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Abstract

In the early nineteenth century, most mathematicians believed that a contin-
uous function has derivative at a significant set of points. A. M. Ampère even
tried to give a theoretical justification for this (within the limitations of the
definitions of his time) in his paper from 1806. In a presentation before the
Berlin Academy on July 18, 1872 Karl Weierstrass shocked the mathematical
community by proving this conjecture to be false. He presented a function
which was continuous everywhere but differentiable nowhere. The function
in question was defined by

W (x) =
∞∑

k=0

ak cos(bkπx),

where a is a real number with 0 < a < 1, b is an odd integer and ab > 1+3π/2.
This example was first published by du Bois-Reymond in 1875. Weierstrass
also mentioned Riemann, who apparently had used a similar construction
(which was unpublished) in his own lectures as early as 1861. However,
neither Weierstrass’ nor Riemann’s function was the first such construction.
The earliest known example is due to Czech mathematician Bernard Bolzano,
who in the years around 1830 (published in 1922 after being discovered a few
years earlier) exhibited a continuous function which was nowhere differen-
tiable. Around 1860, the Swiss mathematician Charles Cellérier also discov-
ered (independently) an example which unfortunately wasn’t published until
1890 (posthumously).
After the publication of the Weierstrass function, many other mathemati-
cians made their own contributions. We take a closer look at many of these
functions by giving a short historical perspective and proving some of their
properties. We also consider the set of all continuous nowhere differentiable
functions seen as a subset of the space of all real-valued continuous functions.
Surprisingly enough, this set is even “large” (of the second category in the
sense of Baire).
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Chapter 1

Introduction

I turn away with fear and horror from the lamentable plague of continuous
functions which do not have derivatives...

– Hermite, letter to Stieltjes dated 20 May 18931.

Judging by the quote above, some mathematicians didn’t like the possibility
of continuous functions which are nowhere differentiable. Why was these
functions so poorly received?

Observing the situation today, many students still find it strange that there
exists a continuous function which is nowhere differentiable. When I first
heard of it myself I was a bit perplexed, at least by the sheer magnitude of
the number of such functions that actually exist. Usually beginning students
of mathematics get the impression that continuous functions normally are
differentiable, except maybe at a few especially “nasty” points. The standard
example of f(x) = |x|, which only lacks derivative at x = 0, is one such
function. This was also the situation for most mathematicians in the late
18th and early 19th century. They were not interested in the existence of
the derivative of some hypothetical function but rather just calculating the
derivative as some explicit expression. This was usually successful, except at
a few points in the domain where the differentiation failed. These actions led
to the belief that continuous functions have derivatives everywhere, except at
some particular points. Ampère even tried to give a theoretical justification
for this statement in 1806 (cf. Ampère [1]), although it is not exactly clear

1Quote borrowed from Pinkus [57].
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if he attempted to prove this for all continuous functions or for some smaller
subset (for further discussion see Medvedev [48], pages 214-219).
Therefore, with all this in mind, the reaction of a 19th century mathematician
to the news of these functions doesn’t seem that strange anymore. These
functions caused a reluctant reconsideration of the concept of a continuous
function and motivated increased rigor in mathematical analysis. Nowadays
the existence of these functions is fundamental for “new” areas of research
and applications like, for example, fractals, chaos and wavelets.
In this report we present a chronological review of some of the continu-
ous nowhere differentiable functions constructed during the last 170 years.
Properties of these functions are discussed as well as traits of more general
collections of nowhere differentiable functions.
The contents of the thesis is as follows. We start in Chapter 2 with sequences
and series of functions defined on some interval I ⊂ R and convergence of
those. This is important for the further development of the subject since
many constructions are based on infinite series. In Chapter 3 we take a
stroll through the last couple of centuries and present some of the functions
constructed. We do this in a concise manner, starting with a short historical
background before giving the construction of the function and showing that
it has the desired properties. Some proofs has been left out for various
reasons, but in those cases a clear reference to a proof is given instead.
Chapter 4 continues with an examination of the set of all continuous nowhere
differentiable functions. It turns out that the “average” continuous function
normally is nowhere differentiable and not the other way around. We do this
both by a topological argument based on category and also by a measure
theoretic result using prevalence (considered by Hunt, Sauer and York).
Table 1.1 gives a short timeline for development in the field of continuous
nowhere differentiable functions.
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Discoverer Year Page What
B. Bolzano ≈1830 11 First known example
M. Ch. Cellérier ≈1830 17 Early example
B. Riemann ≈1861 18 “Nondifferentiable” function
K. Weierstrass 1872 20 First published example
H. Hankel 1870 29 “Condensation of singularities”
H. A. Schwarz 1873 28 Not differentiable on a dense subset
M. G. Darboux 1873-5 28 Example (’73) and generalization (’75)
U. Dini 1877 25 Large class including Weierstrass
K. Hertz 1879 27 Generalization of Weierstrass function
G. Peano 1890 32 Space-filling curve (nowhere differentiable)
D. Hilbert 1891 33 Space-filling curve (nowhere differentiable)
T. Takagi 1903 36 Easier (than Weierstrass) example
H. von Koch 1904 39 Continuous curve with tangent nowhere
G. Faber 1907-8 41 “Investigation of continuous functions”
W. Sierpiński 1912 44 Space-filling curve (nowhere differentiable)
G. H. Hardy 1916 27 Generalization of Weierstrass conditions
K. Knopp 1918 45 Generalization of Takagi-type functions
M. B. Porter 1919 27 Generalization of Weierstrass function
K. Petr 1922 47 Algebraic/arithmetic example
A. S. Besicovitch 1924 78 No finite or infinite one-sided derivative
B. van der Waerden 1930 36 Takagi-like construction
S. Mazurkiewicz 1931 74 ND[0, 1] is of the second category
S. Banach 1931 74 ND[0, 1] is of the second category
S. Saks 1932 78 The set of Besicovitch-functions is Ist category
I. J. Schoenberg 1938 48 Space-filling curve (nowhere differentiable)
W. Orlicz 1947 52 Intermediate result
J. McCarthy 1953 55 Example with very simple proof
G. de Rham 1957 36 Takagi generalization
H. Katsuura 1991 57 Example based on metric-spaces
M. Lynch 1992 62 Example based on topology
B. R. Hunt 1994 78 ND[0, 1] is a prevalent set
L. Wen 2002 64 Example based on infinite products

Table 1.1: Timelime (partial) of the development in the field of continuous
nowhere differentiable functions.
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Chapter 2

Series and Convergence

Many constructions of nowhere differentiable continuous functions are based
on infinite series of functions. Therefore a few general theorems about series
and sequences of functions will be of great aid when we continue investigating
the subject at hand. First we need a clear definition of convergence in this
context.

Definition 2.1. A sequence Sn of functions on the interval I is said to
converge pointwise to a function S on I if for every x ∈ I

lim
n→∞

Sn(x) = S(x),

that is

∀x ∈ I ∀ε > 0∃N ∈ N ∀n ≥ N |Sn(x)− S(x)| < ε.

The convergence is said to be uniform on I if

lim
n→∞

sup
x∈I

|Sn(x)− S(x)| = 0,

that is

∀ε > 0∃N ∈ N ∀n ≥ N sup
x∈I

|Sn(x)− S(x)| < ε.

Uniform convergence plays an important role to whether properties of the
elements in a sequence are transfered onto the limit of the sequence. The fol-
lowing two theorems can be of assistance when establishing if the convergence
of a sequence of functions is uniform.
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Theorem 2.1. The sequence Sn converges uniformly on I if and only if it
is a uniformly Cauchy sequence on I, that is

lim
m,n→∞

sup
x∈I

|Sn(x)− Sm(x)| = 0

or
∀ε > 0∃N ∈ N ∀m,n ≥ N sup

x∈I
|Sn(x)− Sm(x)| < ε.

Proof. First, assume that Sn converges uniformly to S on I, that is

∀ε > 0∃N ∈ N ∀n ≥ N sup
x∈I

|Sn(x)− S(x)| < ε

2
.

For such ε > 0 and for m,n ∈ N with m,n ≥ N we have

sup
x∈I

|Sn(x)− Sm(x)| ≤ sup
x∈I

(|Sn(x)− S(x)|+ |S(x)− Sm(x)|)

≤ sup
x∈I

|Sn(x)− S(x)|+ sup
x∈I

|S(x)− Sm(x)| < 2
ε

2
= ε.

Conversely, assume that {Sn} is a uniformly Cauchy sequence, i.e.

∀ε > 0∃N ∈ N ∀m,n ≥ N sup
x∈I

|Sn(x)− Sm(x)| < ε

2
.

For any fixed x ∈ I, the sequence {Sn(x)} is clearly a Cauchy sequence of real
numbers. Hence the sequence converges to a real number, say S(x). From
the assumption and the pointwise convergence just established we have

∀ε > 0∃N ∈ N ∀m,n ≥ N sup
x∈I

|Sn(x)− Sm(x)| < ε

2

and
∀ε > 0∀x ∈ I ∃mx > N |Smx(x)− S(x)| < ε

2
.

If ε > 0 is arbitrary and n > N , then

sup
x∈I

|Sn(x)− S(x)| ≤ sup
x∈I

(|Sn(x)− Smx(x)|+ |Smx(x)− S(x)|) < ε

2
+
ε

2
= ε.

Hence the convergence of Sn to S is uniform on I.
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Theorem 2.2 (Weierstrass M-test). Let fk : I → R be a sequence of
functions such that supx∈I |fk(x)| ≤ Mk for every k ∈ N. If

∑∞
k=1Mk < ∞,

then the series
∑∞

k=1 fk(x) is uniformly convergent on I.

Proof. Let m,n ∈ N with n > m. Then

sup
x∈I

|Sn(x)− Sm(x)| = sup
x∈I

∣∣∣∣∣
n∑

k=1

fk(x)−
m∑

k=1

fk(x)

∣∣∣∣∣
= sup

x∈I

∣∣∣∣∣
n∑

k=m+1

fk(x)

∣∣∣∣∣ ≤
n∑

k=m+1

sup
x∈I

|fk(x)|

≤
n∑

k=m+1

Mk =
n∑

k=1

Mk −
m∑

k=1

Mk.

Since M =
∑∞

k=1Mk <∞ it follows that

n∑
k=1

Mk −
m∑

k=1

Mk →M −M = 0 as m,n→∞

which gives that {Sn} is a uniformly Cauchy sequence on I. Using Theo-
rem 2.1 we obtain that the series

∑∞
k=1 fk(x) is uniformly convergent on

I.

We are often interested in establishing the continuity of a limit of a sequence
of continuous functions. To accomplish this, the following theorem and its
corollary can be helpful.

Theorem 2.3. If {Sn} is a sequence of continuous functions on I and Sn

converges uniformly to S on I, then S is a continuous function on I.

Proof. Let x0 ∈ I be arbitrary. By assumption we have

∀ε > 0∃N ∈ N ∀n ≥ N sup
x∈I

|Sn(x)− S(x)| < ε

3

and

∀ε > 0∃δ > 0 such that |x− x0| < δ ⇒ |Sn(x)− Sn(x0)| <
ε

3
.
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Let ε > 0 be given, x ∈ I, n ∈ N with n > N and |x− x0| < δ. Then

|S(x)−S(x0)| ≤ |S(x)−Sn(x)|+ |Sn(x)−Sn(x0)|+ |Sn(x0)−S(x0)| < 3
ε

3
= ε

and therefore S is continuous at x0. Since x0 ∈ I was arbitrary, S is contin-
uous on I.

Corollary 2.4. If fk : I → R is a continuous function for every k ∈ N
and

∑∞
k=1 fk(x) converges uniformly to S(x) on I, then S is a continuous

function on I.
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Chapter 3

Functions Through the Ages

3.1 Bolzano function (≈1830; published in

1922)

Probably the first example of a continuous nowhere differentiable function
on an interval is due to Czech mathematician Bernard Bolzano. The his-
tory behind this example is filled with unfortunate circumstances. Due to
these circumstances, Bolzano’s manuscript with the name “Functionenlehre”,
which was written around 1830 and contained the function, wasn’t published
until a century later in 1930. The publication came to since in 1920, after
the first World War, another Czech mathematician Martin Jašek discov-
ered a manuscript in the National Library of Vienna belonging to Bernard
Bolzano (a photocopy is also in the archives of the Czech Academy of Sci-
ences). It was named “Functionenlehre” and it was dated 1830. Originally it
was supposed to be a part of Bolzano’s more extensive work “Grössenlehre”.
The manuscript “Functionenlehre” was published in Prague in 1930 (in the
“Schriften I”), having 183 pages and containing an introduction and two
parts. Bolzano proved in it that the set of points where the function is non-
differentiable is dense in the interval where it is defined. The continuity was
also deduced, however not completely correct. The full story on “Functio-
nenlehre” can be found in Hyksǒvá [33] who also has written the following:

The first lecture of M. Jašek reporting on Functionenlehre
was given on December 3, 1921. Already on February 3, 1922
Karel Rychĺık presented to KČSN [Royal Czech Science Soci-
ety] his treatise [61] where the correct proof of the continuity of

11



Bolzano’s function was given as well as the proof of the assertion
that this function does not have a derivative at any point of the
interval (a,b) (finite or infinite). The same assertion was proved
by Vojtěch Jarńık (1897 - 1970) at the same time but in a differ-
ent way in his paper [34]. Both Jarńık and Rychĺık knew about
the work of the other. Giving reference to Rychĺık’s paper, Jarńık
did not prove the continuity of Bolzano’s function; on the other
hand, Rychĺık cited the work of Jarńık (an idea of another way
to the same partial result).

Unlike many other constructions of nowhere differentiable functions, Bolz-
ano’s function is based on a geometrical construction instead of a series ap-
proach. The Bolzano function, B, is constructed as the limit of a sequence
{Bk} of continuous functions. We can choose the domain of B1 (which will
be the domain of B as well) and the range of B1. Let the interval [a, b] be
the desired domain and [A,B] the desired range. Each piecewise linear and
continuous function in the sequence is defined as follows.

(i) B1(x) = A+ B−A
b−a

(x− a);

(ii) B2(x) is defined on the intervals

I1 =

[
a, a+

3

8
(b− a)

]
, I2 =

[
a+

3

8
(b− a),

1

2
(a+ b)

]
,

I3 =

[
1

2
(a+ b), a+

7

8
(b− a)

]
, I4 =

[
a+

7

8
(b− a), b

]
as the piecewise linear function having the values

B2(a) = A, B2

(
a+

3

8
(b− a)

)
= A+

5

8
(B − A),

B2

(
1

2
(a+ b)

)
= A+

1

2
(B − A),

B2

(
a+

7

8
(b− a)

)
= B +

1

8
(B − A), B2(b) = B

at the endpoints;
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(iii) B3(x) is constructed by the same procedure as in (ii) on each of the
four subintervals Ii (with the corresponding values for a, b, A and B).
This continues for k = 4, 5, 6, . . . and the limit of Bk(x) as k → ∞ is
the Bolzano function B(x).

Bk(x)

x

10

20

10 20

(a) B1 and B2.

Bk(x)

x

10

20

10 20

(b) B1 (dotted), B2 (dashed) and
B3 (whole).

Figure 3.1: The three first elements in the “Bolzano” sequence {Bk(x)} with
[a, b] = [0, 20] and [A,B] = [4, 16].

A fitting closing remark, before the proof of continuity and nowhere differ-
entiability, can be found in Hyksǒvá [33]:

“Already the fact that it occurred to Bolzano at all that such a
function might exist, deserves our respect. The fact that he actu-
ally succeeded in its construction, is even more admirable”.

Theorem 3.1. The Bolzano function B is continuous and nowhere differ-
entiable on the interval [a, b].

