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Abstract. Smart sandwich structures comprising an electro- or a magnetorheo-
logical material have the potential to attenuate vibration over a wide range of fre-
quencies. The analysis of their vibration behaviour with respect to the continuous
variation of the field intensity is thus a major challenge for research and industry
to maximize damping treatments. The numerical higher order homotopy method
we propose models the effects of a continuous variation of the field intensity on
resonant frequencies and loss factors by means of Taylor expansions. Compar-
isons between our continuous approach and the classical incremental method are
proposed for state of the art sandwich beams and plate structures comprising
ER/MR fluids to highlight the benefits of our continuous methods in terms of
maximal damping determination.
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1. Introduction

Sandwich structures are defined as multilayered composite structures, optimized for
desired/anticipated lifetime loading conditions occurring in engineering applications
such as automotive, railway, submarine, and aerospace. The analysis of their vibration
behaviour is a major challenge for industry and research from experimental and
numerical points of view.

The benefits of sandwich structures involving viscoelastic (VE), electrorheological
(ER) or magnetorheological (MR) damping treatments are demonstrated for vibration
attenuation or suppression [1, 2]. Sandwich structures with their fixed VE material
parameters usually yield limited vibration attenuation within a narrow frequency
band. Recent advances on VE sandwich structures are reviewed in [3].

The rheological properties (viscosity and shear modulus) of ER/MR fluids or
elastomers are functions of the applied external field respectively. When such a
material is embedded between two elastic layers [4, 5], the stiffness and damping
properties of the sandwich structure can be controlled by an external electric/magnetic
field in a reversible manner. Sandwich structures with ER/MR material are known to
offer attractive potentials for vibration attenuation over a wide range of frequencies
and temperatures [6, 7]. Moreover, additive manufacturing such as 3D printing allows
for the design of complex core materials, honeycomb filled with a MR elastomer for
instance [8], improving the mechanical stability, stiffness and energy absorption of the
structure. Recent state-of-the-art reviews are discussed in [9–11].

As for VE models, classical ER/MR models combine elastic springs and viscous
dashpots to describe the rheological properties. These can be solid-like models such
as Kelvin-Voigt and Zener elements model, and fluid-models such as Maxwell fluid
and three-parameter fluid model [12]. Rheological parameters are characterized from
experiments carried out on ER/MR fluids or elastomers [9]. The shear modulus G∗

c

can be written as a function of the driving frequency ω and the varying intensity p of
the applied field over some interval I:

G∗

c(ω, p) = Gc(ω, p)
[

1 + iηc(ω, p)
]

, (1)

where the real part Gc(ω, p) is the storage modulus and the ratio ηc(ω, p) represents
the loss factor of the core material. The imaginary part Gc(ω, p)ηc(ω, p) is the loss
modulus. The rheological law (1) may be implemented in the finite element method
(FEM) to predict the dynamic behaviour of a sandwich structure [12–15] or to study
its sensitivity with respect to modelling parameters such as thickness ratio, material
properties or field intensity values [16–21]. Note that most of the finite element
analyses (FEA) assume a constant frequency shear modulus.

When a frequency dependent core is embedded in a structure, the free vibration
analysis based on FEM can be formulated as the generalised nonlinear eigenvalue
problem:

[

K
(

ω(p), p
)

− ω2(p)M(p)
]

u(p) = 0, (2)

where K is the stiffness matrix, M is the mass matrix and (u(p),ω(p)) is the
eigensolution. Structural damping properties (Ω(p), η(p)) are deduced following:

ω2(p) = Ω2(p)
(

1 + iη(p)
)

, for p ∈ I, (3)

where Ω(p) is the resonant frequency and η(p) is the structural loss factor. For a
prescribed parameter p, the nonlinear frequency dependent problem (2) can be solved
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as proposed in [22], for instance. This algorithm combines homotopy to a higher order
continuation method and agrees with the VE rheological modelling. Intensity effects
can be thus evaluated at given values p of the interval.

The calculation of continuous approximations for (u(p), ω(p)) should take into
account the continuous variation of the modelling parameter p ∈ I. A very
few methods propose an actual continuous approach in their parametric analyses.
Among them, He [23] presents some analytical perturbation and homotopy analytical
techniques for the solution of nonlinear differential equations by scaling the modelling
parameter p by the homotopy parameter. Likewise, Charpentier and Lampoh [24]
combine FEM, homotopy and higher order continuation to analyse the sensitivity of
eigensolutions with respect to a damping function scaled by the homotopy parameter.
Building on previous works [22, 25–27], Akoussan et al [28, 29] propose a higher order
continuation method for the sensitivity analysis of the damping properties of frequency
dependent VE composite multilayer plates with respect to geometrical modelling
parameters such as the layer thickness ratio and the fibers’ orientation, respectively.

