chical features at multiple network layers by the composition

of lower-level features into higher-level representation. It

automatically learns a complex function approximator to

map raw data inputs to desired outputs directly. With the

expressiveness of deep learning, several recent studies have

been proposed to estimate BP with cuffless devices using

only a single measurement, such as PPG, without depending

on hand-crafted features. In [108], an end-to-end approach

is proposed to estimate blood pressure from the pulse wave

signal. Without complicated feature extraction, a normalized

single pulse wave is fed into a deep neural network, which

consists of depth-separable convolutional layers and gated
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recurrent units in the recurrent layers. Their approach is

able to achieve the average absolute systolic BP error of

3.95 mmHg and the average absolute diastolic BP error of

2.14 mmHg on the MIMIC dataset. Similarly, Slapnvicar et

al. [109] proposed a deep learning method that takes into

account both temporal and frequency information contained

in the PPG waveform and its derivatives. The novel spectro-

temporal residual neural network attains mean absolute errors

of 9.43 for systolic and 6.88 for diastolic BP on the MIMIC-

III dataset.

Additionally, deep learning can be applied to improve sig-

nal quality. In real-world scenarios, the aforementioned mea-

surements are susceptible to various noises, such as baseline

wander, muscle artifact, and electrode motion, which poses

the need for effective noise-reduction methods. In [110],

a bidirectional recurrent denoising auto-encoder model is

proposed to not only denoise PPG but also provide wave-

form feature accentuation. Its performance on a large open

database of noise-augmented PPG improves signal-to-noise

ratio by 7.9 dB. Chiang et. al. [111] proposed a fully convo-

lutional autoencoder to denoise ECG. This is tested on noise-

added ECG signals from the MIT-BIT Arrhythmia database.

With an input SNR of -1 dB, the model can improve signal-

to-noise ratio by 15.49 dB.

Importantly, with the latest advances to make deep learn-

ing models more transparent by interpreting their decisions

[112], [113], these methods will become more trustworthy

and better adapted to clinical settings.

Applying cNIBP to uncover the relation between blood

pressure and infectious diseases: Recent advances in

machine learning and low-power wearable medical devices

have enabled remote and automated diagnoses via continuous

physiological monitoring. For instance, Jeong et al. [114]

suggested that the onset of COVID-19 in individuals could be

detected through continuous on-body sensing. Detecting in-

fectious diseases with non-invasive sensing is advantageous

over lab examinations (e.g., RT-PCR, and immunoassays) in

at least two aspects: safety and scalability. As the predictive

model matures, public health authorities can benefit from the

widespread availability of non-invasive health sensor signals,

including the recent addition of cNIBP.

Nevertheless, challenges need to be overcome to make on-

body sensing practical for COVID-19 detection. The most

critical one is to design soft-electronic sensors that can be in-

timately attached to the skin without irritable reactions [114].

According to Mueller et al. [115], COVID-19 is 23× more

likely to lead to death in cohorts older than 65 years old. The

fragiliy of elderly skin adds an additional constraint to the

sensors. The PDMS-based tonometric BP sensors designed

by Kim et al. [116], and Huang et al. [117] both addressed

skin conformity and non-irritability.

It is still an open research question on whether (high)

blood pressure has an effect on the progression of COVID-

19 infection. Kario et al. [118] highlights that patients with

hypertension are known to have higher risks to develop

severe symptoms during COVID-19 infection. However, it

is still unclear whether hypertension (or its medication such

as Renin-angiotensin-aldosterone system (RAAS) inhibitors

[119]) is a direct cause to the exacerbation of COVID-19

symptoms. We hope the wider availability of cNIBP sensors

can shed lights on these medical inquiries.
Usability, acquisition techniques, and experimental

standards improvements: As garnered from this review,

there are an abundant amount of methods using PTT, PAT,

or PWV-based calculations to estimate SBP and DBP non-

invasively. This includes experimental setups using only one

type of signal (e.g., two PPG signals or two VPG signals) or

a hybrid of proximal and distal signals (e.g., PPG and ECG).

Many of these techniques are developed into or are in the

process of being adapted into cuff-less wearables that will

make continuously measuring blood pressure more feasible

in remote and home-based healthcare. However, in order for

this vision to be fulfilled, future research in this field needs

to center around creating devices that address the following

suggestions:

1) The product must be user-friendly in design (e.g.,

wearable and small).

2) To use the device accurately, no complex medical

training is needed.

3) The recorded blood pressure must account for motion

artifacts from daily life (e.g., walking and working) and

be able to filter out this noise in the acquired signal.

4) To improve accuracy, investigate using more than 2

sensors as well as different distal signal configurations.

5) More regions of interests need to be investigated for

each signal (e.g., many PPG sensors configurations

record predominately at the finger while using a leg is

possible and potentially more advantageous).

6) The experiments need to include more a more sub-

stantial amount of tests subjects (e.g., greater than 50)

that are diverse in age and with health conditions (e.g.,

hypertensive or pregnant).

7) The gold standard for verifying blood pressure acquisi-

tion needs to be more uniformed between experiments

(e.g., use invasive method such as volume clamp to

confirm results).