Proof. First we want to show that the function B is continuous. For fixed
k ∈ N consider the function Bk. Let us find the slopes Mk = {Mk,m} of each
of the linear functions on the subintervals. Not to have too many indices
we will just write Mk instead of Mk,m. For k = 1 it is immediate from the
definition that M1 = B−A

b−a
for all of [a, b]. Let k ≥ 2. For each linear part

[ak, bk] of Bk we have the following

13



1. For I = [t1, t2] =
[
ak, ak + 3

8
(bk − ak)

]
,

M
(1)
k+1 =

Bk(t2)−Bk(t1)

t2 − t1
=

5
8
(Bk − Ak)
3
8
(bk − ak)

=
5

3

Bk − Ak

bk − ak

=
5

3
Mk;

2. for I = [t2, t3] =
[
ak + 3

8
(bk − ak), 1

2
(ak + bk)

]
,

M
(2)
k+1 =

Bk(t3)−Bk(t2)

t3 − t2
=

(
1
2
− 5

8

)
(Bk − Ak)(

1
2
− 3

8

)
(bk − ak)

=
−1

8
1
8

Bk − Ak

bk − ak

= −Mk;

3. for I = [t3, t4] =
[

1
2
(ak + bk), ak + 7

8
(bk − ak)

]
,

M
(3)
k+1 =

Bk(t4)−Bk(t3)

t4 − t3
=

(
1+ 1

8
− 1

2

)
(Bk−Ak)(

7
8
− 1

2

)
(bk−ak)

=
5
8
3
8

Bk−Ak

bk−ak

=
5

3
Mk;

4. for I = [t4, t5] =
[
ak + 7

8
(bk − ak), bk

]
,

M
(4)
k+1 =

Bk(t5)−Bk(t4)

t5 − t4
=

−1
8
(Bk − Ak)(

1− 7
8

)
(bk − ak)

=
−1

8
1
8

Bk − Ak

bk − ak

= −Mk.

Let {In,k} = {[In(sk), In(tk)]} be the collection of subintervals of [a, b] where
Bn is linear and define

Ln = sup
I∈{In+1,k}

(I(tk)− I(sk)) and Mn = sup
I∈{In+1,k}
i=1,2,3,4

|M (i)
n (I)|.

That is, Ln is the maximal length of an interval where Bn+1 is linear and Mn

is the maximum slope (to the absolute value) of Bn+1. Clearly

Ln ≤
(

3

8

)n+1

|b− a| and Mn ≤
(

5

3

)n+1 ∣∣∣∣B − A

b− a

∣∣∣∣
which gives that the maximum increase/decrease of the function from step

n to n+ 1 is bounded by MnLn ≤
(

5
8

)n+1 |B − A|. Hence, for k ∈ N,

sup
x∈[a,b]

|Bk+1(x)−Bk(x)| ≤
(

5

8

)k+1

|B − A|.
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Let m,n ∈ N with m > n. We have

sup
x∈[a,b]

|Bm(x)−Bn(x)| ≤ sup
x∈[a,b]

(
m∑

k=n+1

|Bk(x)−Bk−1(x)|

)

≤
m∑

k=n+1

sup
x∈[a,b]

|Bk(x)−Bk−1(x)|

≤
m∑

k=n+1

(
5

8

)k

|B − A|

= |B − A|

(
m∑

k=1

(
5

8

)k

−
n∑

k=1

(
5

8

)k
)

→ |B − A|
(

5

3
− 5

3

)
= 0 as m,n→∞.

Thus {Bk} is a uniformly Cauchy sequence on the interval [a, b] and since
each Bk is continuous it follows from Theorems 2.1 and 2.3 that Bolzano’s
function is continuous on [a, b].
Secondly, we show that B is not differentiable at any x ∈ [a, b]. Again, let
{In,k} = {[In(sk), In(tk)]} be the collection of subintervals of [a, b] where Bn

is linear and define M as the set of all endpoints in {In,k}, i.e.

M = {s, t | [s, t] ∈ {In,k}} .

We show that M is dense in [a, b]. That is, for any x0 ∈ [a, b], ∃xn ∈M such
that xn → x0. Let x0 ∈ [a, b] be arbitrary but fixed. If x0 = b we are done
since b ∈M . Assume that x0 6= b, we proceed as follows.

(i) Step 1: let L = b− a and define

J
(0)
0 =

[
a, a+

3

8
L

)
, J

(1)
0 =

[
a+

3

8
L, a+

1

2
L

)
,

J
(2)
0 =

[
a+

1

2
L, a+

7

8
L

)
and J

(3)
0 =

[
a+

7

8
L, b

)
.

Clearly there exists i0 ∈ {0, 1, 2, 3} such that x0 ∈ J
(i0)
0 . We take

J0 = J
(i0)
0 .
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(ii) Step n: we have x0 ∈ In−1 = [an, bn]. Let Ln = bn − an and define

J (0)
n =

[
an, an +

3

8
Ln

)
, J (1)

n =

[
an +

3

8
Ln, an +

1

2
Ln

)
,

J (2)
n =

[
an +

1

2
Ln, an +

7

8
Ln

)
and J (3)

n =

[
an +

7

8
Ln, bn

)
.

As before, there exists in ∈ {0, 1, 2, 3} such that x0 ∈ J
(in)
n . We take

Jn = J
(in)
n .

Hence M is dense in [a, b] since

|x0 − an+1| ≤
(

3

8

)n+1

|b− a| → 0 as n→∞1.

Now we show that B is non-differentiable for every x0 ∈M . Let x0 ∈M be
arbitrary but fixed, we consider two cases that exhaust all possibilities.
For x0 = a: Let xn = a +

(
3
8

)n |b − a|. Then xn → a as n → ∞ and
xn ∈ M for every n ∈ N. By the construction of the function B it is clear
that B(xn) = Bn+1(xn) for every n ∈ N. Also, B(a) = A and Bn+1(xn) =
A+

(
5
3

)n (3
8

)n |b− a|. Hence

B(xn)−B(a)

xn − a
=
A+

(
5
3

)n (3
8

)n |b− a| − A(
3
8

)n |b− a|
=

(
5

3

)n

→∞ as n→∞

and therefore B′(x0) does not exist.

For x0 ∈ M \ {a}: let xn = x0 −
(

1
8

)n+q |b − a|, q ∈ N. Since x0 ∈ M ,
there exists r ∈ N such that B(x0) = Bp(x0) for all p ≥ r. We can choose
q > r so that xn ∈ (a, b] for every n ∈ N. From the construction of B we

see that B(xn) = Bn+1(xn) = Bn(x0) + (−1)nK
(

1
8

)n+q
where K ∈ R with

K ≥ |b − a|/|B − A| 6= 0. Moreover, since q > r, B(x0) = Bn(x0) for every
n ∈ N. This implies that

(B(x0)−Bn(x0)) 8n+q = (Bn(x0)−Bn(x0)) 8n+q = 0.

So for n ∈ N,

B(x0)−B(xn)

x0 − xn

= 8n+q

(
B(x0)−Bn(x0)− (−1)nK

(
1

8

)n+q
)

= (B(x0)−Bn(x0)) 8n+q − (−1)nK = (−1)n+1K.

1And also |x0 − bn+1| → 0 as n→∞.
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But (−1)n+1K does not converge as n→∞ and thus B′(x0) does not exist.
In no way is it clear from this that B is nowhere differentiable, only that it is
non-differentiable on a dense subset of [a, b] (which theoretically means that
it might still be possible that B is differentiable almost everywhere). We will
not complete the proof here but merely give a reference: the complete proof
can be found in Jarńık [34].

3.2 Cellérier function (≈1860; published in

1890)

Charles Cellérier had proposed the function C defined as

C(x) =
∞∑

k=1

1

ak
sin(akx), a > 1000

earlier than 1860 but the function wasn’t published until 1890 (posthu-
mously) in Cellérier [10]. When the manuscripts were opened after his death
they were found to be containing sensational material. In an undated folder
(according to the historians it is from around 1860) with heading

“Very important and I think new. Correct. Can be published as
it is written.”

there was a proof of the fact that the function C is continuous and nowhere
differentiable if a is a sufficiently large even number. The publication of
Cellériers example in 1890 came as only a curiosity since it was already
generally known from Weierstrass (see Section 3.4). Cellérier’s function is
strikingly similar to Weierstrass’ function and its nowhere differentiability
follows from Hardy’s generalization of that function (see the remark to The-
orem 3.4).
In Cellérier’s paper (which, roughly translated, has the title “Notes on the
fundamental principles of analysis”) there is a section called “Example de
fonctions faisant exception aux règles usuelles” – “Example of functions mak-
ing departures from the usual rules”. In this section Cellérier proposed the
function C defined above and states that this function will provide an ex-
ample of a function that is continuous, differentiable nowhere and never has
any periods of growth or decay.
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Cellérier’s original condition on a was a > 1000 where a is an even integer
(for nowhere differentiability) or a > 1000 where a is an odd integer (for no
periods of growth or decay). According to Hardy [27], for the case of nowhere
differentiability, the condition can be weakened to a > 1 (not necessarily an
integer).

C(x)

x

0.5

−0.5

2.0

Figure 3.2: Cellerier’s function C(x) with a = 2 on [0, π].

Theorem 3.2. The Cellérier function

C(x) =
∞∑

k=1

1

ak
sin(akx), a > 1

is continuous and nowhere differentiable on R.

Proof. The continuity of C follows exactly like in the proof for Weierstrass’
function (Theorem 3.4). That C is nowhere differentiable follows from Hardy
[27] (see the remark to Theorem 3.4) since a · a−1 ≥ 1 and that if g(x) is
nowhere differentiable than so is g(x/π).

3.3 Riemann function (≈1861)

In a thesis from 1854 (Habilitationsschrift), Riemann [59] attempted to find
necessary and sufficient conditions for representation of a function by Fourier
series. In this paper he also generalized the definite integral and gave an
example of a function that between any two points is discontinuous infinitely

18



often but still is integrable (with respect to the Riemann-integral). The
function he defined was

f(x) =
∞∑

k=1

(nx)

n2
, where (x) =

{
0, if x = p

2
, p ∈ Z

x− [x], elsewhere,

and [x] is the integer part of x. This function is interesting in this context for
another reason. Consider, for x ∈ [a, b], the function F : [a, b] → R defined
by the indefinite integral of f ,

F (x) =

∫ x

a

f(τ) dτ .

It can quite easily be seen that this function is continuous and it is also
clear that it is not differentiable on a dense subset of [a, b]. This, however,
is not the function we will be concerned with here. What we will refer to as
Riemann’s function in this framework is the function R : R → R defined by

R(x) =
∞∑

k=1

1

k2
sin(k2x).

Interesting to note is that there seems to be no other known sources for the
claim that this was Riemann’s construction than those that can be traced
back to Weierstrass (cf. Butzer and Stark [7], Ullrich [74] and Section 3.4).
Riemann’s function isn’t actually a nowhere differentiable function. It has
been shown that R possess a finite derivative (R′(x0) = −1

2
) at points of the

form

x0 = π
2p+ 1

2q + 1
, p, q ∈ Z.

These points however, are the only points where R has a finite derivative (cf.
Gerver [24], [25] and Hardy [27] or for a more concise proof based on number
theory see Smith [71]).
According to Weierstrass, Riemann used this function as an example of a
“nondifferentiable” function in his lectures as early as 1861. It is unclear
whether he meant that the function was nowhere differentiable or something
else. Riemann claimed to have a proof, obtained from the theory of elliptic
functions, but it was never presented nor was it found anywhere in his notes
after his death (cf. Neuenschwander [49] and Segal [68]).
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R(x)

x

1.0

−1.0

2.0 4.0

Figure 3.3: Riemann’s function R on [−1, 5].

Theorem 3.3. The Riemann function

R(x) =
∞∑

k=1

1

k2
sin(k2x)

is continuous on all of R and only has a derivative at points of the form

x0 = π
2p+ 1

2q + 1
, p, q ∈ Z.

Proof. We start with showing that the function R is continuous. Since∑∞
k=1

1
k2 = π2

6
< ∞ and supx∈R | 1

k2 sin(k2x)| = 1
k2 , the Weierstrass M-test

(Theorem 2.2) proves that the convergence is uniform and the Corollary 2.4
gives the continuity of R on R. Secondly, the only points where R has a
finite derivative (cf. Gerver [24], [25] and Hardy [27] or Smith [71]) is points
of the form

x0 = π
2p+ 1

2q + 1
, p, q ∈ Z.

3.4 Weierstrass function (1872; published in

1875 by du Bois-Reymond)

On July 18, 1872 Karl Weierstrass presented in a lecture at the Royal Aca-
demy of Science in Berlin an example of a continuous nowhere differentiable
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function,

W (x) =
∞∑

k=0

ak cos(bkπx),

for 0 < a < 1, ab > 1 + 3π/2 and b > 1 an odd integer. On the lecture
Weierstrass said

As I know from some pupils of Riemann, he as the first one
(around 1861 or earlier) suggested as a counterexample to Am-
père’s Theorem [which perhaps could be interpreted 2 as: every
continuous function is differentiable except at a few isolated poi-
nts]; for example, the function R does not satisfy this theorem.
Unfortunately, Riemann’s proof was unpublished and, as I think,
it is neither in his notes nor in oral transfers. In my opinion
Riemann considered continuous functions without derivatives at
any point, the proof of this fact seems to be difficult...

Weierstrass’ function was the first continuous nowhere differentiable function
to be published, which happened in 1875 by Paul du Bois-Reymond [19].
At this time, du Bois-Reymond was a professor at Heidelberg University in
Germany and in 1873 he sent a paper to Borchardt’s Journal [“Journal für
die reine und angewandte Mathematik”]. This paper dealt with the function
Weierstrass had discussed earlier (among several other topics). Borchardt
gave the paper to Weierstrass to read through. Weierstrass wrote in a letter
to du Bois-Reymond (dated 23 of November, 1873; cf. Weierstrass [77]) that
he had made no new progress, except for some remarks about Riemann’s
function. In the letter, du Bois-Reymond had Weierstrass’ function presented
in the form

f(x) =
∞∑

k=0

sin(anx)

bn
,

a

b
> 1,

which apparently was changed before the paper was published. Du Bois-
Reymond accepted Weierstrass’ remarks and put them in his paper together
with some more historical notes about the subject and in 1875 the paper was
published in Borchardt’s Journal.
Since this was the first published continuous nowhere differentiable function
it has been regarded by many as the first such function exhibited. This
regardless of the fact that Weierstrass’ function was not the earliest such

2See Medvedev [48], pages 214-219.
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construction. Several others3 had done it earlier, although non of those are
believed to have been published before the publication of the Weierstrass
function.

W (x)

x

1.0

−1.0

1.0

2.0

Figure 3.4: Weierstrass’ function W with a = 1
2

and b = 5 on [0, 3].

In 1916, Hardy [27] proved that the function W defined above is continuous
and nowhere differentiable if 0 < a < 1, ab ≥ 1 and b > 1 (not necessarily an
odd integer).

Theorem 3.4. The Weierstrass function,

W (x) =
∞∑

k=0

ak cos(bkπx),

for 0 < a < 1, ab ≥ 1 and b > 1, is continuous and nowhere differentiable on
R.

Proof. Starting with establishing the continuity, observe that 0 < a < 1
implies

∑∞
k=0 a

k = 1
1−a

< ∞. This together with supx∈R |an cos(bnπx)| ≤ an

gives, using the Weierstrass M-test (Theorem 2.2), that
∑∞

k=0 a
n cos(bnπx)

converges uniformly to W (x) on R. The continuity of W now follows from
the uniform convergence of the series just established and from the Corollary
2.4.
During the rest of this proof we assume that Weierstrass original assumptions
hold, i.e. ab > 1 + 3

2
π and b > 1 an odd integer. For a general proof with

ab ≥ 1 and b > 1 we refer to Hardy [27]. The rest of the proof follows,

3For example, Cellérier’s and Bolzano’s functions both described in earlier sections were
constructed much earlier than Weierstrass’ function.
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quite closely, from the original proof of Weierstrass (as it is presented in du
Bois-Reymond [19]).
Let x0 ∈ R be arbitrary but fixed and let m ∈ N be arbitrary. Choose αm ∈ Z
such that bmx0 − αm ∈

(
−1

2
, 1

2

]
and define xm+1 = bmx0 − αm. Put

ym =
αm − 1

bm
and zm =

αm + 1

bm
.

This gives the inequality

ym − x0 = −1 + xm+1

bm
< 0 <

1− xm+1

bm
= zm − x0

and therefore ym < x0 < zm. As m→∞, ym → x0 from the left and zm → x0

from the right.
First consider the left-hand difference quotient,

W (ym)−W (x0)

ym − x0

=
∞∑

n=0

(
an cos(bnπym)− cos(bnπx0)

ym − x0

)

=
m−1∑
n=0

(
(ab)n cos(bnπym)− cos(bnπx0)

bn(ym − x0)

)
+

∞∑
n=0

(
am+n cos(bm+nπym)− cos(bm+nπx0)

ym − x0

)
= S1 + S2.