The calculation of the vibration behaviour over a large frequency range and/or
a large field intensity range is invaluable from a design point of view to determine
maximum damping configurations. To the best of our knowledge, any method
has been proposed to evaluate the damping capabilities over a continuous range of
electric/magnetic field intensity. The homotopy-based numerical method we present
builds on [22] to fill this gap.

The manuscript is organized as follow. Section 2 presents the nonlinear free
vibration problem associated to the FEM. The two-step homotopy method proposed
for the continuous vibration analysis is described with detail in section 3. Numerical
results, carried out on ER/MR beams and plates published in the literature, are
discussed in section 4. Section 5 provides concluding remarks and future perspectives.

2. Setting of the residual nonlinear problem

For the sake of generality [22], the nonlinear eigenvalue problem (2) is written in the
residual form:

R
(

u(p), λ(p), p
)

=
[

K(λ(p), p)− λ(p)M(p)
]

u(p) = 0, (4)

where u(p) = u ∈ C
N denotes the eigenmode, λ(p) = λ ∈ C is the eigenvalue such that

λ = ω2, and p ∈ I = [pmin, pmax] represents the modelling parameter. In the paper,
the modelling parameter p to be varied continuously is the intensity of the electric or
magnetic field.

The residual problem (4) can be written in a simplified manner as:

R(u, λ, p) =
[

K(λ, p)− λM
]

u = 0, (5)

since the mass matrix of the ER/MR sandwich structure does not depend on the
applied field.

The stiffness matrix K(λ, p) is decomposed into:

K(λ, p) = K∗

0
+G∗(λ, p)Kv, (6)

where K∗

0
= K(0, 0) is the finite element delayed elasticity stiffness matrix computed

assuming λ = 0 and p = 0, Kv is a real matrix and G∗(λ, p) is a complex nonlinear
scalar function describing the dependence of the stiffness matrix in both the frequency
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and the field intensity. Introducing (6) into (5) yields the nonlinear general eigenvalue
problem:

R(u, λ, p) =
[

K∗

0
+G∗(λ, p)Kv − λM

]

u = 0. (7)

This nonlinear problem cannot be solved in a straightforward manner, even for a
prescribed value of the field intensity p. The reader is referred to [30] for a review of
nonlinear eigenvalue problems.

3. Generalised homotopy

Former studies [22, 31] propose a continuous method for the solution of nonlinear
eigenvalue problems. The main idea is to split the residual problem (7) into an
eigenvalue problem S(u, λ) = 0 with known solutions and some additional nonlinear
contribution T (u, λ, p), that is:

R(u, λ, p) = S(u, λ) + T (u, λ, p) = 0, (8)

where the functions S and T are specific to the problem under study (see table 1) and
case studies presented in section 4.

As described in subsection 3.1, the solutions of S(u, λ) = 0 can be then deformed
to compute the solutions of R(u, λ) = 0 through the so-called homotopy method.

The generalized higher order homotopy method we propose moreover allows
for the continuous solution of the nonlinear eigenvalue problem while conserving its
mechanical/physical meaning. In others words, the continuous variations of some
material or geometrical or intensity parameter p onto the eigenvalues (u(p), λ(p)),
resonant frequencies Ω(p) or loss factors η(p) can be studied in an actual continuous
manner.

The use and benefits of this new generalized homotopy-based eigensolver are
exemplified in subsection 3.2 and section 4.

3.1. General nonlinear eigensolver

The solution of (8) is implemented through a homotopy method mapping S to R by
computing continuous branches of solutions for:

R
(

u(α), λ(α), p(α)
)

= S(u, λ) + αT (u, λ, p) = 0, (9)

for the homotopy parameter α ∈ R varying in the range [αmin, αmax].
The unknowns are developed into Taylor series in the vicinity of α to be able to

evaluate continuous approximation branches:

λ(α+ δα, p) ≈

N
∑

n=0

(δα)
n

n!

∂nλ

∂αn
(α, p) =

N
∑

n=0

(δα)
nλn, (10)

u(α+ δα, p) ≈

N
∑

n=0

(δα)
n

n!

∂nu

∂αn
(α, p) =

N
∑

n=0

(δα)
nun, (11)

where δα is a small perturbation of α and N is the truncation order. Unknowns un

and λn are the Taylor coefficients of u and λ, respectively.
As noted in [23, 24], the linear variation of the modelling parameter p can be

accounted by scaling it with respect to the homotopy parameter α ∈ R. However,



Continuous eigenvalue solver for the design of ER/MR sandwich structures 5

see section 4, most of the ER/MR constitutive laws cannot be reformulated to exhibit
such a linear dependence.

Any nonlinear bijective function mapping p to α, for instance F (p(α)) = α and
F−1(α) = p, can be accounted through a higher order differentiation of F (p) with
respect to the homotopy parameter α. This is implemented by means of the chain
rule and the Taylor expansion of p(α) with respect to α:

p(α+ δα) ≈

N
∑

n=0

(δα)
n

n!