8) Integrate these devices with smartphones for recording

blood pressure and facilitating better incorporation into

consumer life.

VI. CONCLUSIONS

In this article, we reviewed 1) various sensor technologies

that enable cNIBP monitoring and 2) recent state-of-the-art

approaches related to PTT/PAT-based BP estimation. From

the proximal and distal waveforms, we highlight the pros

and cons of different signal combinations that could derive

PTT or PWV information in cuff-less settings. Using PTT or

PWV reveals the importance of considering the pre-ejection

period, the physical properties of the artery, and the physi-

ological factors of the user to obtain accurate hemodynamic

estimations. Additionally, this review also addresses different

technical challenges, such as the need for frequent calibration
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and the susceptibility to motion artifacts, that all need to be

overcome before PTT/PAT-based methods can be readily ap-

plied to routine diagnosis procedures. Furthermore, the lack

of large scale cNIBP datasets creates an additional barrier for

data scientists who crave to develop general signal processing

algorithms. We have determined limitations of wave propaga-

tion methods, signal-to-noise ratio, and calibration issues can

be addressed by machine learning methods. In brief, future

breakthroughs of cNIBP monitoring will most likely call for

collaborative efforts from biomedical engineering, computer

science, electrical engineering, and medical disciplines. We

are hopeful that home-based, intelligent, and continuous BP

monitoring would be achieved in the near future. Through

advancements of cNIBP sensing, the cost of care can be

significantly reduced, and our patients’ quality of life could

be greatly.

REFERENCES

[1] K. Bartels, S. A. Esper, and R. H. Thiele, “Blood

pressure monitoring for the anesthesiologist: A prac-

tical review,” Anesthesia and Analgesia, vol. 122,

no. 6, 2016.

[2] S. Josep and R. Delgado-Gonzalo, The Handbook

of Cuffless Blood Pressure Monitoring: a Practical

Guide for Clinicians, Researchers, and Engineers.

Springer, 2019.

[3] M. Sharma, K. Barbosa, V. Ho, D. Griggs, T. Ghir-

mai, S. K. Krishnan, T. K. Hsiai, J.-C. Chiao, and

H. Cao, “Cuff-less and continuous blood pressure

monitoring: A methodological review,” Technolo-

gies, vol. 5, no. 2, p. 21, 2017.

[4] A. Valderrama, C. Gillespie, S. King, M. George,

and Y. Hong, “Vital signs: Awareness and treatment

of uncontrolled hypertension among adults — united

states, 2003–2010,” MMWR. Morbidity and mortality

weekly report, vol. 61, Sep. 2012.

[5] “Ieee standard for wearable cuffless blood pressure

measuring devices,” IEEE Std 1708-2014, pp. 1–38,

2014.

[6] S. i. Carós and J. i. Maria, “Continuous non-invasive

blood pressure estimation,” Ph.D. dissertation, ETH,

2011.

[7] D. Perloff, C. Grim, J. Flack, E. D. Frohlich, M.

Hill, M. Mcdonald, and B. Z. Morgenstern, “Human

blood pressure determination by sphygmomanom-

etry.,” Circulation, vol. 88, no. 5, pp. 2460–2470,

1993.

[8] J. C. Bramwell and A. V. Hill, “The velocity of pulse

wave in man,” Proceedings of the Royal Society of

London. Series B, Containing Papers of a Biological

Character, vol. 93, no. 652, pp. 298–306, 1922.

[9] R. Mukkamala, J. Hahn, O. T. Inan, L. K. Mestha,

C. Kim, H. Töreyin, and S. Kyal, “Toward ubiquitous

blood pressure monitoring via pulse transit time:

Theory and practice,” IEEE Transactions on Biomed-

ical Engineering, vol. 62, no. 8, pp. 1879–1901,

2015.

[10] E. G. Lakatta and D. Levy, “Arterial and cardiac

aging: Major shareholders in cardiovascular disease

enterprises,” Circulation, vol. 107, no. 1, pp. 139–

146, 2003. eprint: https://www.ahajournals.org/doi/

pdf/10.1161/01.CIR.0000048892.83521.58.

[11] R. H. Cox, “Regional variation of series elasticity

in canine arterial smooth muscles,” American Jour-

nal of Physiology-Heart and Circulatory Physiology,

vol. 234, no. 5, H542–H551, 1978, PMID: 645919.

eprint: https://doi.org/10.1152/ajpheart.1978.234.5.

H542.

[12] G. Chan, R. Cooper, M. Hosanee, K. Welykholowa,

P. A. Kyriacou, D. Zheng, J. Allen, D. Abbott, N. H.

Lovell, R. Fletcher, and M. Elgendi, “Multi-site pho-

toplethysmography technology for blood pressure as-

sessment: Challenges and recommendations,” Jour-

nal of Clinical Medicine, vol. 8, no. 11, 2019.

[13] G. Zhang, M. Gao, D. Xu, N. B. Olivier, and R.

Mukkamala, “Pulse arrival time is not an adequate

surrogate for pulse transit time as a marker of blood

pressure,” Journal of Applied Physiology, vol. 111,

no. 6, pp. 1681–1686, 2011, PMID: 21960657.

eprint: https://doi.org/10.1152/japplphysiol.00980.