We treat these sums separately, starting with S1. Since
∣∣∣ sin(x)

x

∣∣∣ ≤ 1 we can,

using a trigonometric identity, bound the sum by

|S1| =

∣∣∣∣∣∣
m−1∑
n=0

(ab)n(−π) sin

(
bnπ(ym + x0)

2

) sin
(

bnπ(ym−x0)
2

)
bnπ ym−x0

2

∣∣∣∣∣∣
≤

m−1∑
n=0

π(ab)n =
π((ab)m − 1)

ab− 1
≤ π(ab)m

ab− 1
.

(3.1)

Considering the sum S2 we can use (since b > 1 is an odd integer and αm ∈ Z)

cos(bm+nπym) = cos

(
bm+nπ

αm − 1

bm

)
= cos(bnπ(αm − 1))

=
[
(−1)bn]αm−1

= −(−1)αm
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and

cos(bm+nπx0) = cos

(
bm+nπ

αm + xm+1

bm

)
= cos(bnπαm) cos(bnπxm+1)− sin(bnπαm) sin(bnπxm+1)

=
[
(−1)bn]αm

cos(bnπxm+1)− 0 = (−1)αm cos(bnπxm+1)

to express the sum as

S2 =
∞∑

n=0

am+n−(−1)αm − (−1)αm cos(bnπxm+1)

−1+xm+1

bm

= (ab)m(−1)αm

∞∑
n=0

an 1 + cos(bnπxm+1)

1 + xm+1

.

Each term in the series above is non-negative and xm+1 ∈
(
−1

2
, 1

2

]
so we can

find a lower bound by

∞∑
n=0

an 1 + cos(bnπxm+1)

1 + xm+1

≥ 1 + cos(πxm+1)

1 + xm+1

≥ 1

1 + 1
2

=
2

3
. (3.2)

The inequalities (3.1) and (3.2) ensures the existence of an ε1 ∈ [−1, 1] and
an η1 > 1 such that

W (ym)−W (x0)

ym − x0

= (−1)αm(ab)mη1

(
2

3
+ ε1

π

ab− 1

)
.

As with the left-hand difference quotient, for the right-hand quotient we do
pretty much the same, starting by expressing the said fraction as

W (zm)−W (x0)

zm − x0

= S ′1 + S ′2.

As before, it can be deduced that

|S ′1| ≤
π(ab)m

ab− 1
. (3.3)

The cosine-term containing zm can be simplified as (again since b is odd and
αm ∈ Z)

cos(bm+nπzm) = cos

(
bm+nπ

αm + 1

bm

)
= cos(bnπ(αm + 1))

=
[
(−1)bn]αm+1

= −(−1)αm ,
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which gives

S ′2 =
∞∑

n=0

am+n−(−1)αm − (−1)αm cos(bnπxm+1)
1−xm+1

bm

= −(ab)m(−1)αm

∞∑
n=0

an 1 + cos(bnπxm+1)

1− xm+1

.

As before, we can find a lower bound for the series by

∞∑
n=0

an 1 + cos(bnπxm+1)

1− xm+1

≥ 1 + cos(πxm+1)

1− xm+1

≥ 1

1−
(
−1

2

) =
2

3
. (3.4)

By the same argument as for the left-hand difference quotient (but by using
the inequalities (3.3) and (3.4) instead), there exists an ε2 ∈ [−1, 1] and an
η2 > 1 such that

W (zm)−W (x0)

zm − x0

= −(−1)αm(ab)mη2

(
2

3
+ ε2

π

ab− 1

)
.

By the assumption ab > 1+ 3
2
π, which is equivalent to π

ab−1
< 2

3
, the left- and

right-hand difference quotients have different signs. Since also (ab)m → ∞
as m → ∞ it is clear that W has no derivative at x0. The choice of x0 ∈ R
was arbitrary so it follows that W (x) is nowhere differentiable on R.

Remark 1 (Dini). In a series of publications (cf. Dini [15], [16], [17] and
[18]) in the years 1877-78, Italian mathematician Ulisse Dini proposed a more
general class of continuous nowhere differentiable functions (under which
Weierstrass function happen to fall). Our presentation here is largely based
on Knopp’s summary (cf. Knopp [38], pp. 23-26). Let {fn} be a sequence of
differentiable functions fn : [0, 1] → R that have bounded derivative on [0, 1]
and such that

WD(x) =
∞∑

n=1

fn(x)

converges uniformly on [0, 1]. We also require that

(i) each function fn has a finite number of extrema and if δn is the maxi-
mum distance between two successive extrema then δn → 0 as n→∞;
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(ii) if γn is the (to the absolute value) greatest difference between two
successive extreme values then

lim
n→∞

δn
γn

= 0;

(iii) if hn,x denotes the two increments (one which is positive and one which
is negative) for which x + hn,x gives the first right (respectively left)
extremum for which

|fn(x+ hn,x)− fn(x)| ≥ 1

2
γn,

then we can define a sequence {rn} of positive numbers such that

sup
x∈[0,1]

|Rn(x+ hn,x)−Rn(x)| ≤ 2rn

where Rn(x) is the remainder of the series defining the function WD;

(iv) if {cn} is a sequence of positive numbers such that supx∈[0,1] |f ′n(x)| ≤ cn
then from some index on

4δn
γn

n∑
k=1

ck +
4rn

γn

≤ θ, θ ∈ [0, 1);

(v) the sign of fn(x + hn,x) − fn(x) is independent of hn,x from some n0

onward for all x ∈ [0, 1].

Then the function WD is continuous and nowhere differentiable on [0, 1].
As two concrete examples of functions in Dini’s classification, consider for
|a| > 1 + 3π/2

WD1(x) =
∞∑

k=1

an

1 · 3 · 5 · · · (2n− 1)
cos(1 · 3 · 5 · · · (2n− 1)πx)

and for a > 1 + 3π/2

WD2(x) =
∞∑

k=1

an

1 · 5 · 9 · · · (4n+ 1)
sin(1 · 5 · 9 · · · (4n+ 1)πx).
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Remark 2 (Hertz). Polish mathematician Karol Hertz gave in his paper
[28] from 1879 a generalization of Weierstrass function, namely

WH(x) =
∞∑

k=1

ak cosp(bkπx),

where a > 1, p ∈ N is odd, b an odd integer and ab > 1 + 2
3
pπ.

Remark 3 (Hardy). Hardy proved (in Hardy [27]) that if 0 < a < 1,
b > 1 and ab ≥ 1 then both

W1(x) =
∞∑

k=0

ak sin(bkπx) and W2(x) =
∞∑

k=0

ak cos(bkπx)

are continuous and nowhere differentiable on all of R.

Remark 4 (Porter). M. B. Porter generalized Weierstrass function in an
article (Porter [58]) published in 1919. He proposed two classes of functions
Wi : [a, b] → R defined by

W1(x) =
∞∑

k=0

uk(x) sin(bnπx) and W2(x) =
∞∑

k=0

uk(x) cos(bnπx)

where {bn} is a sequence of integers and {uk} is a sequence of differentiable
functions. We have the following requirements:

(i) Wi converges uniformly on [a, b] for i = 1, 2;

(ii) bn divides bn+1 and for an unlimited number of n’s, bn+1/bn must be
divisible by four or increase to infinity with n;

(iii)
∑∞

k=0 u
′
n(x) converge uniformly on [a, b] by the Weierstrass M-test;

(iv) (3π/2)
∑N−1

k=0 |bnun(x)| < |bNuN(x)| for all x ∈ [a, b].

If this holds then both W1 and W2 are continuous and nowhere differentiable.
The following concrete functions are examples that falls under Porter’s gen-

27



eralization.

(a)
∞∑

k=0

an

n!
sin(n! πx) and

∞∑
k=0

an

n!
cos(n! πx), where |a| > 1 +

3

2
π;

(b)
∞∑

k=0

1

an
sin(n! anπx) and

∞∑
k=0

1

an
cos(n! anπx), where |a| ∈ N \ {1};

(c)
∞∑

k=1

ak

10k
sin(103kπx) and

∞∑
k=1

ak

10k
cos(103kπx), where ak is chosen

such that
∑∞

k=1
ak

10k is a non-terminating decimal. Both Dini functions in the
remark above falls under this generalization as well.

3.5 Darboux function (1873; published in

1875)

Darboux’s function, discovered independently of Weierstrass, was presented
on 19 March 1873 (two years earlier than the first publication of Weierstrass’
function) and was published two years later in Darboux [11]. In this publica-
tion (whose title translates to “paper on the discontinuous functions”) Dar-
boux spends much of the discussion on the subject of Riemann-integration of
discontinuous functions but he also investigated when a continuous function
possess a finite derivative. Contained in this document is his description of
a continuous function which is nowhere differentiable and this function is
defined as the infinite series

D(x) =
∞∑

k=1

1

k!
sin ((k + 1)!x) .

Darboux constructed this function after having analyzed and generalized
results from Schwarz and Hankel, who in the years before had studied and
made suggestions about the subject. One of Schwarz ideas, proposed in 1873
in Schwarz [67], was a function S : (0,∞) → R defined by

S(x) =
∞∑

k=0

ϕ(2kx)

4k
, where ϕ(x) = [x] +

√
x− [x]

28



and [x] means the integer part of x. The function S is continuous and
monotonically increasing, but there is no derivative at infinitely many points
in any interval so S is not differentiable on a dense subset of (0,M) (which
we will prove). Interesting to note is that Schwarz (and many others) seem to
have considered these types of functions “without derivative”, but today, with
measure theoretic background, we call many of them differentiable almost
everywhere.
Hankel had introduced the concept of “Condensation of singularities” some
years before (cf. Hankel [26]). This is a process where by letting each term
in an absolutely convergent series have a singularity, a function with singu-
larities at all rational points4 is created. An example of this procedure could
be the function g defined by

g(x) =
∞∑

n=1

ψ(sin(nπx))

ns
, where ψ(x) =

{
x sin

(
1
x

)
, x 6= 0

0, x = 0

and s > 1. Hankel’s treatment of the subject, however, wasn’t entirely
accurate as other mathematicians pointed out after the publication. Darboux
writes in his paper that he thought it was a shame that Hankel had died
before he had a chance to correct some of his ideas himself.

D(x)

x

1.0

−1.0

1.0 2.0

Figure 3.5: Darboux’s function D(x) on [0, 3].

In a subsequent paper (Darboux [12]), Darboux generalized his example. He

4If x is a rational number, say x = p/q, then sin(nπx) = sin(nπp/q) = sin(±pπ) = 0
for n = q. Hence x is a singular point of ψ(sin(nπx)) (for a special n) and this behavior
can be shown to transfer onto the sum of the series as well.
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considered the series

ϕ(x) =
∞∑

k=1

f(anbnx)

an

where an and bn are sequences of real numbers and f : R → R is a bounded
continuous function with a bounded second derivative. By adding some re-
strictions to the two sequences {an} and {bn},

lim
n→∞

an+1

an

= 0

and for some fixed k ∈ N

lim
n→∞

∑n−k
m=1 amb

2
m

an

= 0,

Darboux states that ϕ is a continuous function. Moreover, it is possible
to make some additional restrictions on the parameters to ensure that ϕ is
nowhere differentiable as well as continuous. For example, with bn = 1 and
k = 1 it is enough to have

lim
n→∞

∑n−1
m=1 am

an

= 0

for ϕ to be nowhere differentiable for an infinite number of functions f .
For example with an = n! and f(x) = cos(x). Another example would be
bn = n + 1, an = n!, k = 3 and f(x) = sin(x) which is the function D
introduced by Darboux in his earlier paper (Darboux [11]) and which was
defined at the beginning of this section.

Theorem 3.5. The Darboux function

D(x) =
∞∑

k=1

1

k!
sin ((k + 1)! x)

is continuous and nowhere differentiable on R.

Proof. Since
∑∞

k=0
1
k!

= e it is clear that
∑∞

k=1
1
k!
<∞. This and the fact that

supx∈R
∣∣ 1
k!

sin((k + 1)! x)
∣∣ ≤ 1

k!
implies, by the Weierstrass M-test (Theorem

2.2), that the convergence is uniform. The Corollary 2.4 gives the continuity
of D. A proof of the fact that D is nowhere differentiable can be found in
Darboux [12].
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Theorem 3.6. The Schwarz function S : (0,M) → R defined by

S(x) =
∞∑

k=0

ϕ(2kx)

4k
, where ϕ(x) = [x] +

√
x− [x],

is continuous and non-differentiable on a dense subset of (0,M). Here M > 0
is any real number.

Proof. We start by proving that S is continuous. The only possible discon-
tinuities of the function ϕ is for x ∈ N. Let p ∈ N, we show that ϕ is both
left and right continuous at p. From the right we have

lim
x→p+

ϕ(x) = lim
x→p+

(
[x] +

√
x− [x]

)
= p+

√
p− p = p

and from the left

lim
x→p−

ϕ(x) = lim
x→p−

(
[x] +

√
x− [x]

)
= p− 1 +

√
p− (p− 1) = p.

Hence ϕ is continuous on (0,M) (and ϕ(p) = p for p ∈ N). Now we show
that the series converge uniformly so that also S is continuous on (0,M).
Let h ∈ (0, 1) and p ∈ N ∪ {0}. Then

ϕ(p+ h) = [p+ h] +
√
p+ h− [p+ h] = p+

√
h.

Define q(h) = ϕ(p+ h)− (p+ h), then q(h) ≤ p+ h+ 1/4 since

q′(h) =
1

2
√
h
− 1 = 0 ⇒ h =

1

4

and q′′(1/4) < 0 so the maximum is attained at h = 1/4 (q(0) = q(1) = 0).
From this we get the inequality

ϕ(x) ≤ x+
1

4
.

Now it follows that

sup
x∈(0,M)

∣∣∣∣ 1

4n
ϕ(2nx)

∣∣∣∣ ≤ sup
x∈(0,M)

∣∣∣∣2nx+ 1/4

4n

∣∣∣∣ ≤ M

2n
+

1

4n+1
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and since
∞∑

n=0

(
M

2n
+

1

4n+1

)
<∞,

the Weierstrass’ M-test (Theorem 2.2) and the Corollary 2.4 gives that S is
continuous on (0,M).
We turn to the non-differentiable part. Let x0, x1 ∈ (0,M) with x0 < x1 be
arbitrary. We show that between any two such points there exists a point
where S is without derivative (which implies that S is non-differentiable on
a dense subset of (0,M)).
Let x be a dyadic rational such that x0 < x < x1. Then x = i2−m for
some i,m ∈ N. Let 0 < h < 2−m, then, since each term in the series is
non-negative,

S(x+ h)− S(x)

h
=

∞∑
k=0

ϕ(2n(x+ h))− ϕ(2nx)

4nh
≥ ϕ(2m(x+ h))− ϕ(2mx)

4mh
.

Since 2mh < 1 and 2mx = i ∈ N we see that

ϕ(2m(x+ h))− ϕ(2mx) = [2mx+ 2mh] +
√

2mx+ 2mh− [2mx+ 2mh]

− [2mx]−
√

2mx− [2mx]

= i+
√
i+ 2mh− i− i−

√
i− i =

√
2mh.

Hence

S(x+ h)− S(x)

h
≥
√

2mh

4mh
=

1

2m
√

2m
· 1√

h
→∞ as h→ 0

and therefore S ′(x) does not exist.

3.6 Peano function (1890)

Let t = (t1t2t3 · · · )3 be a ternary representation of t ∈ [0, 1] (that is, t =∑∞
k=1 tk3−k with tk ∈ {0, 1, 2}). Then Peano’s function P is expressed as

P : [0, 1] → [0, 1]× [0, 1],

(t1t2t3 · · · )3 7→
(

(t1(k
t2t3)(k

t2+t4t5)(k
t2+t4+t6t7) · · · )3

((kt1t2)(k
t1+t3t4)(k

t1+t3+t5t6) · · · )3

)
,
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where the operator k is defined as

ktj = 2− tj, tj = 0, 1, 2

and kltj is the l’th element in the sequence {ktj, k(ktj), k(k(ktj)), . . .} (and
we adhere to the convention that k0tj = tj).
It can be shown (cf. Sagan [64], pp. 32-33) that P is independent of
which5 ternary representation of t is chosen and that P is surjective (i.e. a
space-filling curve, that is a “1-dimensional” curve that fills two-dimensional
space6).

(a) n = 1. (b) n = 1. (c) n = 2. (d) n = 3.

Figure 3.6: First four steps in the geometric generation of Peano’s curve.