∂np

∂αn
(α) =

N
∑

n=0

(δα)
npn, (12)

where pn are the Taylor coefficients of p. From a practical point of view, the Taylor
series (12) implements the variation of ER/MR properties parametrized by p. The
higher order approximations (10)–(12) then allow for the calculation of continuous
branches of solutions with respect to the variation of p in the range [pmin, pmax].

Introducing these series into (9) yields:

R
(

u(α+ δα), λ(α+ δα), p(α+ δα)
)

≈

N
∑

n=0

(δα)
nRn = 0, (13)

where Rn are the Taylor coefficients of R. The analyticity assumption implies:

Rn = Sn + αTn = 0 for n = 1, .., N, (14)

where the Taylor coefficients Sn and Tn of functions S and T satisfy:

S
(

u(α+ δα), λ(α+ δα)
)

≈

N
∑

n=0

(δα)
nSn, (15)

and

T
(

u(α+ δα), λ(α+ δα), p(α+ δα)
)

≈
N
∑

n=0

(δα)
nTn. (16)

Faà di Bruno’s generalised chain rule formula [22] allows to write a sequence of
N + 1 equations for the unknown Taylor coefficients un and λn.

At order n = 0, equation (14) is restricted to:

J u0 =

(

{

S1|u1=Id , λ1=0

}

+ α(j)

{

T1|u1=Id , λ1=0, p1=0

}

)

u0 = 0, (17)

where J , {S1|u1=Id , λ1=0} and {T1|u1=Id , λ1=0} are Jacobian matrices, differentiated
with respect to u. One deduces that tu0J = 0 since the finite element matrices
contained in J are symmetric.

At order n, equation (14) is split into some first order terms multiplied by the
unknown Taylor coefficients un and λn and some complementary higher order terms.
One deduces:
(

{

S1|u1=Id , λ1=0

}

+ α(j)

{

T1|u1=Id , λ1=0, p1=0

}

)

un + (18)

+

(

{

S1|u1=0 , λ1=1

}

+ α(j)

{

T1|u1=0 , λ1=1, p1=0

}

)

λn + (19)

+
{

Sn|un=0 , λn=0

}

− α(j)

{

Tn|un=0 , λn=0

}

− Tn−1 = 0. (20)
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For the sake of clarity, (20) is rewritten as:

J un +Dλn +Hn = 0, (21)

where the gradient vector D, differentiated with respect to u and λ, satisfies:

D =
{

S1|u1=0 , λ1=1

}

+ α
{

T1|u1=0 , λ1=1 , p1=0

}

. (22)

The nonlinear higher order contribution at order n is:

Hn =
{

Sn|un=0 , λn=0

}

+ α
{

Tn|un=0 , λn=0

}

+ Tn−1. (23)

Multiplying (21) by tu0 yields the following equation for the unknown λn:

λn = −
tu0H

n

tu0D
. (24)

Equation (21) cannot be solved in a straightforward manner since the Jacobian
J is singular. The orthogonality condition (25) is added to close the system:

tu0

(

u(α)− u0

)

= 0. (25)

It implies that the eigenmode u0 is orthogonal to the Taylor coefficients un of u for
n = 1, .., N .

A Lagrange multiplier κ is introduced [31] to compute un following:




J u0

tu0 0











un

κ







=







−Dλn −Hn

0







. (26)

The coefficients of the series (10) and (11) are obtained by computing the higher
order term Hn, by evaluating (24) and by solving the linear system of (26), in an
alternate manner.

The convergence radius α∗ of the computed series is estimated as:

α∗ =

(

ε
‖u1‖

‖uN‖

)
1

N−1

, (27)

where ε is a small parameter (usually ε = 10−6). A branch of solutions is then built
from Taylor expansions of u and λ by evaluating the series up to α∗.

For each mode, one may deduce Taylor expansions for the resonant frequency
Ω2(p) and the loss factor η(p) thanks to the chain rule since they satisfy (3). Two
important benefits can be highlighted. Firstly, continuous branches of solutions
(p,Ω2(p)) and (p, η(p)) can be plotted as presented in section 4 for different structures
and constitutive laws. Secondly, Taylor expansions can be used to determine minimum
or maximum values in a range in a very efficient and accurate manner.

The computation of an additional solution branch is required as far as αmax is
not reached. The new branch is computed from the solution of the previous branch

by setting (u0, λ0) =
(

u(α∗), λ(α∗)
)

.