2011.

[14] Parry Fung, G. Dumont, C. Ries, C. Mott, and M.

Ansermino, “Continuous noninvasive blood pressure

measurement by pulse transit time,” in The 26th

Annual International Conference of the IEEE En-

gineering in Medicine and Biology Society, vol. 1,

2004, pp. 738–741.

[15] R. Mukkamala, J.-O. Hahn, O. T. Inan, L. K. Mestha,

C.-S. Kim, H. Toreyin, and S. Kyal, “Toward ubiqui-

tous blood pressure monitoring via pulse transit time:

Theory and practice,” IEEE Transactions on Biomed-

ical Engineering, vol. 62, no. 8, pp. 1879–1901, Aug.

2015.

[16] A. Stojanova, S. Koceski, and N. Koceska, “Continu-

ous blood pressure monitoring as a basis for ambient

assisted living (aal) – review of methodologies and

devices,” Journal of Medical Systems, vol. 43, no. 2,

Jan. 2019.

[17] D. M. Bard, J. I. Joseph, and N. van Helmond,

“Cuff-less methods for blood pressure telemonitor-

ing,” Frontiers in Cardiovascular Medicine, vol. 6,

p. 40, 2019.

[18] G. Wang, M. Atef, and Y. Lian, “Towards a contin-

uous non-invasive cuffless blood pressure monitor-

ing system using ppg: Systems and circuits review,”

IEEE Circuits and Systems Magazine, vol. 18, no. 3,

pp. 6–26, Aug. 2018.

[19] M. Hosanee, G. Chan, K. Welykholowa, R. Cooper,

P. A. Kyriacou, D. Zheng, J. Allen, D. Abbott, C.

Menon, N. H. Lovell, N. Howard, W.-S. Chan, K.

Lim, R. Fletcher, R. Ward, and M. Elgendi, “Cuffless

18 VOLUME 4, 2016



This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2020.3040257, IEEE Access

Le et al.: Continuous Non-invasive Blood Pressure Monitoring: A Methodological Review on Measurement Techniques

single-site photoplethysmography for blood pressure

monitoring,” Journal of Clinical Medicine, vol. 9,

no. 3, 2020.

[20] A. Goldberger, Z. Goldberger, and A. Shvilkin, Clin-

ical Electrocardiography: A Simplified Approach E-

Book. Elsevier Health Sciences, 2017.

[21] F. S. Cattivelli and H. Garudadri, “Noninvasive cuf-

fless estimation of blood pressure from pulse arrival

time and heart rate with adaptive calibration,” 2009

Sixth International Workshop on Wearable and Im-

plantable Body Sensor Networks, pp. 114–119, 2009.

[22] R. Shriram, A. Wakankar, N. Daimiwal, and D. Ram-

dasi, “Continuous cuffless blood pressure monitor-

ing based on ptt,” 2010 International Conference on

Bioinformatics and Biomedical Technology, pp. 51–

55, 2010.

[23] S. Ghosh, A. Banerjee, N. Ray, P. W. Wood, P.

Boulanger, and R. Padwal, “Continuous blood pres-

sure prediction from pulse transit time using ecg

and ppg signals,” 2016 IEEE Healthcare Innovation

Point-Of-Care Technologies Conference (HI-POCT),

pp. 188–191, 2016.

[24] T. Le, I. Clark, J. Fortunato, M. Sharma, X. Xu,

T. K. Hsiai, and H. Cao, “Electrocardiogram: Acqui-

sition and analysis for biological investigations and

health monitoring,” in Interfacing Bioelectronics and

Biomedical Sensing, Springer, 2020, pp. 117–142.

[25] M. W. Gifari, H. Zakaria, and R. Mengko, “Design

of ecg homecare:12-lead ecg acquisition using sin-

gle channel ecg device developed on ad8232 analog

front end,” in 2015 International Conference on Elec-

trical Engineering and Informatics (ICEEI), 2015,

pp. 371–376.

[26] D. Pani, A. Dessì, J. F. Saenz-Cogollo, G. Bara-

bino, B. Fraboni, and A. Bonfiglio, “Fully textile,

pedot:pss based electrodes for wearable ecg moni-

toring systems,” IEEE Transactions on Biomedical

Engineering, vol. 63, no. 3, pp. 540–549, 2016.

[27] M. Kachuee, M. M. Kiani, H. Mohammadzade,

and M. Shabany, “Cuffless blood pressure estima-

tion algorithms for continuous health-care monitor-

ing,” IEEE Transactions on Biomedical Engineering,

vol. 64, no. 4, pp. 859–869, Apr. 2017.

[28] Q. Zhang, D. Zhou, and X. Zeng, “Highly wearable

cuff-less blood pressure and heart rate monitoring

with single-arm electrocardiogram and photoplethys-

mogram signals,” BioMedical Engineering OnLine,

vol. 16, no. 1, Feb. 2017.

[29] E. Pinheiro, O. Postolache, and P. Girão, “Theory and

developments in an unobtrusive cardiovascular sys-

tem representation: Ballistocardiography,” The open

biomedical engineering journal, vol. 4, pp. 201–216,

2010.