Peano’s curve was the first space-filling curve discovered and it was published
in 1890 (in Peano [54]). After his publication several other mathematicians
proposed new examples and among those were Hilbert’s function (published
in 1891, see Sagan [64]) and Schoenberg’s curve (proposed in 1938). Both
of those happen to be nowhere differentiable (and in Section 3.13 we take
a closer look on Schoenberg’s curve). It is not, however, the case that all
space-filling curves are nowhere differentiable (although Peano’s turns out
to be). For example, Lebesgue’s space filling curve7is differentiable almost
everywhere (it is differentiable everywhere except on the Cantor set, which
incidentally has Lebesgue measure zero).

5The representation is not unique, e.g. (1)3 = 1/3 and also (022 · · · )3 = 1/3.
6Or more generally, a curve that passes through every point of some subset of n-

dimensional Euclidean space (or even more general as is stated in the Hahn-Mazurkiewicz
theorem).

7Henri Lebesgue constructed his curve in 1904 as a continuous extension of a known
mapping. The original mapping had the Cantor set as domain and mapped it onto [0, 1]×
[0, 1]. The extension is done by linear interpolation, see Sagan [64].
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Let φp and ψp be the component functions of P . Peano stated in his pre-
sentation that both components were continuous and nowhere differentiable
but left the proof of nowhere differentiability out of his paper. The proof
presented here is due to Sagan [64], pp. 33-34.

φp(x)

x

1.0

0.5

1.00.5

Figure 3.7: The component φp of Peano’s curve.

Theorem 3.7. The components φp and ψp of the Peano function P are
continuous and nowhere differentiable on the interval [0, 1].

Proof. First we establish the continuity of φp. We do this in two steps, first
we show that φp is continuous from the right.
For t0 ∈ [0, 1), let t0 = (t1t2t3 · · · t2nt2n+1 · · · )3 be the ternary representation
of t0 that doesn’t end in infinitely many 2’s. Choose

δ = 3−2n − (00 · · · t2n+1t2n+2 · · · )3.

Clearly δ → 0 as n→∞. The definition of δ gives

t0 + δ = (t1t2t3 · · · t2nt2n+1 · · · )3 + 3−2n − (00 · · · t2n+1t2n+2 · · · )3

= (t1t2t3 · · · t2n00 · · · )3 + 3−2n = (t1t2t3 · · · t2n22 · · · )3.

So for any t ∈ [t0, t0 + δ), the first 2n digits in the ternary expansion are
equal, i.e. t = (t1t2t3 · · · t2nτ2n+1τ2n+2 · · · )3. Let εn =

∑n
i=1 t2i. We have

|φ(t)− φ(t0)| = |(t1(kt2t3) · · · (kεnτ2n+1) · · · )3 − (t1(k
t2t3) · · · (kεnt2n+1) · · · )3|

≤
∞∑

i=n

1

3i+1
|kεiτ2i+1 − kεit2i+1| ≤

∞∑
i=n

2

3i+1

=
2

3n+1

∞∑
i=0

1

3i
=

1

3n
→ 0 as n→∞.
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Hence φp is continuous from the right. Now we show that φp is also continuous
from the left. The argument follows similarly as above.
For t0 ∈ (0, 1], let t0 = (t1t2t3 · · · t2nt2n+1 · · · )3 be the ternary representation
with infinitely many non-zero terms. Pick

δ = (00 · · · 0t2n+1t2n+1 · · · )3.

Then
t0 − δ = (t1t2t3 · · · t2n00 · · · )3.

Hence, for t ∈ (t0 − δ, t0], t’s ternary representation has the same first 2n
digits as t0. Thus

|φ(t)− φ(t0)| = |(t1(kt2t3) · · · (kεnτ2n+1) · · · )3

− (t1(k
t2t3) · · · (kεnt2n+1)00 · · · )3|

≤ 2

3n+1

∞∑
i=0

1

3i
=

1

3n
→ 0 as n→∞.

So φp is continuous from the left on (0, 1]. Since we established that φp also
is continuous from the right on [0, 1) it is clear that φp is continuous on [0, 1].
Next we show that φp is nowhere differentiable on [0, 1]. For arbitrary t ∈
[0, 1], let t = (t1t2t3 · · · t2nt2n+1 · · · )3 be a ternary representation of t. Define
the sequence {tn} by tn = (t1t2t3 · · · t2nτ2n+1t2n+2 · · · )3, where τ2n+1 is chosen
as τ2n+1 = (t2n+1 + 1) mod 2. This implies that

|t− tn| =
1

32n+1
.

From the definition of P and tn, φp(t) and φp(tn) only differs at position n+1
in the ternary representation. Therefore we have

|φp(t)− φp(tn)| =
1

3n+1
|kεnt2n+1 − kεnτ2n+1| =

1

3n+1
.

Analyzing the differential quotient we see that∣∣∣∣φp(t)− φp(tn)

t− tn

∣∣∣∣ =
1

3n+1

32n+1

1
= 3n →∞ as n→∞.

Hence φp is not differentiable at t. Since t ∈ [0, 1] was arbitrary it follows
that φp is nowhere differentiable on [0, 1].
Moreover, since ψp(t) = 3φp(t/3), the fact that ψp is continuous and nowhere
differentiable on [0, 1] follows from what we just established for φp.
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3.7 Takagi (1903) and van der Waerden

(1930) functions

Takagi’s and van der Waerden’s functions are very similar in their construc-
tion. Takagi presented his example in 1903 (cf. Takagi [73]) as an example
of a “simpler” continuous nowhere differentiable function than Weierstrass.
Van der Waerden published his function in 1930 (van der Waerden [75]),
apparently unaware of Takagi’s very similar idea.
The definition of Takagi’s function is expressed as the infinite series

T (x) =
∞∑

k=0

1

2k
dist

(
2kx,Z

)
=

∞∑
k=0

1

2k
inf
m∈Z

∣∣2kx−m
∣∣

and Van der Waerden’s function is defined as

V (x) =
∞∑

k=0

1

10k
dist

(
10kx,Z

)
=

∞∑
k=0

1

10k
inf
m∈Z

∣∣10kx−m
∣∣ .

T (x)

x

0.5

0.5

(a) Takagi’s function.

V (x)

x

0.5

0.5

(b) Van der Waerden’s function.

Figure 3.8: Takagi’s and van der Waerden’s functions on [0, 1].

The function φ : R → R defined by φ(x) = dist(x,Z) = infm∈Z |x−m|, which
both series above are superpositions of, can be seen graphically in figure 3.13.
More variations have been developed and in 1918 Knopp [38] did a general-
ization, which we consider in Section 3.11. Also de Rham treated these kinds
of functions in his article de Rham [14]. He gives a proof that the function
referred to as Takagi’s function here is continuous and nowhere differentiable.
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De Rham also considers the function

f(x) =
∞∑

k=0

a−kφ(akx)

where a is an even positive integer. He claims that his proof can be adapted
to show that f is continuous and nowhere differentiable as well. Moreover,
he points out that the function f is a solution to the functional equation

f(x)− 1

a
f(ax) = φ(x)

and that it is the only solution that is bounded. He proceeds to generalize
this equation to

F (x)− bF (ax) = g(x)

where g is a given function and a and b are constants. De Rham claims that
the only bounded solution for b ∈ (0, 1) is

F (x) =
∞∑

k=0

bkg(akx).

Interesting to note is that for g(x) = cos(x) and a an odd integer with
ab > 1 + 3π/2 we have the Weierstrass function (see Section 3.4).

We will use the following lemma when proving that Takagi’s function (and
several others) is nowhere differentiable.

Lemma 3.8. Let a < an < x < bn < b for all n ∈ N and let an → x and
bn → x. If f : [a, b] → R is a continuous function and f ′(x) exists then

lim
n→∞

f(bn)− f(an)

bn − an

= f ′(x).

Proof. Since∣∣∣∣ bn − x

bn − an

∣∣∣∣ ≤ bn − an

bn − an

= 1 and

∣∣∣∣ x− an

bn − an

∣∣∣∣ ≤ bn − an

bn − an

= 1
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we can estimate by∣∣∣∣f(bn)− f(an)

bn − an

− f ′(x)

∣∣∣∣ =

∣∣∣∣ bn − x

bn − an

(
f(bn)− f(x)

bn − x
− f ′(x)

)
+

x− an

bn − an

(
f(an)− f(x)

an − x
− f ′(x)

)∣∣∣∣
≤
∣∣∣∣f(bn)− f(x)

bn − x
− f ′(x)

∣∣∣∣+

∣∣∣∣f(an)− f(x)

an − x
− f ′(x)

∣∣∣∣
→ 0 as n→∞.

Hence

lim
n→∞

f(bn)− f(an)

bn − an

= f ′(x).

Theorem 3.9. Both the Takagi function and the van der Waerden function
are continuous and nowhere differentiable on R.

Proof. That both T and V are continuous follows from the proof of the
continuity of the Knopp function in Section 3.11.
We show that T is nowhere differentiable. The proof is based on an argument
by Billingsley [5] and in a similar way it can be shown that also V (x) is
nowhere differentiable (cf. van der Waerden [75]).
Let x ∈ R be arbitrary and assume that T ′(x) exists. By Lemma 3.8, if
un ≤ x ≤ vn (with un < vn) and vn − un → 0, then

T (vn)− T (un)

vn − un

→ T ′(x).

We will define two sequences that contradicts this. Let φ(x) = infm∈Z |x−m|.
Then

T (x) =
∞∑

k=0

1

2k
inf
m∈Z

∣∣2kx−m
∣∣ =

∞∑
k=0

1

2k
φ
(
2kx
)

.

Let D = {i2−n | i, n ∈ Z} be the dyadic rationals. If u ∈ D is of order n then,
for every integer k ≥ n, 2ku ∈ Z. Hence, since φ(p) = 0 for p ∈ Z, we have

T (u) =
n−1∑
k=0

1

2k
φ
(
2ku
)

.
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Let un, vn ∈ D be successive numbers of order n for which un ≤ x < vn.
Then vn − un = i2−n − (i− 1)2−n = 2−n and

T (vn)− T (un)

vn − un

=
n−1∑
k=0

1

2k

φ(2kvn)− φ(2kun)

vn − un

.

Obviously φ(x) is linear for x ∈
[
2kun, 2

kvn

]
since

[
2kun, 2

kvn

]
=
[

i−1
2l ,

i
2l

]
where l = n− k ∈ N. Hence, for 0 ≤ k < n,

1

2k

φ(2kvn)− φ(2kun)

vn − un

=
±2−l

2−l
= ±1

which gives

T (vn)− T (un)

vn − un

=
n−1∑
k=0

±1.

As n → ∞, the series on the right does not converge. This contradicts the
assumption that T ′(x) exists. Since x ∈ R was arbitrary, the function T is
nowhere differentiable.
Note that Cater [8] has shown that T has no one-sided derivative at any point
(whereas what we just proved above is that T has no two-sided derivative at
any point).

A further property of Takagi’s function is deduced in Shidfar and Sabet-
fakhri [69], it turns out that it’s also continuous in the Hölder sense for
0 < α < 1 (or Lipschitz class of order α). That is, for every α ∈ (0, 1) there
exists Mα > 0 such that for every x, y ∈ R

|T (x)− T (y)| ≤Mα|x− y|α.

3.8 Koch “snowflake” curve (1904)

In 1904, Swedish mathematician Helge von Koch published (in Koch [39])
an article about a curve of infinite length with tangent nowhere. It was re-
published two years later with some added pages in Koch [40]. Koch writes8

about the previous misconception that all continuous curves has a well de-
termined tangent except at some isolated points:

8Translation from Edgar [20].
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“Even though the example of Weierstrass [Section 3.4] has cor-
rected this misconception once and for all, it seems to me that
his example is not satisfactory from the geometrical point of view
since the function is defined by an analytic expression that hides
the geometrical nature of the corresponding curve and so from this
point of view one does not see why the curve has no tangent.”

Koch’s “snowflake” curve (named after its shape) is constructed as follows:
Take an equilateral triangle and split each line in three equal parts. Re-
place the middle segments by two sides of a new equilateral triangle that is
constructed with the removed segment as its base. Repeat this procedure
on each of the four new lines (for each of the original three sides). Repeat
indefinitely. The limit of the process gives rise to a curve that is continuous
and has a tangent nowhere (which is shown in Koch’s paper). In figure 3.9
the first few iterations are shown graphically.

Koch also shows that there exists a parameterization

{
x = f(t)

y = g(t)

of the curve for t ∈ [0, 1] and that both functions f and g are continuous and
nowhere differentiable (on [0, 1]).

(a) n = 0. (b) n = 1. (c) n = 2. (d) n = 3.

Figure 3.9: First four steps in the construction of Koch’s “snowflake”.
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3.9 Faber functions (1907, 1908)

In 1907, German mathematician Georg Faber [21] presented an example of
a continuous nowhere differentiable function defined by

F1(x) =
∞∑

k=1

1

10k
inf
m∈Z

∣∣2k!x−m
∣∣ =

∞∑
k=1

1

10k
dist

(
2k!x,Z

)
.

In 1908, Faber proceeded to publish a second article [22] named “Über stetige
Funktionen” and two years later a longer article [23] about a similar subject.
In the article from 1908, Faber presented another continuous nowhere differ-
entiable function:

F2(x) =
∞∑

k=1

1

k!
inf
m∈Z

∣∣2k!x−m
∣∣ =

∞∑
k=1

1

k!
dist

(
2k!x,Z

)
.

Faber set out to do an investigation of what he referred to as the “deep gap”
between the differentiable and the merely continuous functions. By doing
this, Faber intended to give a better insight on the infinitesimal structure of
continuous functions in general.
His investigation makes it possible to construct, by superposition of piecewise
linear functions, examples of continuous functions with special properties like,
for example, nowhere differentiability. The construction is to a large degree
geometrical and the fact that Faber’s function has the desired properties
is proven as it is constructed. This is in contrast with most other proofs
of this kind, which are done on a fixed analytical expression that is given.
Unfortunately we won’t go through all of Faber’s construction but merely
give a brief description leading to a fixed expression and thereby neglecting
some of the beauty in his architecture.
To make the understanding easier, Faber wished to characterize his functions
by a countable (and dense) subset of the interval [0, 1], namely the set

M =

{
k

2n

∣∣∣∣ k, n ∈ N, k ≤ 2n

}
.

He then proceeded to define the real numbers δ k
2n

such that

δ 1
2

= F2

(
1

2

)
− F2(0) + F2(1)

2
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and for m,n ∈ N with 2m+ 1 < 2n

δ 2m+1
2n

= F2

(
2m+ 1

2n

)
−
F2

(
m

2n−1

)
+ F2

(
m+1
2n−1

)
2

where F2 is the function we will show is continuous and nowhere differen-
tiable. We take F2(0) = F2(1) = 0. From the relations above it is clear that
we can recursively express F2(xi) in terms of “δ’s” for any xi ∈M .
To give a more geometrical view, we consider a sequence of piecewise linear
continuous functions {fk}, where, for any k ∈ N, fk : [0, 1] → R is the
function that binds together the points

(0, 0),

(
1

2n
, δ 1

2n

)
,

(
2

2n
, 0

)
,

(
3

2n
, δ 3

2n

)
, . . . ,

(
2n − 1

2n
, δ 2n−1

2n

)
, (1, 0)

in a continuous and piecewise linear manner. Figure 3.11(a) shows two func-
tions graphically.

δ 1
2

δ 1
4

δ 3
4

x
1
4

1
2

3
4

1

y

Figure 3.10: The functions f1 (dashed) and f2 (whole).

Now, for any xi ∈M we can deduce that

F2(xi) =
∞∑

k=1

fk(xi).

We choose a subsequence {nk} and for each nk we choose all “δ’s” equal to
1
k!

(for simplicity; Faber made the same choice in his article). Naturally, for
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arbitrary x ∈ [0, 1] we define

F2(x) =
∞∑

k=1

fnk
(x).

This gives rise to the function which we refer to as Faber’s function:

F2(x) =
∞∑

k=1

1

k!
inf
m∈Z

∣∣2k!x−m
∣∣ =

∞∑
k=1

1

k!
dist

(
2k!x,Z

)
.

F (x)

x

0.05

1.00.5

(a) Faber’s first function F1.

F (x)

x

0.5

0.5 1.0

(b) Faber’s second function F2(x).

Figure 3.11: Faber’s functions Fi(x) on [0, 1].

Theorem 3.10. The Faber functions

F1(x) =
∞∑

k=1

1

10k
inf
m∈Z

∣∣2k!x−m
∣∣ and F2(x) =

∞∑
k=1

1

k!
inf
m∈Z

∣∣2k!x−m
∣∣

are continuous and nowhere differentiable on R.