Note that all the derivative computation are carried out by means of automatic
differentiation. [32]. This provides generality to the nonlinear continuous eigensolver.
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1. Linear VE Problem
[K∗

0
− λM]u = 0

2. Nonlinear VE Problem
[K∗

0
+ αG∗

1(λ, pmin)Kv − λM]u = 0

3. Nonlinear ER/MR Problem
[K∗

0
+ αG∗

2(λ, p)Kv − λM]u = 0

Homotopy 1
(w.r.t. frequency ω)

Homotopy 2
(w.r.t. parameter p)

Figure 1. Structure of the general eigensolver for nonlinear continuous ER or
MR eigenproblems.

Table 1. Input data for the homotopies carried out with respect to the frequency
ω and the field intensity p, respectively.

Homotopy 1 Homotopy 2
(w.r.t. frequency ω) (w.r.t. parameter p)

S(u, λ)

[

K∗

0
− λM

]

u

[

K∗

0
+G∗

1
(λ, pmin)Kv − λM

]

u

T (u, λ, p) G∗

1
(λ, pmin)Kvu G∗

2
(λ, p)Kvu

α α ∈ R F (p)

p pmin F−1(α) =

N
∑

n=0

(δα)
npn

αmin 0 F (pmin)

αmax 1 1

G∗(λ, p) G∗

1
(λ, pmin) G∗

2
(λ, p)

3.2. Specialisation for ER/MR law

The calculation of the vibration behaviour of an ER/MR sandwich structure over a
continuous range [pmin, pmax] of electric/magnetic field intensity can be carried out
as follows.

The general homotopy process described in subsection 3.1 is now specialised to
agree with the algorithm described in figure 1. Therein, the homotopy solver is run
twice from input data (parameters, parameter ranges, rheological laws and functions)
reported in table 1.

The first homotopy is the one described in [22]. It deforms continuously the
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solution of the linear VE problem:

[K∗

0
− λM]u = 0, (28)

related to α = 0 and computable using a classical eigensolver, to the solution for the
nonlinear VE problem:

[K∗

0
+ αG∗

1(λ, p)Kv − λM]u = 0, for α ∈ [0, 1], (29)

where the parameter p is temporarily set equal to pmin, as written in table 1. However,
in the vibration analysis of a VE sandwich structure [22], one is interested in this last
solution only.

The second homotopy is devoted to the evaluation of the continuous variation of
the eigensolution with respect to the modelling parameter p. Its input data are chosen
to map the field intensity parameter p ∈ [pmin, pmax] to the homotopy parameter α
through the bijective scaling function α = F (p). The homotopy parameter thus varies
in [F (pmin), 1].

Any actual continuous rheological law G∗

1(λ, p) can be accounted. It suffices to
split it into some real-valued bijective scaling function F (p) and a complex-valued
virtual law G∗

2(λ, p) satisfying:

G∗

1(λ, p) = F (p)G∗

2(λ, p). (30)

The scaling function F (p) ∈ R can be identified to the homotopy parameter α ∈ R as
far as it satisfies F (pmax) = αmax = 1.

For efficiency reasons, it is convenient to choose F so that its reciprocal function
F−1 is of simple computation. Where possible, one may also choose G∗

2 independent
from p. Typically, depending on the law, one may choose either F (p) = p/pmax or
F (p) as a polynomial fraction of p. Note that the choice of the function F may impact
the number of iterations and the distance between two consecutive iterations.

When the constitutive law is independent from the frequency, it is worth
mentioning that the first homotopy can be replaced by a complex eigenvalue solver
applied to the linear VE problem.

4. Numerical results

The vibration analysis is carried out on three ER or MR sandwich structures described
in the literature to assess the benefits of our continuous homotopy approach over the
classical incremental approaches.

From a numerical point of view, the eigenvalue problems are discretized using
the finite element method. The number of elements is specified for each case study in
the tables describing the geometrical and material properties. The truncature order
of the Taylor expansions is N = 20. With regards to formula (27), the convergence
radius amax and the parameter ε are both set equal to 10−6. These data allow for
reproducibility.

4.1. Rectangular “Aluminium/ER fluid/Aluminium” sandwich plate with a frequency
independent constitutive law

The rectangular sandwich plate [33] presented in figure 2 comprises a lower host plate
(layer 3) and an upper constraining plate (layer 1) made of aluminium alloy, and a core
(layer 2) composed of an outer adhesive joint embedding an ER fluid. This study is



Continuous eigenvalue solver for the design of ER/MR sandwich structures 9

Lx

Ly

h3

h2
h1

Figure 2. Rectangular “Aluminium/ER fluid/Aluminium” sandwich plate
described in [33].

based on the four-node plate element used in [34]. In the FEM, the core properties are
assumed to be homogeneous. This plate is simply supported on all its edges (SSSS).

The geometrical and material properties of the structure are reported in table 2.
The shear modulus of the core material G∗

c(E), as measured in [35], depends on the
electric field intensity E ranging from 0 kV.mm−1 to 3.5 kV.mm−1:

G∗

c(E) = 15000E2 + i6900, (31)

G∗

c(E) = G∗

0 +G∗

1(E). (32)

As noted in subsection 3.2, the first homotopy is useless since the constitutive
law (31) does not depend on frequency.