[30] C.-S. Kim, S. L. Ober, M. S. McMurtry, B. A. Fine-

gan, O. T. Inan, R. Mukkamala, and J.-O. Hahn,

“Ballistocardiogram: Mechanism and potential for

unobtrusive cardiovascular health monitoring,” Sci-

entific Reports, vol. 6, no. 1, p. 31 297, 2016.

[31] D. D. He, E. S. Winokur, and C. G. Sodini, “An

ear-worn vital signs monitor,” IEEE Transactions on

Biomedical Engineering, vol. 62, no. 11, pp. 2547–

2552, 2015.

[32] P. Yousefian, S. Shin, A. Mousavi, C.-S. Kim, R.

Mukkamala, D.-G. Jang, B.-H. Ko, J. Lee, U. K.

Kwon, Y. H. Kim, and J.-O. Hahn, “The potential of

wearable limb ballistocardiogram in blood pressure

monitoring via pulse transit time,” Scientific Reports,

vol. 9, no. 1, p. 10 666, 2019.

[33] K. J. Lee, J. Roh, D. Cho, J. Hyeong, and S.

Kim, “A chair-based unconstrained/nonintrusive cuf-

fless blood pressure monitoring system using a

two-channel ballistocardiogram,” Sensors (Basel,

Switzerland), vol. 19, no. 3, p. 595, 2019.

[34] T. Hall, D. Y. C. Lie, T. Q. Nguyen, J. C. Mayeda,

P. E. Lie, J. Lopez, and R. E. Banister, “Non-contact

sensor for long-term continuous vital signs moni-

toring: A review on intelligent phased-array doppler

sensor design,” Sensors (Basel), vol. 17, no. 11, 2017.

[35] O. T. Inan, P. Migeotte, K. Park, M. Etemadi, K.

Tavakolian, R. Casanella, J. Zanetti, J. Tank, I. Fun-

tova, G. K. Prisk, and M. D. Rienzo, “Ballistocardio-

graphy and seismocardiography: A review of recent

advances,” IEEE Journal of Biomedical and Health

Informatics, vol. 19, no. 4, pp. 1414–1427, 2015.

[36] M. Jafari Tadi, E. Lehtonen, A. Saraste, J. Tuominen,

J. Koskinen, M. Teräs, J. Airaksinen, M. Pänkäälä,

and T. Koivisto, “Gyrocardiography: A new non-

invasive monitoring method for the assessment of

cardiac mechanics and the estimation of hemody-

namic variables,” Sci Rep, vol. 7, no. 1, p. 6823, 2017.

[37] I. Sadek, J. Biswas, and B. Abdulrazak, “Ballis-

tocardiogram signal processing: A review,” Health

Information Science and Systems, vol. 7, no. 1, p. 10,

2019.

[38] Y. Haseda, J. Bonefacino, H.-Y. Tam, S. Chino, S.

Koyama, and H. Ishizawa, “Measurement of pulse

wave signals and blood pressure by a plastic optical

fiber fbg sensor,” Sensors, vol. 19, no. 23, 2019.

[39] M. E. Chowdhury, A. Khandakar, K. Alzoubi, S.

Mansoor, A. M. Tahir, M. B. I. Reaz, and N. Al-

Emadi, “Real-time smart-digital stethoscope system

for heart diseases monitoring,” Sensors, vol. 19,

no. 12, 2019.

[40] A. K. Abbas and R. Bassam, “Phonocardiography

signal processing,” in. 2009, vol. 4, p. 218.

[41] S. Swarup and A. N. Makaryus, “Digital stetho-

scope: Technology update,” Medical devices (Auck-

land, NZ), vol. 11, p. 29, 2018.

[42] O. T. Inan, P. Migeotte, K. Park, M. Etemadi, K.

Tavakolian, R. Casanella, J. Zanetti, J. Tank, I. Fun-

tova, G. K. Prisk, and M. D. Rienzo, “Ballistocardio-

graphy and seismocardiography: A review of recent

VOLUME 4, 2016 19



This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2020.3040257, IEEE Access

Le et al.: Continuous Non-invasive Blood Pressure Monitoring: A Methodological Review on Measurement Techniques

advances,” IEEE Journal of Biomedical and Health

Informatics, vol. 19, no. 4, pp. 1414–1427, 2015.

[43] A. Taebi, B. Solar, A. Bomar, R. Sandler, and H. A.

Mansy, “Recent advances in seismocardiography,”

Vibration, vol. 2, pp. 64–86, 2019.

[44] T. H. Huynh, R. Jafari, and W. Chung, “Noninvasive

cuffless blood pressure estimation using pulse transit

time and impedance plethysmography,” IEEE Trans-

actions on Biomedical Engineering, vol. 66, no. 4,

pp. 967–976, 2019.

[45] E. J. Wang, J. Zhu, M. Jain, T.-J. Lee, E. Saba, L.