We will not repeat Faber’s proof here but instead opt for a direct proof based
on the analytic expression given above. The proof is based on the same
argument that was used in the proof of Theorem 3.9 (for Takagi’s function).

Proof. We only prove this for F2. The proof for F1 follows similarly.
First, that F2 is continuous follows from the Weierstrass M-test (Theorem
2.2) and the Corollary 2.4 since

sup
x∈[0,1]

1

k!
inf
m∈Z

∣∣2k!x−m
∣∣ ≤ 1

2k!
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and
∑∞

k=1 1/(2k!) <∞.
We show that F2 also is nowhere differentiable. Let x ∈ R be arbitrary. As
before we construct sequences un and vn of successive dyadic rationals (of
the same order) such that un ≤ x ≤ vn (with un < vn) and vn − un = 2−n.
Then we show that

F2(vn)− F2(un)

vn − un

does not converge as n → ∞ which implies that F ′
2(x) does not exist (by

Lemma 3.8).
Let φ(x) = infm∈Z |x−m|, then

F2(x) =
∞∑

k=1

1

k!
φ
(
2k!x

)
.

If u ∈ D is a dyadic rational of order n, then

F2(u) =
∑
k!<n

1

k!
φ
(
2k!u

)
.

Now,
F2(vn)− F2(un)

vn − un

=
∑
k!<n

1

k!

φ(2k!vn)− φ(2k!un)

vn − un

.

As before, φ(x) is linear for x ∈
[
2k!un, 2

k!vn

]
. Hence, for 0 ≤ k! < n,

1

k!

φ(2k!vn)− φ(2k!un)

vn − un

= ±2k!

k!
→ ±∞ as n→∞

which gives
F2(vn)− F2(un)

vn − un

=
∑
k!<n

±2k!

k!
.

This series does not converge as n→∞ so F ′
2(x) does not exist. Since x ∈ R

was arbitrary, F2 is nowhere differentiable.

3.10 Sierpiński curve (1912)

Wac law Sierpiński published another example of a space-filling curve in 1912
in his paper Sierpiński [70]. He found a bounded, continuous and even func-
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tion SW such that, for t ∈ [0, 1], the mapping{
x = SW (t)

y = SW (t− 1/4)

is surjective onto [−1, 1]. Sierpiński deduced the following expression for SW :

SW (t) =
Θ(t)

2

(
1 +

∞∑
k=1

(−1)k

∏k
l=1 Θ(τl(t))

2k

)
where both Θ and τ are periodic functions with period 1 defined by

Θ(t) =

{
−1 if t ∈ [1/4, 3/4),

1 if t ∈ [0, 1/4) ∪ [3/4, 1)

and

τl(t) =

{
1/8 + 4t if t ∈ [0, 1/4) ∪ [1/2, 3/4),

1/8− 4t if t ∈ [1/4, 1/2) ∪ [3/4, 1),

τl+1(t) = τl(τ1(t)), for every l ∈ N.

Moreover, he demonstrated that SW is the limit of a sequence of polygonal
curves, of which the first four can be seen graphically in figure 3.12.

(a) n = 1. (b) n = 2. (c) n = 3. (d) n = 4.

Figure 3.12: Polygonal approximations (of order n) to Sierpiński’s curve.

3.11 Knopp function (1918)

Define the function K : R → R as

K(x) =
∞∑

k=0

akφ(bkx),
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where
φ(x) = inf

m∈Z
|x−m| = dist(x,Z)

and a ∈ (0, 1), ab > 4 and b > 1 an even integer. φ is a “saw-tooth” function
and can be seen graphically in figure 3.13.

φ(x)

x

0.5

1.0 2.0−1.0−2.0

Figure 3.13: The “saw-tooth” function φ(x) on [−3, 3].

K is the Knopp function which was introduced by Konrad Knopp in 1918
(cf. Knopp [38]). Both Takagi’s and van der Waerden’s functions are special
cases of this function. Originally Knopp had the restrictions

0 < a < 1, ab > 4 and b > 1 an even integer

on the parameters but in an article published in 1994 Baouche and Dubuc [3]
weakened the restrictions to

0 < a < 1, ab > 1

where b is not necessarily an integer. Further investigations were done on
the case when ab = 1 and in another article published in 1994 by Cater [9],
F.S. Cater proved9 that

∞∑
k=0

b−nφ(bnx)

is nowhere differentiable if b ≥ 10.

Theorem 3.11. The Knopp function

K(x) =
∞∑

k=0

akφ(bkx) =
∞∑

k=0

ak dist
(
bkx,Z

)
9Actually, both in Baouche and Dubuc [3] and in Cater [9] the results are proved in a

more general case when an additional phase sequence {cn} is added to the argument, i.e.
K̂(x) =

∑∞
k=0 a

nφ(bnx+cn). Moreover, Cater actually proves that for non-zero sequences
{an} and {bn} with bn > 0 and |anbn| = 1, K̂ has no unilateral derivative if bn+1 ≥ 10bn.
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is continuous and nowhere differentiable on R for a ∈ (0, 1) and ab > 1.

Proof. We can establish the continuity of K similarly as for Weierstrass’
function. In fact, if 0 < a < 1 then

∑∞
k=0 a

k < ∞ and since φ is a bounded
function, supx∈R |φ(x)| ≤ 1

2
, it follows that supx∈R |akφ(bkx)| ≤ 1

2
ak. The

Weierstrass M-test (Theorem 2.2) shows that K converges uniformly on R.
As before, the continuity of K now follows from the Corollary 2.4.
The proof of nowhere differentiability can be found in Baouche and Dubuc [3]
for ab > 1 or in Knopp [38] for the original constraints ab > 4 and b > 1 an
even integer.

3.12 Petr function (1920)

The Czech mathematician Karel Petr published, in 1920, a simple example of
a continuous nowhere differentiable function. The Petr function Pk : [0, 1] →
R in question is defined as follows. For any x ∈ [0, 1], let

x =
∞∑

k=1

ak

10k
, where ak ∈ {0, 1, . . . , 9},

be a decimal expansion of x and define

PK(x) =
∞∑

k=1

ckbk
2k

where bk = ak mod 2, c1 = 1 and for k ≥ 2

ck =

{
−ck−1 if ak−1 ∈ {1, 3, 5, 7},
ck−1 else.

In the same year as Petr’s function was published, another Czech mathe-
matician, Karel Rychĺık, gave a generalization (cf. Rychĺık [60],[62]) where
he carried over the definition from R to the ring10 Qp of p-adic numbers. For
x ∈ Qp, that is,

x =
∞∑

k=r

akp
k, where ak ∈ {0, 1, . . . , p− 1},

10Or field when certain properties hold, like, for example, if p is a prime number.
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we define the function f by

f(x) =
∞∑

k=0

ar+2kp
r+2k.

Rychĺık proves in his papers that f is continuous and nowhere differentiable
in Qp.

Pk(x)

x

1.0

0.5

1.00.5

Figure 3.14: Petr’s function in a 4-adic system.

Theorem 3.12. The Petr function PK is continuous and nowhere differen-
tiable on (0, 1).

Proof. Petr proved this result himself in Petr [56].

3.13 Schoenberg function (1938)

Schoenberg’s two functions φs and ψs are defined as


φs(x) =

∞∑
k=0

1

2k
p(32kx),

ψs(x) =
∞∑

k=0

1

2k
p(32k+1x),

where p(x) =



0 x ∈ [0, 1/3],

3x− 1 x ∈ [1/3, 2/3],

1 x ∈ [2/3, 4/3],

5− 3x x ∈ [4/3, 5/3],

0 x ∈ [5/3, 2]

and p(x + 2) = p(x) for every x ∈ R. Figure 3.16(a) gives a more intuitive
description of the function p. Schoenberg’s curve is actually another example
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of a space-filling curve (like Peano’s curve, which was discussed earlier). The
“space-filling” is accomplished by the parameterization (for t ∈ [0, 1]){

x = φs(t),

y = ψs(t).

(a) n = 1. (b) n = 2. (c) n = 3. (d) n = 3.

Figure 3.15: First four approximation polygons in the construction of Scho-
enberg’s curve (sampled at tk = m/3n, m = 0, 1, . . . , 3n).

Schoenberg constructed the curve in 1938 as an extension of the same map
that Henri Lebesgue had used in the construction of his space-filling function
decades earlier. Schoenberg’s curve resulted in a much easier proof of the
continuity (that is, easier than for Lebesgue’s case) and the curve also turned
out to be nowhere differentiable (a fact proven later). For more discussion,
see Sagan [64], pp, 119-130.

p(x)

x

1

−3 −2 −1 321

(a) p for −3 ≤ x ≤ 3.

φs(x)

x

1.0

0.5

1.00.5

(b) Schoenberg’s function φs.

Figure 3.16: Schoenberg’s function φs and the auxiliary function p.
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Theorem 3.13. Both the Schoenberg functions φs and ψs are continuous
and nowhere differentiable on the interval (0, 1).

The proof of this theorem is based on Sagan’s proof from [63].

Proof. The continuity of both φs and ψs follows immediately from the Weier-
strass M-test (Theorem 2.2) and Corollary 2.4 since sup |(1/2k)p(x)| ≤ 1/2k.
We turn to the nowhere differentiable part. Let t ∈ (0, 1) be arbitrary and
assume that φ′s(x) exists. By Lemma 3.8, if 0 < an < t < bn < 1, an → t and
bn → t then

φs(bn)− φs(an)

bn − an

→ φ′s(x) as n→∞.

We construct two sequences {an} and {bn} that contradicts this.
Take k̂n = [9nt], where [x] denotes the integer part of x, and put ân = k̂n9−n

and b̂n = k̂n9−n + 9−n. Then an → t and bn → t with 0 < an < t < bn < 1
for n large enough.
Now, infinitely many k̂n are even, odd or both. We consider two cases.
(i) If there are infinitely many even k̂n then take kn as the corresponding
subsequence of k̂n (and the same subsequences an and bn of ân and b̂n respec-
tively). Then we have

φs(bn)− φs(an) =
1

2

∞∑
k=0

1

2k
p(9k−nkn + 9k−n)− 1

2

∞∑
k=0

1

2k
p(9k−nkn)

=
1

2

n−1∑
k=0

1

2k

(
p(9k−nkn + 9k−n)− p(9k−nkn)

)
+

1

2

∞∑
k=n

1

2k

(
p(9k−nkn + 9k−n)− p(9k−nkn)

)
= M1 +M2.

For 0 ≤ k < n, 9k−n ≤ 1
9

and from the definition of p(x) we can obtain the
lower bound

p
(
9k−nkn + 9k−n

)
− p

(
9k−nkn

)
≥ −3 · 9k−n.

This gives a lower bound for M1 by

M1 ≥ −3

2

n−1∑
k=0

1

2k
9k−n = − 3

2 · 9n

n−1∑
k=0

(
9

2

)k

= − 3

7 · 9n

((
9

2

)n

− 1

)
.
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For k ≥ n, 9k−n ≥ 1 is odd which implies that uk = 9k−nkn is even and
vk = 9k−nkn + 9k−n is odd. Hence

M2 =
1

2

∞∑
k=n

1

2k
(p(vk)− p(uk)) =

1

2

∞∑
k=n

1

2k
(1− 0) =

1

2n
.

Now,

φs(bn)− φs(an)

bn − an

= 9n(M1 +M2) ≥ 9n

(
1

2n
− 3

7 · 9n

((
9

2

)n

− 1

))
=

4

7

(
9

2

)n

+
3

7
→∞ as n→∞.

(ii) If there are infinitely many odd k̂n instead, we can define the corre-
sponding subsequences kn, an and bn similarly as before but with the odd
subsequence. Instead of a lower bound for M1 we estimate by

M1 ≤
3

2

n−1∑
k=0

1

2k
9k−n =

3

7 · 9n

((
9

2

)n

− 1

)
and for k ≥ n we have uk = 9k−nkn odd and vk = 9k−nkn + 9k−n even, which
gives

M2 =
1

2

∞∑
k=n

1

2k
(p(vk)− p(uk)) =

1

2

∞∑
k=n

1

2k
(0− 1) = − 1

2n
.

From this we get

φs(bn)− φs(an)

bn − an

≤ 9n

(
3

7 · 9n

((
9

2

)n

− 1

)
− 1

2n

)
= −4

7

(
9

2

)n

− 3

7
→ −∞ as n→∞.

Hence φ′s(t) does not exist. Since t ∈ (0, 1) was arbitrary, φs is nowhere
differentiable on (0, 1). Moreover, since ψs(t) = φs(3t) it is clear that ψs is
nowhere differentiable on (0, 1) as well.

Remark. It can quite easily be shown, with similar technique, that both φs

and ψs lacks derivative at both t = 0 and t = 1 as well (cf. Sagan [63]).
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3.14 Orlicz functions (1947)

In 1947 Polish mathematician W ladys law Orlicz [50] put forth a slightly dif-
ferent approach to continuous functions without derivative. Instead of going
for a pure existence proof or a direct construction he presents a form of an
intermediate result in terms of both a fairly general construction and Baire
category. Orlicz did more research in this area and in two of his subsequent
papers (cf. Orlicz [51],[52]) he dealt with a more general form of Lipschitz
conditions from which several new constructions of continuous nowhere dif-
ferentiable functions sprang to life.
Let {fn} be a sequence of functions fn : [a, b] → R for which

∑∞
n=1 |fn(x)|

converges uniformly on [a, b] and let N be the metric space of all sequences
η = {ηn}, ηn ∈ {0, 1} for every n ∈ N, with the metric d defined by

d(x, y) =
∞∑

k=1

1

2k
|xk − yk|.

It can be seen that (N , d) is complete, and by Baire’s category theorem
(Theorem 4.2) it is therefore of the second category in itself. The metric
space terminology used here can be reviewed in Section 4.1.
We define the first Orlicz function as:

O1(x) =
∞∑

n=1

ηnfn(x).

Let ϕ : R → R be a continuous periodic function with period l = b − a and
let {αn} and {βn} be sequences of positive numbers such that

∑∞
n=1 αn <∞

and β1 < β2 < · · · < βn →∞.
We define the second Orlicz function as:

O2(x) =
∞∑

n=1

ηnαnϕ(βnx).

Let ψ : R → R be a continuous, periodic function satisfying a Lipschitz
condition (on R) and let s > 1 be a real number. Let also α and β be real
numbers such that α ∈ (0, 1) and αβ > 1. We define the third and fourth
Orlicz functions as:

O3(x) =
∞∑

n=1

1

2n2ψ(2sn2

x) and O4(x) =
∞∑

n=1

αnψ(βnx).
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Theorem 3.14.

(i) If

(a) f ′+n (x) exists for every x ∈ [a, b) and is continuous except for
possibly on a finite subset of [a, b);

(b) there exists λ > 0 and a sequence {δn} of positive numbers with
δn → 0 such that∣∣∣∣fn(x+ h)− fn(x)

h
− f ′+n (x)

∣∣∣∣ > λ for every x ∈ [a′, b′] ⊂ [a, b)

for some h (possibly dependent on x and n) with 0 < h < δn and
h < b− x,

then O1 has no right-hand derivative at any x ∈ [a′, b′] for any η in a
residual subset of N .

(ii) If

(a) fn satisfies a Lipschitz condition on [a, b];

(b) There exists a real sequence {kn} with kn →∞ such that∣∣∣∣fn(x+ h)− fn(x)

h

∣∣∣∣ ≥ kn

is satisfied for some h (possibly dependent on x) with 0 < h < b−x,

then for any η in a residual subset of N we have

lim sup
h→0+

∣∣∣∣O1(x+ h)−O1(x)

h

∣∣∣∣ = ∞

which implies that there exist no right-hand derivative.

(iii) If ϕ is a non-constant function with a continuous derivative everywhere
and αnβn > c > 0 for every n ∈ N, then for each η in a residual subset
of N , O2 has no right-hand derivative.

(iv) The third Orlicz function O3 is continuous and nowhere differentiable.
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(v) If K is the Lipschitz constant for ψ and

0 < α <
1

1 + 4σ max |ϕ(x)|
crτ

, αβ > 1 +
2Kσ

(1− c)r
,

where c ∈ (0, 1) is arbitrary and σ, τ and r are suitable11 real numbers,
then the fourth Orlicz function O4 is continuous and nowhere differen-
tiable.

Proof. The proof of (i) can be found in the proof of Theorem 7 in Orlicz [50],
(ii) in the proof of Theorem 8 and (iii) in the proof of Theorem 9. (iv) and
(v) are proven in Section 4 of Orlicz [51].