For each eigenmode of the VE problem, the continuous variation of the nonlinear
eigenvalue with respect to the field intensity is operated by mean of the “second”
homotopy.

The law (31) is here split into a constant part G∗

0 = G∗

c(0) = i 6900 and a
nonlinear part G∗

1(E) = 15000E2. Following the discussion proposed in subsection
3.2, the nonlinear part of (32) is written as:

G∗

1(E) = F (E)G∗

2(E) = αG∗

2(E). (33)

The scaling function F (E) = α can be chosen as:

F (E) =
E2

E2
max

= α, (34)

then G∗

2(E) is equal to 15000E2
max. Even other choices are possible for the

function F (E), (34) is the simplest one that describes the range of interest
[0 kV.mm−1, 3.5 kV.mm−1] since it yields the independence of G∗

2 with respect to
both the frequency and the electric field.

The nonlinear continuous branches of the first four natural frequencies and
modal loss factors of the ER rectangular sandwich plate are plotted in figure 3 for a
comparison with the discrete natural frequencies and modal loss factors computed by
the incremental approach used in [33]. The agreement at the discrete points obtained
with the incremental method is very good. Minor discrepancies (less than 6%) can
be observed in table 3 for both resonance frequencies and loss factors. These result
from different finite element discretization. Moreover, in the kinematic assumptions,
the normal stress is accounted in the core layer in our FEM while it is neglected in
the FEM implemented in [33].
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Table 2. Geometrical and material properties of the rectangular “Aluminium/ER
fluid/Aluminium” plate described in [33].

Plate Length Lx = 300 mm
Width Ly = 250 mm
Finite element mesh 60×50 elements

Elastic faces Young modulus E1 = E3 = 7× 1010 Pa
Poisson ratio ν1 = ν3 = 0.29
Density ρ1 = ρ3 = 2700 kg.m−3

Thickness h1 = 0.05 mm
h3 = 0.5 mm

ER fluid Shear modulus G∗

c(E) = i6900 + 15000E2

Poisson ratio ν2 = 0.5
Density ρ2 = 1700 kg.m−3

Thickness h2 = 0.5 mm

0 0.5 1 1.5 2 2.5 3 3.5

200

400

600

800

E (kV.mm−1)

f
(r
ad

.s
−
1
)

Resonance frequencies

0 0.5 1 1.5 2 2.5 3 3.5
0

0.01

0.02

0.03

0.04

E (kV.mm−1)

η
Loss factors

M1 : Continuous M1 : Incremental [33]
M2 : Continuous M2 : Incremental [33]
M3 : Continuous M3 : Incremental [33]
M4 : Continuous M4 : Incremental [33]
Homotopy iteration

Figure 3. Rectangular “Aluminium/ER fluid/Aluminium” sandwich plate.
Comparison of the first four resonance frequencies and loss factors computed by
means of the homotopy method (continuous solid/dashed or dotted lines) and the
incremental methods (coloured markers).

Note that points where series were computed are marked with a × to indicate the
number of iterations. One observes that 7 series computations are needed to plot the
variation of the first natural frequency f with respect to the variation of the electric
field intensity E.

4.2. Rubber sealed “Aluminium/MR fluid/Aluminium” sandwich beam with a
frequency independent constitutive law

The rectangular sandwich beam [36] presented in figure 4 is studied under clamped-free
(CF) boundary conditions. This study is based on the two-node beam element used
in [37]. The external elastic face layers (layers 1 and 3) are made of aluminium alloy
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Table 3. Rectangular “Aluminium/ER fluid/Aluminium” sandwich plate.
Comparison of the first four resonance frequencies, loss factors and relative errors.

E (kV.mm−1) Homotopy Incremental Relative error
method method [36]
f(rad.s−1) η f(rad.s−1) η f(%) η(%)

0.5 159.00 0.0371 155.53 0.037 2.23 0.27
354.98 0.0170 345.14 0.017 2.85 0.00
446.39 0.0135 430.36 0.014 3.72 3.57
641.72 0.0095 608.26 0.010 5.50 5.00

1.5 170.38 0.0274 169.37 0.028 0.60 2.14
367.48 0.0148 358.99 0.015 2.36 1.33
459.02 0.0121 444.21 0.012 3.33 0.83
654.63 0.0088 623.17 0.009 5.05 2.22

3.5 203.90 0.0102 202.40 0.010 0.74 2.00
415.04 0.0086 407.99 0.009 1.73 4.44
509.81 0.0078 494.27 0.008 3.14 2.50
709.39 0.0063 677.50 0.006 4.71 5.00

L

h1

h2

h3

br

b

Rubber

MR Fluid

Aluminium

Figure 4. Rubber sealed “Aluminium/MR fluid/Aluminium” sandwich beam
described in [36].

and the core layer (layer 2) is made of a MR fluid embedded in a silicon rubber sealant.
Their shear moduli are assumed to be independent from the frequency. The magnetic
field B is varied from 0 mT to 50 mT. The geometrical and material properties of the
MR sandwich beam are described in table 4.