Nachman, and S. N. Patel, “Seismo: Blood pressure

monitoring using built-in smartphone accelerometer

and camera,” in Proceedings of the 2018 CHI Con-

ference on Human Factors in Computing Systems,

ser. CHI ’18, Montreal QC, Canada: Association for

Computing Machinery, 2018, pp. 1–9.

[46] A. Bilgaiyan, R. Sugawara, F. Elsamnah, C. Shim,

A. Md, and R. Hattori, “Optimizing performance

of reflectance-based organic photoplethysmogram

(ppg) sensor,” in Proc.SPIE, vol. 10738.

[47] M. Elgendi, R. Fletcher, Y. Liang, N. Howard, N. H.

Lovell, D. Abbott, K. Lim, and R. Ward, “The use of

photoplethysmography for assessing hypertension,”

npj Digital Medicine, vol. 2, no. 1, p. 60, 2019.

[48] P. Pelegris, K. Banitsas, T. Orbach, and K. Marias, “A

novel method to detect heart beat rate using a mobile

phone,” in 2010 Annual International Conference

of the IEEE Engineering in Medicine and Biology,

pp. 5488–5491.

[49] C. G. Scully, J. Lee, J. Meyer, A. M. Gorbach, D.

Granquist-Fraser, Y. Mendelson, and K. H. Chon,

“Physiological parameter monitoring from optical

recordings with a mobile phone,” IEEE Transactions

on Biomedical Engineering, vol. 59, no. 2, pp. 303–

306, 2012.

[50] K. Banitsas, P. Pelegris, T. Orbach, D. Cavouras,

K. Sidiropoulos, and S. Kostopoulos, “A simple

algorithm to monitor hr for real time treatment

applications,” in 2009 9th International Confer-

ence on Information Technology and Applications in

Biomedicine, pp. 1–5.

[51] D. Grimaldi, Y. Kurylyak, F. Lamonaca, and A.

Nastro, “Photoplethysmography detection by smart-

phone’s videocamera,” in Proceedings of the 6th

IEEE International Conference on Intelligent Data

Acquisition and Advanced Computing Systems,

vol. 1, pp. 488–491.

[52] M. Ghijsen, T. B. Rice, B. Yang, S. M. White, and

B. J. Tromberg, “Wearable speckle plethysmography

(spg) for characterizing microvascular flow and re-

sistance,” Biomedical optics express, vol. 9, no. 8,

pp. 3937–3952, 2018.

[53] C. E. Dunn, D. C. Monroe, C. Crouzet, J. W. Hicks,

and B. Choi, “Speckleplethysmographic (spg) esti-

mation of heart rate variability during an orthostatic

challenge,” Scientific Reports, vol. 9, no. 1, May

2019.

[54] D. Jakovels, I. Saknı̄te, G. Krievina, J. Zaharans,

and J. Spigulis, “Mobile phone based laser speckle

contrast imager for assessment of skin blood flow,”

vol. 9421, Oct. 2014, 94210J.

[55] L. M. Richards, S. M. S. Kazmi, J. L. Davis, K. E.

Olin, and A. K. Dunn, “Low-cost laser speckle

contrast imaging of blood flow using a webcam,”

Biomedical Optics Express, vol. 4, no. 10, p. 2269,

Sep. 2013.

[56] J. Maddury, “Arterial pulse,” Ind J Car Dis Wom,

vol. 02, no. 04, pp. 099–110, 2017.

[57] C. Pang, J. H. Koo, A. Nguyen, J. M. Caves, M.-G.

Kim, A. Chortos, K. Kim, P. J. Wang, J. B. H.

Tok, and Z. Bao, “Highly skin-conformal microhairy

sensor for pulse signal amplification,” Advanced Ma-

terials, vol. 27, no. 4, pp. 634–640, 2015.

[58] J. Kim, E.-F. Chou, J. Le, S. Wong, M. Chu, and M.

Khine, “Soft wearable pressure sensors for beat-to-

beat blood pressure monitoring,” Advanced Health-

care Materials, vol. 8, no. 13, p. 1 900 109, 2019.

[59] K. Meng, Y. Wu, Q. He, Z. Zhou, X. Wang, G.

Zhang, W. Fan, J. Liu, and J. Yang, “Ultrasensitive

fingertip-contacted pressure sensors to enable con-

tinuous measurement of epidermal pulse waves on

ubiquitous object surfaces,” ACS Applied Materials

and Interfaces, vol. 11, no. 50, pp. 46 399–46 407,

2019.

[60] K. Meng, J. Chen, X. Li, Y. Wu, W. Fan, Z. Zhou,

Q. He, X. Wang, X. Fan, Y. Zhang, J. Yang, and

Z. L. Wang, “Flexible weaving constructed self-

powered pressure sensor enabling continuous diag-

nosis of cardiovascular disease and measurement of

cuffless blood pressure,” Advanced Functional Mate-

rials, vol. 29, no. 5, p. 1 806 388, 2019.

[61] N. Luo, W. Dai, C. Li, Z. Zhou, L. Lu, C. C. Y.

Poon, S.-C. Chen, Y. Zhang, and N. Zhao, “Flexible

piezoresistive sensor patch enabling ultralow power

cuffless blood pressure measurement,” Advanced

Functional Materials, vol. 26, no. 8, pp. 1178–1187,

2016.