Remark 1. With ψ(x) = cos(x), r = 2, K = π, σ = 1, c = 1/2 and
τ = 1/2 in (v) above we get Weierstrass function W but with slightly different
conditions on α and β.
Remark 2. Orlicz also considered series with sequences ε from a metric
space E consisting of all sequences ε = {εn}, where εn ∈ {−1, 1}, with the
same metric as for (N , d).
Remark 3. In Orlicz [50], Orlicz also gave measure theoretic results on
the differentiability of especially O1 and O2. The term “almost every” when
applied to the metric spaces E and N has the following meaning: Let εn(t) =
sgn[sin(2nπt)] (the Rademacher system) and ηn(t) = 1

2
(1 − εn(t)). Both

{εn(t)} and {ηn(t)} are orthonormal sequences in [0, 1]. By neglecting a
countable set in E (or N ) and a countable set in the interval [0, 1] there is
a bijective mapping between these two sets. One says “for almost every”
sequence in E (or N ) if the set of numbers from [0, 1] for which the sequence
{εn(t)} (or {ηn(t)}) does not have this property is of measure zero.
With this terminology, Orlicz stated and proved the following:

(i) If f ′+n (x) exists for almost every x ∈ [a, b] and

lim sup
h→0+

∞∑
n=1

(
fn(x+ h)− fn(x)

h
− f ′+n (x)

)2

> 0

for almost every x ∈ [a, b], then both

O1,ε(t, x) =
∞∑

n=1

εn(t)fn(x) and O1,η(t, x) =
∞∑

n=1

ηn(t)fn(x)

11See Orlicz [51], the existence of suitable constants are given by an existence proof.
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have no right-hand derivative almost everywhere for almost every t ∈
[0, 1].

(ii) If ϕ is also absolutely continuous,

0 <

∫
[a,b]

[ϕ′(x)]
2
dx <∞ and

∞∑
n=1

α2
nβ

2
n = ∞,

then both

O2,ε(t, x) =
∞∑

n=1

εn(t)αnϕ(βnx) and O2,η(t, x) =
∞∑

n=1

ηn(t)αnϕ(βnx)

have no derivative almost everywhere for almost every t ∈ [0, 1].

3.15 McCarthy function (1953)

McCarthy’s function M is defined as the infinite series

M(x) =
∞∑

k=1

1

2k
g
(

22k

x
)

,

where

g(x) =

{
1 + x, x ∈ [−2, 0]

1− x, x ∈ [0, 2]

and g(x+ 4) = g(x) for any x ∈ R.
John McCarthy [47] writes that this function has the easiest proof of conti-
nuity and nowhere differentiabillity of any such function he has seen and I’m
inclined to agree that the proof indeed is one of the shorter I have seen.

Theorem 3.15. The McCarthy function

M(x) =
∞∑

k=1

1

2k
g
(

22k

x
)

, where g(x) =

{
1 + x, x ∈ [−2, 0]

1− x, x ∈ [0, 2]

and g(x+ 4) = g(x) for any x ∈ R, is continuous and nowhere differentiable
on R.
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g(x)

x

1

−1

−4 −2 2 4

(a) g(x) for −5 ≤ x ≤ 5.

M(x)

x

1.0

0.5

−0.5

1.0

0.5

(b) McCarthy’s function M .

Figure 3.17: McCarthy’s function M and the auxiliary function g(x).

Proof. First we show that M is continuous on R. Obviously g is continuous
and since supx∈R |2−kg(22k

x)| = 2−k with
∑∞

k=1 2−k <∞ it follows from the
Weierstrass M-test (Theorem 2.2) and the Corollary 2.4 thatM is continuous.
Secondly, we show that M is nowhere differentiable on R. Let x ∈ R be
arbitrary but fixed and let n ∈ N be arbitrary. Choose hn = ±2−2n

where
the sign is chosen such that x and x+ hn are on the same linear segment of
g(22n

x).
Let k ∈ N, for k > n we have

g
(

22k

(x+ hn)
)
− g

(
22k

x
)

= g
(

22k

x
)
− g

(
22k

x
)

= 0

since g has period 4 and 22k
hn = 4q for some q ∈ Z.

For k = n we obtain∣∣g (22n

(x+ hn)
)
− g

(
22n

x
)∣∣ =

∣∣g (1 + 22n

x
)
− g

(
22n

x
)∣∣ = 1.

For k < n we can estimate by

sup
k=1,...,n−1

∣∣∣g (22k

(x+ hn)
)
− g

(
22k

x
)∣∣∣ ≤ 22n−1

2−2n

= 2−2n−1

and therefore∣∣∣∣∣
n−1∑
k=1

2−k
(
g
(

22k

(x+ hn)
)
− g

(
22k

x
))∣∣∣∣∣ ≤ (n− 1)2−2n−1

< 2n2−2n−1 ≤ 1.
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Hence,∣∣∣∣M(x+ hn)−M(x)

hn

∣∣∣∣ = 22n

∣∣∣∣∣
∞∑

k=1

2−k
(
g
(

22k

(x+ hn)
)
− g

(
22k

x
))∣∣∣∣∣

= 22n

∣∣∣∣∣
n∑

k=1

2−k
(
g
(

22k

(x+ hn)
)
− g

(
22k

x
))∣∣∣∣∣

≥ 22n

(
1−

∣∣∣∣∣
n−1∑
k=1

2−k
(
g
(

22k

(x+ hn)
)
− g

(
22k

x
))∣∣∣∣∣
)

≥ 22n
(

1− 2n2−2n−1
)

= 22n−1
(

22n−1 − 2n
)

→∞ as n→∞.

It is now clear that the function M cannot be differentiable at x and since
x ∈ R was arbitrary it follows that M is nowhere differentiable.

3.16 Katsuura function (1991)

Hidefumi Katsuura claims in his paper Katsuura [37], published in 1991, that
he got the idea for this function when attending a master’s thesis defense
about attractors of contraction mappings. We construct the function as
follows. Let X = [0, 1]× [0, 1] be the closed unit square and let F (X) by the
collection of all non-empty closed subsets of X. For i = 1, 2, 3, define the
mappings Ti : X → X by

T1(x, y) =

(
x

3
,
2y

3

)
,

T2(x, y) =

(
2− x

3
,
1 + y

3

)
and

T3(x, y) =

(
2 + x

3
,
1 + 2y

3

)
.

We define the mapping T : F (X) → F (X) by T (A) = T1(A)∪T2(A)∪T3(A).
Let D0 = {(x, x) ∈ X} (i.e. the diagonal) and for n ∈ N define Dn =
T (Dn−1). Each Dn is the graph of a function Kn : [0, 1] → [0, 1] and Hidefumi
Katsuura’s function KH : [0, 1] → [0, 1] is the function whose graph D is the
limit of this process. Figure 3.18 shows a few steps of graphically.
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(a) D0 and X.
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(b) D1 and T (X).

y
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1.0

(c) D2 and T 2(X).

y

x

1.0

1.0

(d) D3 and T 3(X).

Figure 3.18: The graphs of the first four “iterations” of the Katsuura function
and the corresponding mappings of X (the rectangles).
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A few things about this construction are interesting to consider. It can
be shown that the metric space (F (X), dH) is complete (where dH is the
Hausdorff12 metric induced by the Euclidean metric) and also that T is a
contraction13 mapping on this space (again with respect to the Hausdorff
metric). Since these properties are fulfilled, Banach’s fixed point theorem
implies that T has a unique fixed point in F (X) and no matter what set
A ∈ F (X) we start with, the sequence {T n(A)} always converge to D in the
Hausdorff metric.

Theorem 3.16. The Katsuura function KH is continuous and nowhere dif-
ferentiable on the interval (0, 1).

The proof is based on Hidefumi’s proof in Katsuura [37].

Proof. First we show that KH is continuous. For m ≤ n, Dn ⊂ Tm(X) and
Tm(X) is the union of 3m rectangles of height bounded by (2/3)m. Hence

sup
x∈[0,1]

|Km(x)−Kn(x)| ≤
(

2

3

)m

→ 0 as m,n→∞.

Thus the sequence {Kn} of functions is uniformly Cauchy and therefore the
convergence is uniform by Theorem 2.1. Since each function Kn obviously
is continuous it follows by Theorem 2.3 that the limit function KH also is
continuous
We show that the function KH is nowhere differentiable on (0, 1) in two steps.
(i) For x ∈ (0, 1) when x is a ternary rational which has a finite ternary
representation. Then, for some n ∈ N,

x =
n∑

k=1

xk

3k
, where xk ∈ {0, 1, 2} and xn 6= 0.

Let the sequence {yk} be defined by yk = x+3−(n+k) for k ∈ N. Then yk → x
and yk − x = 3−(n+k).

12The Hausdorff metric dH can be defined by

dH(A,B) = max
{

sup
x∈A

(
inf
y∈B

d(x, y)
)

, sup
y∈B

(
inf
x∈A

d(x, y)
)}

,

where d is the Euclidean metric (in our case).
13Meaning that ∃α ∈ (0, 1) such that ∀x, y ∈ F (X) dH(Tx, Ty) ≤ αdH(x, y).
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We claim that ∣∣∣∣KH(yk)−KH(x)

yk − x

∣∣∣∣ ≥ 2k−1 for all k ∈ N (3.5)

which will imply that KH has no derivative at x.
The proof of the claim is by induction on k. For k = 1 we have, by the
geometry of the construction,∣∣∣∣KH(y1)−KH(x)

y1 − x

∣∣∣∣ = 3n+1|KH(y1)−KH(x)| ≥ 3n+1 1

3n+1
= 1.

Assume that equation (3.5) holds for k = q. The geometry of the construction
implies that 

|KH(yq+1)−KH(x)| =
2

3
|KH(yq)−KH(x)|,

|yq+1 − x| =
1

3
|yq − x|,

(3.6)

which gives∣∣∣∣KH(yq+1)−KH(x)

yq+1 − x

∣∣∣∣ =
(2/3)|KH(yq)−KH(x)|

(1/3)|yq − x|
≥ 2 · 2q−1 = 2(q+1)−1

and this completes the proof of the claim.
(ii) Now, if x ∈ (0, 1) isn’t a ternary rational with a finite ternary represen-
tation, then

x =
∞∑

k=1

xk

3k
where infinitely many xk are non-zero.

We choose two sequences {yn} and {zn} of ternary rationals with finite
ternary representation such that yn < x < zn and zn − yn = 3−(n+q) for
some q ∈ N. We take q as the smallest element in N for which there exists
natural numbers r1 ≤ q and r2 ≤ q for which xr1 6= 2 and xr2 6= 0 (these ele-
ments exists since 0 < t < 1 and are necessary to ensure that our sequences
will satisfy yn > 0 and zn < 1). Define the sequences by

yn =

n+q∑
k=1

xk

3k
and zn = yn +

1

3n+q
.
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Then both yn and zn are ternary rationals with n + q digits and clearly
0 < yn < t < zn < 1. Moreover, that zn − yn = 3−(n+q) is immediate from
the definition of the sequences.

We claim that ∣∣∣∣KH(zn)−KH(yn)

zn − yn

∣∣∣∣ ≥ 1 for all n ∈ N (3.7)

and prove this by induction. For n = 1 we have∣∣∣∣KH(z1)−KH(y1)

z1 − y1

∣∣∣∣ = 3q+1|KH(z1)−KH(y1)| ≥ 3q+1 1

3q+1
= 1

by the construction of KH . Assume that equation (3.7) holds for n = k. We
consider two cases. First, if zk = zk+1 or if yk = yk+1 it follows, similarly as
for equation (3.6), that∣∣∣∣KH(zk+1)−KH(yk+1)

zk+1 − yk+1

∣∣∣∣ =
(2/3)|KH(zk)−KH(yk)|

(1/3)|zk − yk|
≥ 1.

where the last inequality is the induction assumption. Secondly, if zk 6= zk+1

and yk 6= yk+1, then the geometry of the construction implies that
KH(zk+1)−KH(yk+1) =

−1

3
(KH(zk)−KH(yk)),

zk+1 − yk+1 =
1

3
(zk − yk)

(3.8)

and thus ∣∣∣∣KH(zk+1)−KH(yk+1)

zk+1 − yk+1

∣∣∣∣ =
(1/3)|KH(zk)−KH(yk)|

(1/3)|zk − yk|
≥ 1

by the induction assumption.

Since x is not a ternary rational we must have zk 6= zk+1 and yk 6= yk+1 for
infinitely many k. Taking this subsequence of {yk} and {zk} (with the same
index to avoid sub-subscripts) it follows from equation (3.8) that

KH(zk+1)−KH(yk+1)

zk+1 − yk+1

= −KH(zk)−KH(yk)

zk − yk

.
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Hence the only possible limit would be zero, but by equation (3.7) this is not
possible. Thus the limit

lim
n→∞

KH(zn)−KH(yn)

zn − yn

does not exist and therefore KH has no derivative at x since this would
contradict Lemma 3.8.

3.17 Lynch function (1992)

In an article from 1992 (Lynch [43]), Mark Lynch presented a function which
is continuous and nowhere differentiable by using a topological argument. As
a result, no theorems involving infinite series and uniform convergence were
needed.
We define the mapping T : R2 → R by (x, y) 7→ x (i.e. the projection on the
first coordinate). For any x ∈ R and any A ⊂ R2 let A[x] = {y | (x, y) ∈ A}.
We will define a sequence {Cn} of compact sets with Cn+1 ⊂ Cn ⊂ R2 for all
n ∈ N such that

(i) T (Cn) = [0, 1] for all n ∈ N;

(ii) diam(Cn[x]) < 1/n for each x ∈ [0, 1] and n ∈ N;14

(iii) for each x ∈ [0, 1] there exists y ∈ [0, 1] with 0 < |x − y| < 1/n such
that p ∈ Cn[x] and q ∈ Cn[y] implies that∣∣∣∣ p− q

x− y

∣∣∣∣ > n.

We choose the elements in the sequence {Cn} as the closures of band neigh-
borhoods of the graph of polygonal arcs defined on [0, 1]. It is quite easy
to see that (i) and (ii) holds (the first is trivial and the second one can be
obtained by choosing the thickness of the bands appropriately to compensate

14The diameter diam(A) of a set A is defined by

diam(A) = sup
x,y∈A

d(x, y).
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for the steepnes of each segment). To show that (iii) will hold, we start by
considering a linear segment of a polygonal arc.
Let f(x) = mx + b with |m| > n and let both δ > 0 and x ∈ [0, 1] be
arbitrary. If m > n (the other case, when m < −n, is handled similarly) we
choose y = x+ δ and take a band neighborhood Nε(f) of the graph of f . For
p ∈ Nε(f)[x] and q ∈ Nε(f)[y] it is obvious from figure 3.19 that |p−q|/|x−y|

f(x) = mx + b

p

q

Nε(f)[x]

Nε(f)[y]

x y

Figure 3.19: Line segment with band neighborhoods for Lynch’s function.

is the absolute value of the slope of the line between the points (x, p) and
(y, q). The minimum of this slope is attained when we choose p = mx+ b+ ε
and q = m(x+ δ) + b− ε and for this case we can choose ε > 0 small enough
so that ∣∣∣∣ p− q

x− y

∣∣∣∣ =

∣∣∣∣m− 2ε

δ

∣∣∣∣ > n

since m > n by assumption.
So, assuming that Cn−1 is constructed, we construct Cn in the following man-
ner. First, take a polygonal arc P in the interior of Cn−1 where each segment
Pn has a slope whose absolute value exceeds n. For each i ∈ {0, 1, . . . k}
choose δi such that

0 < δi < min

{
|T (Pi)|

2
,

1

n

}
where |T (Pi)| is the length of the interval T (Pi). From our result above
for linear segments we get an εi-neighborhood for each Pi (and since we have
δi < |T (Pi)|/2 we can always choose y ∈ T (pi)). Let ε = min{ε1, . . . , εk}, then
Nε(P ) is a closed neighborhood of P that clearly satisfies (iii). Furthermore,
if we should happen to be unlucky enough so that Nε(P ) 6⊂ Cn−1 we can
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always choose a smaller ε > 0 so that both Nε(P ) ⊂ Cn−1 and (i)-(iii) are
satisfied. We take Cn = Nε(P ).
In other words, we construct a sequence of bands that get steeper and nar-
rower for each element in the sequence. This results in a “zig-zag” pattern
which is transferred onto our function.

Theorem 3.17. The sequence {Cn} defines a continuous function
L : [0, 1] → R that is nowhere differentiable on the interval [0, 1].