As in [36], the core layer of the sandwich beam comprising the rubber seal and the
MR fluid is modelled as a homogeneous material layer. The equivalent shear modulus
is expressed as a combination of the moduli and widths of the two materials using the
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Table 4. Geometrical and material properties of the rubber sealed
“Aluminium/MR fluid/Aluminium” sandwich beam described in [36].

Beam Length L = 300 mm
Width b = 30 mm
Finite element mesh 200 elements

Elastic faces Young modulus Ef = 6.8× 1010 Pa
Density ρf = 2700 kg.m−3

Thickness hf = 1 mm

MR fluid Shear modulus G∗

c(B) = G∗

0
+G∗

1
(B)

Poisson ratio νc = 0.49
Density ρc = 3500 kg.m−3

Thickness hc = 1 mm

Rubber sealant Shear modulus Gr = 1.34× 106 Pa
Width br = 1.5 mm
Density ρr = 1233 kg.m−3

Table 5. Coefficients for the shear modulus formula modelling the viscoelastic
behaviour of the MR fluid in the preyield regime (from [36]).

a0 8.93× 105 Pa b0 1.86× 105 Pa
a1 49975 Pa.mT−1 b1 8124 Pa.mT−1

a2 −336.91 Pa.mT−2 b2 −90 Pa.mT−2

so-called “rule of mixture”:

G∗

c(B) = Gr

(

br
b

)

+G∗

MR(B)

(

1−
br
b

)

, (35)

where br and b are the widths of the rubber and beam respectively, and Gr and G∗

c are
the shear modulus of the rubber and MR fluid respectively. In the preyield regime,
the MR fluid exhibits a viscoelastic behaviour that can be modelled as [36]:

G∗

MR(B) =
(

a0 + a1B + a2B
2
)

+ i
(

b0 + b1B + b2B
2
)

, (36)

where the coefficients ai and bi are provided in table 5.
The homotopy 1 (see figure 1) is applied by splitting (36) into:

G∗

c(B) = G∗

0 +G∗

1(B), (37)

where

G∗

0 = G∗

c(0) = Gr

(

br
b

)

+ (a0 + ib0)

(

1−
br
b

)

, (38)

and

G∗

1(B) = B

(

1−
br
b

)

[

a1 + a2B + i(b1 + b2B)
]

. (39)

As discussed in subsection 3.2, the shear modulus (37) is split into:

G∗

1(B) = αG∗

2(B), (40)

where α is chosen as a simple real-valued scaling function of B such that F (Bmax) = 1:

α = F (B) =
B

Bmax

. (41)
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Homotopy iteration

Figure 5. Rubber sealed “Aluminium/MR fluid/Aluminium” sandwich beam.
Comparison of the first three resonance frequencies and loss factors computed by
means of the homotopy method (continuous solid/dashed or dotted lines) and the
incremental methods (coloured markers).

The complex-valued and field dependent function G∗

2(B) then satisfies:

G∗

2(B) = Bmax

(

1−
br
b

)

[

a1 + a2B + i(b1 + b2B)
]

. (42)

Under these assumptions, the nonlinear eigenproblem (7) is quadratic [30] in the field
intensity B.

Figure 5 plots the nonlinear branches of resonant frequencies and modal loss
factors computed in the full range of validity [0 mT, 50 mT] of the rheological law
using continuous solid, dashed and dotted lines. Continuous branches of solutions
presented in figure 5 reflect the nonlinearity of the constitutive law with respect to the
magnetic field intensity. Note that a unique branch of solutions suffices to describe
the specified range of intensity because the range of validity of the series is here larger
than 50 mT Resonant frequencies and loss factors computed for 0, 10, 20 and 30 mT
by means of the incremental approach [36] are plotted as well.

A decay in the loss factor of the first mode is observed for larger B. The
incremental method does not exhibit this decay because too few points were reported
in [36]. A dichotomy method applied to the Taylor series of the loss factor of the first
mode then indicates that the maximal damping occurs near to B ≃ 26.17 mT.

Numerical results are presented in table 6. A very good agreement with an error
less than 2% is obtained between the resonant frequencies. A good agreement and
similar trends are observed for the loss factors. One observes that the discrepancies on
the loss factors are of the same order for the first three modes. These are mainly due
to differences in the kinematic modelling. For instance, our model does not include
the shearing effect in the face layers.
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Table 6. Rubber sealed “Aluminium/MR fluid/Aluminium” sandwich beam.
Comparison of the first five resonance frequencies, loss factors and relative errors.