[62] C. Dagdeviren, Y. Su, P. Joe, R. Yona, Y. Liu, Y.-S.

Kim, Y. Huang, A. R. Damadoran, J. Xia, L. W.

Martin, Y. Huang, and J. A. Rogers, “Conformable

amplified lead zirconate titanate sensors with en-

hanced piezoelectric response for cutaneous pressure

monitoring,” Nature Communications, vol. 5, no. 1,

p. 4496, 2014.

[63] T. K. Bera, “Bioelectrical impedance methods for

noninvasive health monitoring: A review,” Journal

of medical engineering, vol. 2014, pp. 381 251–

381 251, 2014.

[64] M. Qu, Y. Zhang, J. G. Webster, and W. J. Tomp-

kins, “Motion artifact from spot and band electrodes

during impedance cardiography,” IEEE Transactions

20 VOLUME 4, 2016



This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2020.3040257, IEEE Access

Le et al.: Continuous Non-invasive Blood Pressure Monitoring: A Methodological Review on Measurement Techniques

on Biomedical Engineering, vol. BME-33, no. 11,

pp. 1029–1036, 1986.

[65] A. Sherwood, M. T. Allen, J. Fahrenberg, R. M.

Kelsey, W. R. Lovallo, and L. J. van Doornen,

“Methodological guidelines for impedance cardiog-

raphy,” Psychophysiology, vol. 27, no. 1, pp. 1–23,

1990.

[66] T. H. Huynh, R. Jafari, and W.-Y. Chung, “An ac-

curate bioimpedance measurement system for blood

pressure monitoring,” Sensors (Basel, Switzerland),

vol. 18, no. 7, p. 2095, 2018.

[67] D. Buxi, J. Redouté, and M. R. Yuce, “Blood

pressure estimation using pulse transit time from

bioimpedance and continuous wave radar,” IEEE

Transactions on Biomedical Engineering, vol. 64,

no. 4, pp. 917–927, 2017.

[68] A. Singh, V. Lubecke, and O. Boric-Lubecke, “Pulse

pressure monitoring through non-contact cardiac mo-

tion detection using 2.45 ghz microwave doppler

radar,” 2011 Annual International Conference of the

IEEE Engineering in Medicine and Biology Society,

pp. 4336–4339, 2011.

[69] H. Zhao, X. Gu, H. Hong, Y. Li, X. Zhu, and C. Li,

“Non-contact beat-to-beat blood pressure measure-

ment using continuous wave doppler radar,” 2018

IEEE/MTT-S International Microwave Symposium -

IMS, pp. 1413–1415, 2018.

[70] J. E. Johnson, O. Shay, C. Kim, and C. Liao, “Wear-

able millimeter-wave device for contactless mea-

surement of arterial pulses,” IEEE Transactions on

Biomedical Circuits and Systems, vol. 13, no. 6,

pp. 1525–1534, 2019.

[71] A. Secerbegovic, J. Bergsland, P. S. Halvorsen,

N. Suljanovic, A. Mujcic, and I. Balasingham,

“Blood pressure estimation using video plethysmog-

raphy,” 2016 IEEE 13th International Symposium on

Biomedical Imaging (ISBI), pp. 461–464, 2016.

[72] N. Sugita, M. Yoshizawa, M. Abe, A. Tanaka, N.

Homma, and T. Yambe, “Contactless technique for

measuring blood-pressure variability from one region

in video plethysmography,” Journal of Medical and

Biological Engineering, vol. 39, no. 1, pp. 76–85,

2019.

[73] N. Sugita, T. Noro, M. Yoshizawa, K. Ichiji, S.

Yamaki, and N. Homma, “Estimation of absolute

blood pressure using video images captured at dif-

ferent heights from the heart,” 2019 41st Annual

International Conference of the IEEE Engineering in

Medicine and Biology Society (EMBC), Oct. 2019.

[74] A. Chandrasekhar, J. Joseph, and M. Sivaprakasam,

“A novel magnetic plethysmograph for non-invasive

evaluation of arterial compliance,” in 2012 Annual

International Conference of the IEEE Engineering in

Medicine and Biology Society, 2012, pp. 1169–1172.

[75] Y. Lee, C. Lee, M. Kang, S. Kang, K. Kim, K. Kim,

K. Kim, and J. Lee, “Magneto-plethysmographic

sensor for peripheral blood flow velocity,” IEEE Sen-

sors Journal, vol. 14, no. 5, pp. 1341–1342, 2014.

[76] N. P.M., J. Joseph, and M. Sivaprakasam, “A mag-

netic plethysmograph probe for local pulse wave ve-

locity measurement,” IEEE Transactions on Biomed-

ical Circuits and Systems, vol. 11, no. 5, pp. 1065–

1076, 2017.

[77] B. W. Beulen, N. Bijnens, G. G. Koutsouridis, P. J.

Brands, M. C. Rutten, and F. N. van de Vosse, “To-

ward noninvasive blood pressure assessment in arter-

ies by using ultrasound,” Ultrasound in Medicine &

Biology, vol. 37, no. 5, pp. 788–797, 2011.