Proof. Let C =
⋂

nCn. Since diam(Cn[x]) < 1/n for any x ∈ [0, 1] it follows
that diam(C[x]) = 0 for any x ∈ [0, 1] as well. Hence C is the graph of a
well-defined function L : [0, 1] → R. Since each Cn is compact (and non-
empty) and C is a nested intersection of {Cn}, it is clear that also C must
be compact (and non-empty). Thus the graph of L is compact and therefore
L is continuous.
We prove that L is also nowhere differentiable. Let both x ∈ [0, 1] and δ > 0
be arbitrary. We can choose n ∈ N so that 1/n < δ. By (iii) there exists
y ∈ [0, 1] with 0 < |x − y| < 1/n such that p ∈ Cn[x] and q ∈ Cn[y] implies
that ∣∣∣∣ p− q

x− y

∣∣∣∣ > n.

Since L(x) ∈ Cn[x] and L(y) ∈ Cn[y] the difference quotient∣∣∣∣L(x)− L(y)

x− y

∣∣∣∣
is unbounded (as we let δ → 0). Hence L is not differentiable at x.

3.18 Wen function (2002)

The Chinese mathematician Liu Wen has during the last few years proposed
several continuous nowhere differentiable functions. One of these is an in-
teresting function that is based on an infinite product instead of a series
(Wen [80]). Let WL : R → R be the function defined by

WL(x) =
∞∏

n=1

(1 + an sin(bnπx)),
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where the parameters an and bn are chosen such that 0 < an < 1 for all n,
∞∑

k=1

ak <∞ and bn =
n∏

k=1

pk,

and pk is an even integer for all k ∈ N. Moreover, we require that

lim
n→∞

2n

anpn

= 0.

We show later that WL is both continuous and nowhere differentiable.

WL(x)

x

2.0

4.0

1.0 2.0

Figure 3.20: Wen’s function WL with an = 2−n and pn = 6n for x ∈ [0, 2].

In two other articles, from 2000 (Wen [78]) and 2001 (Wen [79]), Liu Wen
presented two other continuous nowhere differentiable functions. Both are
based on an expansion of the real numbers in [0, 1] in a different base than
the usual base-10 representation.
In the first article the base-b representation is used (where b ∈ N \ {1}). The
construction of this function is done as follows. Let b ≥ 2 be an integer and
for x ∈ [0, 1] let (x1x2 · · · )b be the base-b expansion of x, i.e.

x =
∞∑

k=1

xk

bk
where xk ∈ {0, 1, . . . , b− 1}.

Let λ > 1 be a real number and define the sequence {un} by u1 = 1 and for
n > 1 let

un =

{
un−1 if xn = xn−1,

φ(un−1) if xn 6= xn−1

65



where φ is a function that is chosen so that f1 is continuous and nowhere
differentiable when f1 : [0, 1] → R is defined by

f1(x) =
∞∑

k=1

uk

λk
.

In this article, Liu choose φ(u) = (1−λ)(u− c) where c is any real constant.
This article also presents a proof that f1 is right-continuous but lacks a
finite right-hand derivative (which can be extended similarly to the left-hand
side). In figure 3.21(a) an example (with fixed parameters) of f1 is shown
graphically.
The second article uses the Cantor series representation to construct a func-
tion. Let qn ≥ 2 be an integer for all n and let x ∈ [0, 1]. Then the Can-
tor series expansion of x is defined as

x =
∞∑

n=1

xn

q1q2 · · · qn
where xn ∈ {0, 1, . . . , qn − 1}.

The function f2 : [0, 1] → R is expressed as

f2(x) =
∞∑

n=1

un

n(n+ 1)
,

where the sequence {un} is defined as u1 = 1 and for n ∈ N

un+1 =

−
un

n
,

if (xn+1 = 0 and xn 6= 0)

or if (xn+1 = qn+1 − 1 and xn 6= qn − 1),

un, else.

In Wen [79] it is shown that f2 is well-defined and is right continuous but
lacks right-hand derivative on [0, 1) (the argument can be done similarly for
the left-hand side).
We turn to prove that the function that was based on an infinite product,
WL, is continuous and nowhere differentiable on R.

Theorem 3.18. The Wen function WL is continuous and nowhere differen-
tiable on R.

The proof follows Liu Wen’s proof in Wen [80] but is a bit more explicit.
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f1(x)

x

0.5

0.5 1.0

(a) f1 with b = 3, λ = 3 andc = 1/10.

f2(x)

x

1.0

0.5 1.0

(b) f2.

Figure 3.21: Two of Liu Wen’s functions with 0 ≤ x ≤ 1.

Proof. We start by establishing the continuity of WL. The following well-
known inequality is needed,

x

1 + x
≤ ln(1 + x) ≤ x if x > −1. (3.9)

Let a = maxn≥1 an. By the restrictions on an it is clear that 0 < a < 1 so
from the inequality (3.9) we get

| ln(1 + an sin(bnπx))| ≤ an| sin(bnπx)|max

{
1

|1 + an sin(bnπx)|
, 1

}
≤ an max

{
1

1− a
, 1

}
≤ an

1− a
.

Since
∑∞

k=1 ak < ∞ it follows from the Weierstrass’ M-test (Theorem 2.2)
and the Corollary 2.4 that

∞∑
k=1

ln(1 + an sin(bnπx))

converges to a continuous function and therefore

WL(x) =
∞∏

n=1

(1 + an sin(bnπx)) = exp

(
∞∑

k=1

ln(1 + an sin(bnπx))

)

is also continuous.

67



We turn to prove that WL is nowhere differentiable. For every x ∈ R there
exists a sequence {Nn} with Nn ∈ Z such that

x ∈
[
Nn

bn
,
Nn + 1

bn

)
for all n ∈ N.

Define the sequences {yn} and {zn} by

yn =
Nn + 1

bn
and zn =

Nn + 3/2

bn
.

Clearly x < yn < zn and 0 < zn − x < 3/(2bn). Moreover, zn − yn = 1/(2bn)
and also

zn − x =
Nn + 3/2

bn
− x ≤ Nn + 3/2

bn
− Nn

bn
=

3

2bn
= 3(zn − yn).

From the relations above we have the inequalities

zn − yn ≥
1

3
(zn − x) >

1

3
(yn − x). (3.10)

We define a, b and Ln : R → R as

a =
∞∏

k=1

(1− ak), b =
∞∏

k=1

(1 + ak) and Ln(x) =
n∏

k=1

(1 + ak sin(bkπx)).

We will consider the expression

∆n = WL(zn)−WL(yn) =
∞∏

k=1

(1 + ak sin(bkπzn))−
∞∏

k=1

(1 + ak sin(bkπyn)).

First, for k > n it is obvious that bk/bn is an even integer. Thus, for k > n
and some qk ∈ Z, we have

sin(bkπyn) = sin

(
bk
bn
π(Nn + 1)

)
= sin(2qk(Nn + 1)π) = 0

and

sin(bkπzn) = sin

(
bk
bn
π(Nn + 3/2)

)
= sin(3qkπ) = 0.
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Moreover, for k = n we obtain

sin(bnπyn) = sin(π(Nn + 1)) = 0

and
sin(bnπzn) = sin(π(Nn + 3/2)) = −(−1)Nn .

With these equalities in mind we can rewrite ∆n as

∆n = Ln−1(zn)(1 + an sin(bnπzn))− Ln−1(yn)(1 + an sin(bnπyn))

= Ln−1(zn)− Ln−1(yn)− (−1)NnanLn−1(zn).

Now, for k < n we have

|ak sin(bkπzn)− ak sin(bkπyn)| = 2ak

∣∣∣∣sin(bkπzn − yn

2

)
cos

(
bkπ

zn + yn

2

)∣∣∣∣
≤ ak|bkπ(zn − yn)| =

akbkπ

2bn
<

π

2pn

so there exists σk ∈ R with |σk| < π/(2pn) < 1 such that

ak sin(bkπzn) = ak sin(bkπyn) + σk.

Now we can estimate ∆n, but first we need the following bound

|Ln−1(zn)− Ln−1(yn)| =

∣∣∣∣∣
n−1∏
k=1

[(1 + ak sin(bkπzn)) + σk]

−
n−1∏
k=1

[1 + ak sin(bkπyn)]

∣∣∣∣∣
=

∣∣∣∣∣∣
2(n−1)−1∑

i=1

σli

(∏
j∈Ii

σj

)(∏
j∈Ji

(1 + aj sin(bjπyn))

)∣∣∣∣∣∣
≤

2(n−1)−1∑
i=1

|σli|

(∏
j∈Ii

|σj|

)(∏
j∈Ji

|1 + aj sin(bjπyn)|

)

≤ π

2pn

2(n−1)−1∑
i=1

(∏
j∈Ji

|1 + aj|

)

≤ bπ

2pn

(2n−1 − 1) ≤ bπ

pn

2n−2
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where, for 0 < i < n, Ii ⊂ N and Ji ⊂ N are some index sets and li some
index (we also adhere to the convention that

∏
j∈∅ xj = 1). Thus we can find

a lower bound for |∆n| by

|∆n| = |Ln−1(zn)− Ln−1(yn)− (−1)NnanLn−1(zn)|
≥ anLn−1(zn)− |Ln−1(zn)− Ln−1(yn)|

≥ ana−
bπ

pn

2n−2 = an

(
a− 2n−2

anpn

bπ

)
where the last inequality follows from the bound above and the fact that
a < Ln(x) < b. Now, since limn→∞ 2n/(anpn) = 0 by assumption (which also
implies that anbn →∞ since anbn ≥ anpn), we have

lim
n→∞

∣∣∣∣WL(zn)−WL(yn)

zn − yn

∣∣∣∣ = lim
n→∞

|2bn∆n|

≥ lim
n→∞

∣∣∣∣2anbn

(
a− 2n−2

anpn

bπ

)∣∣∣∣ = ∞ · a = ∞.

By the triangle inequality and inequality (3.10) we can estimate∣∣∣∣WL(zn)−WL(yn)

zn − yn

∣∣∣∣ ≤ |WL(zn)−WL(x)|
zn − yn

+
|WL(yn)−WL(x)|

zn − yn

≤ 3|WL(zn)−WL(x)|
zn − x

+
3|WL(yn)−WL(x)|

yn − x
.

If we let n → ∞ it is clear that WL is not differentiable at x. Since x ∈ R
was arbitrary it follows that WL is nowhere differentiable.
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Chapter 4

How “Large” is the Set ND[a, b]

From the previous chapter it is clear that there exists continuous nowhere
differentiable functions but how many are there? A simple answer would be
“infinitely many” but could we perhaps say something else about the size of
the set of continuous nowhere differentiable functions? As a matter of fact
we can. One such way is based on topology in metric spaces and for this we
will need some definitions and theorems. But first, where does all continuous
nowhere differentiable functions live? We refer to this place as ND[a, b], or
more exactly as in the following definition.

Definition 4.1. Let ND[a, b] (a < b) be the set of all continuous nowhere
differentiable functions f : [a, b] → R.

4.1 Metric spaces and category

We collect a few ideas from the theory of metric spaces, starting with defining
exactly what we mean by a metric space.

Definition 4.2. A metric space is a pair (X, d) of a set X and a metric d
defined on X. A metric d : X × X → [0,∞) is a mapping that, for any
x, y, z ∈ X, satisfies

(i) d(x, y) ≥ 0 is a real number;

(ii) d(x, y) = 0 if and only if x = y;

(iii) d(x, y) = d(y, x);
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(iv) d(x, y) ≤ d(x, z) + d(z, y).

A metric space (X, d) is said to be complete if every Cauchy sequence in X
converges. That is, if {xn} is a Cauchy sequence in (X, d), i.e.

∀ε > 0∃N ∈ N ∀m,n ≥ N d(xm, xn) < ε,

then there exists x ∈ X such that

lim
n→∞

d(xn, x) = 0.

Remark. We often write X instead of (X, d) when the metric is implicit.
A metric space is a very general construction, a bit too general for our ap-
plication, so we will need to make some more restrictions. We introduce the
concept of a normed vector space.

Definition 4.3. A normed space is a pair (X, ‖ · ‖) of a vector space X and
a norm ‖ · ‖ defined on X. A norm ‖ · ‖ : X → [0,∞) is a mapping that for
any x, y ∈ X and any α ∈ R (or C when X is a complex space) satisfies

(i) ‖x‖ ≥ 0 is a real number;

(ii) ‖x‖ = 0 if and only if x = 0;

(iii) ‖αx‖ = |α|‖x‖;

(iv) ‖x+ y‖ ≤ ‖x‖+ ‖y‖.

A Banach space (X, ‖·‖) is a normed space which is complete seen as a metric
space (X, d) with the metric d induced by the norm, that is for x, y ∈ X

d(x, y) = ‖x− y‖.

Remark. As with metric spaces, we often write X instead of (X, ‖ · ‖) when
the norm is implicit.
Our results in the next section will be presented in a specific normed space,
namely the vector space of all continuous functions with supremum norm.

Definition 4.4. Let C[a, b] (a < b) be the normed (real) vector space of all
continuous functions f : [a, b] → R with the supremum norm, i.e.

‖f‖ = sup
x∈[a,b]

|f(x)|.
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Remark. Clearly ND[a, b] ⊂ C[a, b] properly.
As it turns out, this normed space is actually a Banach space.

Theorem 4.1. The space C[a, b] of all real-valued (or complex-valued) con-
tinuous functions on [a, b] with the supremum norm,

‖f‖ = sup
x∈[a,b]

|f(x)|,

is a Banach space.

Proof. See Kreyszig [42], pages 36-37.

To get some understanding of the “size” of subsets of a metric space we start
by giving a definition of some topological properties. We will later establish
that the set ND[a, b] is of the second category (actually, what we will show
is that it is residual).

Definition 4.5. We say that a set M in a metric space X is

(i) nowhere dense if the closure M contains no non-empty open sets,

(ii) of the first category if

M =
∞⋃

k=1

Mk,

where each Mk is nowhere dense (in X),

(iii) of the second category if M is not of the first category.

A set which is a complement (in X) of a set of the first category is called
residual and a property that holds on a residual set is called a (topologically)
generic property.

We will rely heavily on the following theorem when proving that the set
ND[a, b] is of the second category. This will be possible since we know that
C[a, b] is complete.

Theorem 4.2 (Baire’s Category Theorem). If a metric space X 6= ∅ is
complete it is of the second category in itself.

Proof. See Kreyszig [42], pages 247-248.
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Remark. The formulation of Theorem 4.2 is equivalent with the following:
If X 6= ∅ is a complete metric space and

X =
∞⋃

k=1

Mk

where each Mk is closed, then at least one Mk0 contains a nonempty open
subset.
The equivalence is obvious since (i), if no Mk (= Mk since Mk is closed)
contains a non-empty open subset then X would be of the first category in
itself and (ii), if X is of the second category in itself we cannot write X as
a countable union of nowhere dense sets (hence there is a non-empty open
subset in some Mk).

4.2 Banach-Mazurkiewicz theorem

We can get some topological results on the size of ND[0, 1] from a theorem
that was originally done in 1931 by Banach (cf. Banach [2]) and Mazurkiewicz
(cf. Mazurkiewicz [45]). In 1929, H. Steinhaus posed the question “of what
category is the set of all continuous nowhere differentiable functions in the
space of all continuous functions” in his paper Steinhaus [72], pp. 81. This as
a reaction to his statement (in the same paper, pp. 63) that the set of all 2π-
periodic continuous nowhere differentiable functions is of the second category
seen as a subset of all 2π-periodic continuous functions (with supremum
norm). The papers of Banach and Mazurkiewicz gives an answer to Steinhaus
question.
The Banach-Mazurkiewicz theorem is based on Baire’s category theorem
(Theorem 4.2) which states that a complete metric space is of the second
category in itself. The proof presented here is largely due to Oxtoby [53] and
we need the following lemma.

Lemma 4.3. The set P [a, b] of all piecewise linear continuous functions
defined on the interval [a, b] is dense in C[a, b].

Proof. Let g ∈ C[a, b] be arbitrary but fixed. Put hn as the piecewise linear
function on the partition Pn : a = t0 < t1 < · · · < tn = b defined by

hn(x) = g(ti)
ti+1 − x

ti+1 − ti
+ g(ti+1)

x− ti
ti+1 − ti

, x ∈ [ti, ti+1].
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Clearly hn ∈ P [a, b] for every partition Pn. Let ε > 0 be given, we show that
‖g − hn‖ < ε for some partition Pn.
The function g is continuous on [a, b], i.e.

∀ε > 0∃δ > 0 such that |x− x0| < δ ⇒ |Sn(x)− Sn(x0)| <
ε

4
.