B (mT) Homotopy Incremental Relative error
method method [36]
f(Hz) η f(Hz) η f(%) η(%)

0 41.67 0.0548 42.38 0.047 1.68 16.60
227.42 0.0140 227.44 0.012 0.01 16.67
620.44 0.0046 616.92 0.004 0.57 15.00
1207.70 0.0022 1196.1 0.002 0.97 10.00
1990.22 0.0013 1962.9 0.001 1.39 30.00

10 44.24 0.0634 44.78 0.056 1.21 13.21
231.14 0.0184 230.95 0.017 0.08 8.24
623.85 0.0063 620.15 0.006 0.60 5.00
1210.93 0.0031 1199.1 0.003 0.99 3.33
1993.39 0.0019 1965.9 0.002 1.40 5.00

20 46.22 0.0669 46.65 0.059 0.92 13.39
234.22 0.0213 233.87 0.019 0.15 12.11
626.74 0.0076 622.88 0.007 0.62 8.57
1213.73 0.0038 1201.8 0.003 0.99 26.67
1996.09 0.0022 1968.5 0.002 1.40 10.00

30 47.73 0.0673 47.42 0.061 0.65 10.33
236.70 0.0229 235.24 0.021 0.62 9.05
629.12 0.0084 624.13 0.008 0.80 5.00
1216.02 0.0042 1203.9 0.004 1.01 5.00
1998.33 0.0025 1970.6 0.002 1.41 25.00

RiRe

br

he

hi

he

Figure 6. Rubber sealed “Aluminium/MRF 132DG/Aluminium” annular
sandwich plate.

4.3. Rubber sealed “Aluminium/MRF 132DG/Aluminium” annular sandwich plate
with a frequency dependent constitutive law

The annular sandwich plate [9] presented in figure 6 comprises two external elastic
layers made of aluminium alloy (layers 1 and 3) and a MR fluid core enclosed in
a silicon rubber sealant (layer 2). The geometrical and material properties of the
structure are reported in table 7. The annular plate is free at its inner edge and
simply supported at its outer edge (FS). This study is based on the four-node plate
element used in [34] with a radial mesh.
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Table 7. Geometrical and material properties of the rubber sealed
“Aluminium/MRF 132DG/Aluminium” annular sandwich plate described in [9].

Plate Outer radius Re = 250 mm
Inner radius Ri = 50 mm
Finite element mesh 16×40 elements, radial mesh

Elastic faces Young modulus Ef = 6.5× 1010 Pa
Density ρf = 2650 kg.m−3

Thickness hf = 1 mm

MR fluid Shear modulus G∗

MR
(f,B)

Poisson ratio ν = 0.49
Density ρf = 3500 kg.m−3

Thickness hc = 1 mm

Rubber sealant Shear modulus Gr = 1.34× 106 Pa
Width br = 2 mm
Density ρf = 1460 kg.m−3

Table 8. Coefficients of the frequency and magnetic field dependent constitutive
law (44)–(45) (from [9]).

a0 192161 Pa b0 45524.4 Pa
a1 30663.6 Pa.mT−1 b1 812.4 Pa.mT−1

a2 243.625 Pa.mT−2 b2 6.4412 Pa.mT−2

a3 0.00408 Hz−1 b3 0.00074 Hz−1

In [9], the rubber and the MR fluid are homogenized as a single material. In the
present FEM, we decide to implement them as two different materials.

On the one hand, the shear modulus of the MR fluid is modelled by a frequency
and magnetic field dependent constitutive law [9]:

G∗

MR(f,B) = G′(f,B) + iG′′(f,B), (43)

with

G′(f,B) =
(

a0 + a1B + a2B
2
) (

1− e−a3f
)

, (44)

and

G′′(f,B) =
(

b0 + b1B + b2B
2
) (

1− e−b3f
)

, (45)

where the frequency f is in Hz and the magnetic field intensity B varies in
[0 mT, 90 mT]. The coefficients ai and bi are provided in table 8.