[78] A. M. Zakrzewski and B. W. Anthony, “Noninva-

sive blood pressure estimation using ultrasound and

simple finite element models,” IEEE Transactions on

Biomedical Engineering, vol. 65, no. 9, pp. 2011–

2022, 2018.

[79] P. M. Nabeel, J. Jayaraj, K. Srinivasa, S. Mo-

hanasankar, and M. Chenniappan, “Bi-modal arterial

compliance probe for calibration-free cuffless blood

pressure estimation,” IEEE Transactions on Biomed-

ical Engineering, vol. 65, no. 11, pp. 2392–2404,

2018.

[80] J. Seo, S. J. Pietrangelo, H.-S. Lee, and C. G. Sodini,

“Carotid arterial blood pressure waveform monitor-

ing using a portable ultrasound system,” 2015 37th

Annual International Conference of the IEEE Engi-

neering in Medicine and Biology Society (EMBC),

Nov. 2015.

[81] P. S. Addison, “Slope transit time (stt): A pulse transit

time proxy requiring only a single signal fiducial

point,” IEEE Transactions on Biomedical Engineer-

ing, vol. 63, no. 11, pp. 2441–2444, 2016.

[82] F. Tabei, J. M. Gresham, B. Askarian, K. Jung, and

J. W. Chong, “Cuff-less blood pressure monitoring

system using smartphones,” IEEE Access, vol. 8,

pp. 11 534–11 545, 2020.

[83] N. Bui, N. Pham, J. J. Barnitz, Z. Zou, P. Nguyen,

H. Truong, T. Kim, N. Farrow, A. Nguyen, J. Xiao,

R. Deterding, T. Dinh, and T. Vu, “Ebp: A wearable

system for frequent and comfortable blood pressure

monitoring from user’s ear,” in The 25th Annual

International Conference on Mobile Computing and

Networking, ser. MobiCom ’19, Los Cabos, Mexico:

Association for Computing Machinery, 2019.

[84] J. Liu, B. P. Yan, Y.-T. Zhang, X.-R. Ding, P. Su, and

N. Zhao, “Multi-wavelength photoplethysmography

enabling continuous blood pressure measurement

with compact wearable electronics,” IEEE transac-

tions on bio-medical engineering, vol. 66, no. 6,

pp. 1514–1525, 2019.

[85] S.-H. Liu, D.-C. Cheng, and C.-H. Su, “A cuf-

fless blood pressure measurement based on the

impedance plethysmography technique,” Sensors

(Basel, Switzerland), vol. 17, no. 5, p. 1176, 2017.

VOLUME 4, 2016 21



This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2020.3040257, IEEE Access

Le et al.: Continuous Non-invasive Blood Pressure Monitoring: A Methodological Review on Measurement Techniques

[86] C.-S. Kim, A. M. Carek, R. Mukkamala, O. T.

Inan, and J.-O. Hahn, “Ballistocardiogram as prox-

imal timing reference for pulse transit time measure-

ment: Potential for cuffless blood pressure monitor-

ing,” IEEE transactions on bio-medical engineering,

vol. 62, no. 11, pp. 2657–2664, 2015.

[87] C. Kim, A. M. Carek, O. T. Inan, R. Mukkamala, and

J. Hahn, “Ballistocardiogram-based approach to cuf-

fless blood pressure monitoring: Proof of concept and

potential challenges,” IEEE Transactions on Biomed-

ical Engineering, vol. 65, no. 11, pp. 2384–2391,

2018.

[88] S. N. Shukla, K. Kakwani, A. Patra, B. K. Lahkar,

V. K. Gupta, A. Jayakrishna, P. Vashisht, and

I. Sreekanth, “Noninvasive cuffless blood pressure

measurement by vascular transit time,” in 2015 28th

International Conference on VLSI Design, pp. 535–

540.

[89] C. Hsiao, J. Horng, R. Lee, and R. Lin, “Design

and implementation of auscultation blood pressure

measurement using vascular transit time and physio-

logical parameters,” in 2017 IEEE International Con-

ference on Systems, Man, and Cybernetics (SMC),

pp. 2996–3001.

[90] A. Esmaili, M. Kachuee, and M. Shabany, “Nonlin-

ear cuffless blood pressure estimation of healthy sub-

jects using pulse transit time and arrival time,” IEEE

Transactions on Instrumentation and Measurement,

vol. 66, no. 12, pp. 3299–3308, 2017.

[91] O. Tahar and F. Reguig, “A new approach for blood

pressure estimation based on phonocardiogram,”

Biomedical engineering letters, vol. 9, pp. 395–406,

2019.

[92] A. M. Carek, J. Conant, A. Joshi, H. Kang, and

O. T. Inan, “Seismowatch: Wearable cuffless blood

pressure monitoring using pulse transit time,” Proc.

ACM Interact. Mob. Wearable Ubiquitous Technol.,

vol. 1, no. 3, Article 40, 2017.

[93] T. Ha, J. Tran, S. Liu, H. Jang, H. Jeong, R. Mitban-

der, H. Huh, Y. Qiu, J. Duong, R. L. Wang, P. Wang,

A. Tandon, J. Sirohi, and N. Lu, “A chest-laminated

ultrathin and stretchable e-tattoo for the measurement

of electrocardiogram, seismocardiogram, and cardiac

time intervals,” Advanced Science, vol. 6, no. 14,

p. 1 900 290, 2019.

[94] M. Nitzan, B. Khanokh, and Y. Slovik, “The dif-

ference in pulse transit time to the toe and finger

measured by photoplethysmography,” Physiological

Measurement, vol. 23, no. 1, pp. 85–93, Dec. 2001.

[95] C. Yang and N. Tavassolian, “Pulse transit time mea-

surement using seismocardiogram, photoplethysmo-

gram, and acoustic recordings: Evaluation and com-

parison,” IEEE Journal of Biomedical and Health

Informatics, vol. 22, no. 3, pp. 733–740, 2018.

[96] D. Griggs, M. Sharma, A. Naghibi, C. Wallin, V. Ho,

K. Barbosa, T. Ghirmai, H. Cao, and S. K. Krishnan,

“Design and development of continuous cuff-less

blood pressure monitoring devices,” in 2016 IEEE

SENSORS, IEEE, 2016, pp. 1–3.

[97] A. L. Goldberger, L. A. Amaral, L. Glass, J. M. Haus-

dorff, P. C. Ivanov, R. G. Mark, J. E. Mietus, G. B.

Moody, C.-K. Peng, and H. E. Stanley, “Physiobank,

physiotoolkit, and physionet: Components of a new

research resource for complex physiologic signals,”

circulation, vol. 101, no. 23, e215–e220, 2000.

[98] M. Saeed, M. Villarroel, A. T. Reisner, G. Clifford,

L.-W. Lehman, G. Moody, T. Heldt, T. H. Kyaw,

B. Moody, and R. G. Mark, “Multiparameter in-

telligent monitoring in intensive care ii: A public-

access intensive care unit database,” eng, Critical

care medicine, vol. 39, no. 5, pp. 952–960, May

2011, PMC3124312[pmcid].

[99] A. E. Johnson, T. J. Pollard, L. Shen, H. L. Li-Wei,

M. Feng, M. Ghassemi, B. Moody, P. Szolovits, L. A.

Celi, and R. G. Mark, “Mimic-iii, a freely accessible

critical care database,” Scientific data, vol. 3, no. 1,

pp. 1–9, 2016.

[100] F. S. Cattivelli and H. Garudadri, “Noninvasive cuf-

fless estimation of blood pressure from pulse arrival

time and heart rate with adaptive calibration,” in 2009

Sixth International Workshop on Wearable and Im-

plantable Body Sensor Networks, 2009, pp. 114–119.

[101] Y. Choi, Q. Zhang, and S. Ko, “Noninvasive cuffless

blood pressure estimation using pulse transit time

and hilbert–huang transform,” Computers & Electri-

cal Engineering, vol. 39, no. 1, pp. 103–111, 2013,

Special issue on Recent Advanced Technologies and

Theories for Grid and Cloud Computing and Bio-

engineering.

[102] M. Kachuee, M. M. Kiani, H. Mohammadzade,

and M. Shabany, “Cuffless blood pressure estima-

tion algorithms for continuous health-care monitor-

ing,” IEEE Transactions on Biomedical Engineering,

vol. 64, no. 4, pp. 859–869, 2017.

[103] Y. Liang, D. Abbott, N. Howard, K. Lim, R. Ward,

and M. Elgendi, “How effective is pulse arrival time

for evaluating blood pressure? challenges and recom-

mendations from a study using the mimic database,”

Journal of Clinical Medicine, vol. 8, no. 3, 2019.

[104] Y. Liang, Z. Chen, G. Liu, and M. Elgendi, “A

new, short-recorded photoplethysmogram dataset for

blood pressure monitoring in china,” Scientific Data,

vol. 5, no. 1, p. 180 020, Feb. 2018.

[105] R. Banerjee, A. Sinha, A. D. Choudhury, and A. Vis-

vanathan, “Photoecg: Photoplethysmographyto esti-

mate ecg parameters,” in 2014 IEEE International

Conference on Acoustics, Speech and Signal Pro-

cessing (ICASSP), IEEE, 2014, pp. 4404–4408.

[106] Q. Zhu, X. Tian, C.-W. Wong, and M. Wu, “Ecg

reconstruction via ppg: A pilot study,” in 2019 IEEE

EMBS International Conference on Biomedical &

Health Informatics (BHI), IEEE, 2019, pp. 1–4.

22 VOLUME 4, 2016



This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2020.3040257, IEEE Access

Le et al.: Continuous Non-invasive Blood Pressure Monitoring: A Methodological Review on Measurement Techniques

[107] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learn-

ing,” nature, vol. 521, no. 7553, pp. 436–444, 2015.

[108] C. Wang, F. Yang, X. Yuan, Y. Zhang, K. Chang,

and Z. Li, “An end-to-end neural network model for

blood pressure estimation using ppg signal,” in Arti-

ficial Intelligence in China, Springer, 2020, pp. 262–

272.
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