On the other hand, the rubber seal is modelled by a viscoelastic material, the
shear modulus of which is described by [9]:

Gr(f) = 1340000 + i
(

152511 + 68.31f + 0.475f2
)

, (46)

where f is the frequency in Hz. Note that, the variations of the shear modulus
regarding the frequency are negligible in the range of frequencies from 0 Hz to 100 Hz,
thus Gr can be approximated by the constant law:

Gr = 1340000 + i152511. (47)
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To apply the proposed homotopy method, the frequency and magnetic field
dependent constitutive law (43) is split into:

G∗

MR(f,B) = G∗

0 +G∗

1(f,B), (48)

where G∗

0 = G∗

MR(0, 0) = 0 and G∗

1(f,B) = G∗

MR(f,B). Referring to section 3, (48),
we propose the scaling:

G∗

1(f,B) = αG∗

2(f,B), (49)

where the parameter α of the second homotopy is chosen as:

α = F (B) =
a0 + a1B + a2B

2

a0 + a1Bmax + a2B2
max

. (50)

The second homotopy method is then run considering:

G∗

2(f,B) = κ
[

(

1− e−a3f
)

+ ig(B)
(

1− e−b3f
)

]

, (51)

where

κ = a0 + a1Bmax + a2B
2
max, (52)

and

g(B) =
b0 + b1B + b2B

2

a0 + a1B + a2B2
. (53)

Under these assumptions, (7) is a rational eigenvalue problem [30, 38].
Computed frequencies and loss factors are reported in table 9. Results obtained by

the double homotopy method (continuous variation of B) are in a very good agreement
with those obtained by the incremental method (prescribed values for B, [9]). The
differences in the loss factors result from the differences in the finite element modelling
of the heterogeneous core properties.

Continuous branches of solutions presented in figure 7 reflect the nonlinearity
of the constitutive law with respect to the magnetic field intensity. In particular, a
decay of the loss factor of the first mode is observed for larger B. One notices that the
incremental method does not exhibit this decay because too few points were reported
in [9]. A dichotomy method applied to the Taylor series of the loss factor of the first
mode then indicates that the maximal damping occurs near to B ≃ 73.43 mT.

5. Conclusion

The vibration analysis of smart rheological sandwich structures is carried out through
a combination of numerical methods [22]. The finite element method is applied to the
free vibration analysis in order to write the complex nonlinear eigenvalue problem in
a matrix form. The homotopy method allows for the solution of such a complex
eigenvalue problem. In addition, the continuous nature of any homotopy can be
accounted through Taylor series approximations and automatic differentiation that
provides generality to the proposed nonlinear continuous eigensolver. These methods
allow for the implementation of a numerical eigenvalue solver that notably allows for
to the analysis of the continuous variation of the resonant frequencies and the loss
factors with respect to the continuous variation of one of the modelling parameters.

The proposed method is exemplified on three different ER and MR sandwich
structures, considering the continuous variations of ER/MR laws proposed in the
literature with respect to their field intensity parameter and/or the frequency.
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Table 9. Rubber sealed “Aluminium/MRF 132DG/Aluminium” annular plate.
Comparison of the first three resonance frequencies, loss factors and relative errors.

B ( mT) Homotopy Incremental Relative error
method method [9]
f( Hz) η f( Hz) η f(%) η(%)

0 15.93 0.039 15.67 0.040 1.66 2.50
43.14 0.021 41.96 0.017 2.81 23.53
78.52 0.018 71.21 0.018 10.27 0.00

30 18.74 0.124 18.67 0.123 0.37 0.81
48.07 0.076 47.20 0.077 1.84 1.30
87.91 0.073 85.79 0.071 2.47 2.82

50 21.25 0.167 22.06 0.160 3.67 4.38
52.38 0.109 52.09 0.105 0.56 3.81
96.17 0.105 94.62 0.096 1.64 9.38

90 27.13 0.182 28.87 0.174 6.03 4.60
62.94 0.143 62.77 0.127 0.27 12.60
116.31 0.135 115.29 0.119 0.88 13.45

0 10 20 30 40 50 60 70 80 90
0

50

100

B ( mT)

f
(
H
z)

Resonance frequencies

0 10 20 30 40 50 60 70 80 90
0

0.05

0.1

0.15

0.2

B ( mT)

η
Loss factors

M1 : Continuous M1 : Incremental [9]
M2 : Continuous M2 : Incremental [9]
M3 : Continuous M3 : Incremental [9]
Homotopy iteration

Figure 7. Rubber sealed “Aluminium/MRF 132DG/Aluminium” annular plate.
Comparison of the first three resonance frequencies and loss factors computed by
means of the homotopy method (continuous solid/dashed or dotted lines) and the
incremental methods (coloured markers).

Calculation are carried out with respect to actual continuous variations of the intensity
parameters. The continuous variations we present are in very good agreement with
the related published discrete results. Where possible, we extended the computation
of the resonant frequencies and loss factors over the whole range of validity of the
constitutive law.

For a given mode, this continuous method allows for the exploration of the effects
of the field intensity on the structural behaviour over a broad range. It notably
highlights possible decays for larger field intensity variations, that were not exhibited
in [9, 36] that use the incremental approach and a very few points to represent the
loss factor variations. The maximal damping can then be determined by applying
the dichotomy method to its Taylor series with little additional computational efforts.
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The proposed homotopy based method is thus of great interest for the design and the
vibration control of smart materials and structures. The same methodology can be
applied to the analysis of sandwich structures with respect to temperature variations.
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