Choose the partition Pn so that

max
i=0...n−1

|ti+1 − ti| < δ.

For x ∈ [ti, ti+1] we have |ti+1 − ti| < δ and

|g(x)− hn(x)| =

∣∣∣∣g(x)− 1

ti+1 − ti
[ti+1g(ti)− tig(ti+1) + x (g(ti+1)− g(ti))]

∣∣∣∣
=

∣∣∣∣g(x)− ti+1g(ti)− tig(ti+1)

ti+1 − ti
− x

g(ti+1)− g(ti)

ti+1 − ti

∣∣∣∣
=

∣∣∣∣g(x)− g(ti+1)−
ti+1 − x

ti+1 − ti
(g(ti)− g(ti+1))

∣∣∣∣
≤ |g(x)− g(ti+1)|+

∣∣∣∣ ti+1 − x

ti+1 − ti

∣∣∣∣ |g(ti+1)− g(ti)|

≤ ε

4
+ 1 · ε

4
=
ε

2
.

Now,

‖g − hn‖ ≤ max
i=0,...,n−1

(
sup

x∈[ti,ti+1]

|g(x)− hn(x)|

)
≤ ε

2
< ε

and we are done.

Remark From the lemma above and the construction in Section 3.17 it is
clear that ND[a, b] is dense in C[a, b]. Consider the following (for the interval
[0, 1]): Let g ∈ C[0, 1] and ε > 0 be arbitrary but fixed. Let P be a polygonal
arc (a piecewise linear function) within ε/2 of g. This is no problem because of
what we just established in Lemma 4.3. We can, as in Section 3.17, construct
Cn ⊂ Nε/2(P ) that satisfies conditions (i)-(iii) in said section. In the same
manner as in Theorem 3.17,

⋂
nCn defines a well-defined, continuous and

nowhere differentiable function on [0, 1] that clearly is within ε/2 of P and
henceforth within ε of g. Thus ND[0, 1] is dense in C[0, 1].
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The main theorem of this section states that in the normed (real) vector space
of all real-valued continuous functions on [a, b] with the supremum norm,
nowhere differentiability is a topologically generic property. This implies
that the set ND[a, b] is of the second category in C[a, b].

Theorem 4.4 (Banach-Mazurkiewicz Theorem). The set ND[a, b] of
all nowhere differentiable continuous functions on [a, b] is of the second cat-
egory in C[a, b].

Proof. It is enough to prove the theorem for [a, b] = [0, 1]. Let

En =

{
f

∣∣∣∣∃ x ∈ [0, 1− 1

n

]
s.t. ∀ h ∈ (0, 1− x) |f(x+ h)− f(x)| ≤ nh

}
where f ∈ C[0, 1].
We show that the sets En are closed for all n ∈ N.
Take f ∈ En, then ∃ fk ∈ En such that fk → f uniformly on [0, 1]. Since
fk ∈ En, ∃xk ∈ [0, 1 − 1

n
] for every k ∈ N by the definition of En. The

sequence {xk} is clearly bounded so by the Bolzano-Weierstrass theorem it
has a convergent subsequence, say {xkl

}, that converges to some element
x ∈ [0, 1 − 1

n
]. Let {fkl

} be the corresponding subsequence of {fk}. By the
construction, |fkl

(xkl
+ h) − fkl

(xkl
)| ≤ nh for all 0 < h < 1 − xkl

. Since
xkl

→ x and 0 < h < 1− x we can always choose some l0 ∈ N large enough
so that 0 < h < 1− xkl

for l > l0. Then (for l large enough)

|f(x+ h)− f(x)| ≤ |f(x+ h)− f(xkl
+ h)|+ |f(xkl

+ h)− fkl
(xkl

+ h)|
+ |fkl

(xkl
+ h)− fkl

(xkl
)|+ |fkl

(xkl
)− f(xkl

)|
+ |f(xkl

)− f(x)|
≤ |f(x+ h)− f(xkl

+ h)|+ ‖f − fkl
‖+ nh+ ‖fkl

− f‖
+ |f(xkl

)− f(x)|.

If we let l→∞ then the continuity of f at x and x+ h and the convergence
of fkl

(in the norm) gives the inequality |f(x + h) − f(x)| ≤ nh for every
0 < h < 1− x and thus f ∈ En. Hence En is closed.
Now consider the set P [0, 1] of all piecewise linear continuous functions on
the interval [0, 1]. This set is dense in C[0, 1] by Lemma 4.3.
The sets En are nowhere dense if we show that for any g ∈ P [0, 1] and any
ε > 0 there exists h ∈ C[0, 1] \ En such that ‖g − h‖ < ε.
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Let ε > 0 be given and let M be the maximum slope of any “piece” of g.
Choose m ∈ N such that mε > n+M . Let φ(x) = infk∈Z |x−k| (“saw-tooth”
function, see figure 3.13 as well) and take h(x) = g(x) + εφ(mx). Clearly
h ∈ C[0, 1].
Then, for all x ∈ [0, 1), h(x) has a right-hand side derivative, h′+(x), such
that

|h′+(x)| = |g′+(x) + εmφ′+(mx)| > n

since we have chosen mε > n+M . Hence h ∈ C[0, 1] \ En.
We also have

‖g − h‖ = sup
x∈[0,1]

|g(x)− (g(x) + εφ(mx))| = ε sup
x∈[0,1]

|φ(mx)| =
ε

2
< ε

and thus En is clearly nowhere dense in C[0, 1].
Since En is nowhere dense, we see that E =

⋃∞
k=1Ek is of the first category

in C[0, 1]. This is the set of all elements in C[0, 1] with bounded right hand
difference quotients at some point x ∈ [0, 1] (i.e. the complement to E in
C[0, 1] does not possess a finite right-hand derivative anywhere in [0, 1]).
Since C[0, 1] is complete and thus by Baire’s theorem (Theorem 4.2) of the
second category it is clear that the set of functions in C[0, 1] which are
nowhere differentiable constitutes a set of the second category.

Remark 1. Banach and Mazurkiewicz did not prove exactly the same thing
in their respective articles, however their results coincide when formulated
as in the theorem above. Mazurkiewicz shows that the set of continuous
functions which have a bounded one-sided derivative at some point is of the
first category while Banach proved that the set of functions which have a
bounded Dini-derivative1 at some point is of the first category. This makes
the theorem of Banach stronger than Mazurkiewicz’s similar result.

Remark 2. What was shown in the proof of the theorem above is that the
set of continuous functions that have a finite right-hand derivative at some
point x ∈ [0, 1] is of the first category. It can similarly be shown that the
subset of C[0, 1] having a finite left-hand derivative at some point x ∈ [0, 1]
is of the first category. Thus the subset of C[0, 1] consisting of functions with
a finite one-sided derivative at some point is also of the first category.

1The four Dini-derivatives are defined as one-sided derivatives with limes superior and
limes inferior instead of only limes.
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From the second remark above, the following question arise: what about the
set of continuous functions without finite or infinite one-sided derivative ev-
erywhere? Saks solved the question in a paper published in 1932 (Saks [65]).
He proved that the set of continuous functions which have a finite or infinite
right-hand derivative at some point is of the second category. This is the
complement of the set above so that set is of the first category. The first
example of such a function wasn’t constructed until 1922 when Besicovitch
managed the feat (and published the function in 1924, cf. Besicovitch [4]2).
These types of functions are usually referred to as functions of the Besicovitch
type.

4.3 Prevalence of ND[0, 1]

Prevalence3 is a concept that can be used when one is interested in a measure
theoretic result of how “large” a set in an infinite dimensional vector space
is. It enables us to use terms such as “almost every” and “measure zero”
on these spaces (without a specific measure like, for example, the Wiener
measure). Its development was partially motivated by wanting to keep some
of the properties that the Lebesgue measure on finite dimensional spaces
possess, one of which is the translation invariance. Prevalence is a more
useful property than topological properties like category and denseness when
a probabilistic result on the likelihood of a given property is desired. This
in part due to the fact that it actually turns out that a property that is
topologically generic in Rn can have very low probability4 (and also that a
first category set can contain almost every [Lebesgue] point in the space).
In Hunt, Sauer and Yorke [31] there are a few examples of this phenomenon as
well as detailed development of the concept of prevalence. We borrow a few
definitions from this paper and show that ND[0, 1] constitutes a prevalent
set in C[0, 1]. The main part of this section is gathered from Hunt [30].

Definition 4.6. Let X be a complete metric vector space. A measure µ is
said to be transverse to a Borel set S ⊂ X if the following conditions hold.

2In 1928, E. Pepper published an article (Pepper [55]) about functions of the Besicovitch
type where he produced the same function as Besicovitch but with simpler reasoning.

3After the publication of Hunt, Sauer and Yorke it became clear that this was closely
related to another concept, more specifically, that so called shy sets are very closely related
to the notion of a Haar zero set for Abelian polish groups (cf. Hunt, Sauer and Yorke [32])

4Actually, in some cases, probability equal to zero.
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(i) There exists a compact set K ⊂ X for which 0 < µ(K) <∞.

(ii) µ({x+ s|s ∈ S}) = 0 for every x ∈ X.

Definition 4.7. A Borel set S ⊂ X is called shy if there exists a measure
transverse to S. If a set W is contained in a shy Borel set then W is also
said to be shy. The complement of a shy set is called a prevalent set.

Definition 4.8. We call a finite-dimensional subspace P ⊂ C[0, 1] a probe
for a set S ⊂ C[0, 1] if Lebesgue measure supported on P is transverse to a
Borel set which contains Sc = C[0, 1] \ S.

The following inequality is central for our main result.

Lemma 4.5. Let g(x) =
∑∞

k=1
1
k2 cos(2kπx) and h(x) =

∑∞
k=1

1
k2 sin(2kπx).

Then there exists c > 0 such that for every α, β ∈ R and any closed interval
I ⊂ [0, 1] with length ε ≤ 1

2
,

sup
x∈I

(αg(x) + βh(x))− inf
x∈I

(αg(x) + βh(x)) ≥ c
√
α2 + β2

(log ε)2
.

Proof. Let f = αg + βh. Then, for some θ ∈ [0, 2π],

f(x) =
∞∑

k=1

1

k2

(
α cos(2kπx) + β sin(2kπx)

)
=
√
α2 + β2

∞∑
k=1

1

k2
cos(2kπx+θ).

We may assume that α2 + β2 = 1 without loss of generality. Let I be some
closed interval in [0, 1] with length 2−m, where m ∈ N. We claim that for
any continuous function f ,

sup
x∈I

f(x)− inf
x∈I

f(x) ≥ sup
j∈N

2mπ

∫
I

f(x) cos(2m+jπx+ θ) dx. (4.1)

We may assume that supx∈I f(x) = − infx∈I f(x) = K for some K ≥ 0 since
adding a constant to both sides of (4.1) does not change the inequality (since∫

I
cos(2m+jπx) dx = 0). Then |f | ≤ 1 on I and hence

2mπ

∫
I

f(x) cos(2m+jπx+ θ) dx ≤ 2mπ

∫
I

K| cos(2m+jπx+ θ)| dx

= 2mπK
2

π
2−m = 2K,
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which is equivalent to (4.1). We then have, for f defined as above and for
any j ∈ N, that

sup
x∈I

f(x)− inf
x∈I

f(x) ≥ 2mπ

∫
I

∞∑
k=1

1

k2
cos(2kπx+ θ) cos(2m+jπx+ θ) dx

=
∞∑

k=1

2mπ

k2

∫
I

cos((2m+j − 2k)πx) + cos((2m+j + 2k)πx+ 2θ)

2
dx.

(4.2)

Since I has length 2−m,
∫

I
cos((2m+j ± 2k)πx + ϕ) dx = 0 whenever k > m,

except when k = m+ j (with the “-” sign). For k ≤ m, let ω = ±2k and let
y be the left endpoint of I. Then∫

I

cos((2m+j + ω)πx+ ϕ) dx

=
sin((2m+j + ω)π(y + 2−m) + ϕ)− sin((2m+j + ω)πy + ϕ)

(2m+j + ω)π

=
sin((2m+j + ω)πy + ϕ+ 2−mπω)− sin((2m+j + ω)πy + ϕ)

(2m+j + ω)π

≥ − |2−mπω|
(2m+j + ω)π

= − |ω|
2m(2m+j + ω)

.

It then follows from (4.2) that

sup
x∈I

f(x)− inf
x∈I

f(x) ≥ π

2(m+ j)2
−

m∑
k=1

π

2k2

(
2k

2m+j − 2k
+

2k

2m+j + 2k

)
≥ π

2(m+ j)2
− π

2m(2j − 1)

m∑
k=1

2k

k2
.

(4.3)
Now we claim that

m∑
k=1

2k

k2
≤ 5

2m

m2
(4.4)

for all m ∈ N. For m = 1, 2, 3, 4 it can quite easily be seen to hold and for
m ≥ 4 we prove by induction. Assume that equation (4.4) holds for m = n.
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Let m = n+ 1,

n+1∑
k=1

2k

k2
≤ 5

2n

n2
+

2n+1

(n+ 1)2
=

(
5(n+ 1)2

2n2
+ 1

)
2n+1

(n+ 1)2

≤
(

125

32
+ 1

)
2n+1

(n+ 1)2
≤ 5

2n+1

(n+ 1)2

and the claim follows by induction on m. This gives a new estimate for (4.3),

sup
x∈I

f(x)− inf
x∈I

f(x) ≥ π

2(m+ j)2
− 5π

(2j − 1)m2
.

We let j = 10 and assume that m ≥ 2. Then

sup
x∈I

f(x)− inf
x∈I

f(x) ≥ π

2(m+ j)2
− 5π

(2j − 1)m2

≥ π

2(6m)2
− π

200m2
=

2π

225m2
.

Finally, if I ⊂ [0, 1] has arbitrary length ε ≤ 1/2, choose an m ≥ 2 such that
21−m ≥ ε > 2−m. Then, for any closed subinterval J ⊂ I with length 2−m,
we have

sup
x∈I

f(x)− inf
x∈I

f(x) ≥ sup
x∈J

f(x)− inf
x∈J

f(x)

≥ 2π

225m2
≥ π

450(m− 1)2
≥ (log 2)2π

450(log ε)2
,

which proves the lemma.

It turns out that we can’t work directly with the set ND[0, 1] (since it’s not a
Borel set, which was proved by Mazurkiewicz [46] in 1936, see Mauldin [44])
so we will instead consider the set of nowhere Lipschitz functions. As we shall
see, this set is actually a subset of the set of continuous nowhere differentiable
functions and the results we prove in this section will therefore hold for a
class of functions that is actually smaller than ND[0, 1].

Definition 4.9. A function f ∈ C[a, b] is said to be M-Lipschitz at x ∈ [a, b]
if

∃M > 0 such that ∀y ∈ [a, b] |f(x)− f(y)| ≤M |x− y|.
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We define NLM [a, b] as the set of nowhere M-Lipschitz functions on [a, b],
i.e.

NLM [a, b] = {f ∈ C[a, b] | ∀x ∈ [a, b]∀y ∈ [a, b] |f(x)− f(y)| > M |x− y|} .

We collect some properties of these sets of nowhere Lipschitz functions.

Lemma 4.6. Let
NL[a, b] =

⋂
M∈N

NLM [a, b],

i.e. the set of all nowhere Lipschitz functions. Then the following properties
hold.

(i) NLM [a, b] is an open set for every M ∈ N.

(ii) NL[a, b] is a Borel set.

(iii) NL[a, b] ⊂ ND[a, b].

Proof. It is enough to prove the theorem for [a, b] = [0, 1].
(i) Let M ∈ N be arbitrary. Take f ∈ C[0, 1] \ NL[0, 1]M , then ∃fn ∈
C[0, 1] \ NLM [0, 1] such that fn → f uniformly on [0, 1]. For every n ∈ N,
there exists xn ∈ [0, 1] such that fn is M -Lipschitz at xn. That is,

∀y ∈ [0, 1] |fn(xn)− fn(y)| ≤M |xn − y|.

The sequence {xn} is bounded so by the Bolzano-Weierstrass theorem there
exists a convergent subsequence {xnk

}, say xnk
→ x ∈ [0, 1]. Let y ∈ [0, 1]

be arbitrary,

|f(x)− f(y)| ≤ |f(x)− f(xnk
)|+ |f(xnk

)− fnk
(xnk

)|
+ |fnk

(xnk
)− fnk

(y)|+ |fnk
(y)− f(y)|

≤ |f(x)− f(xnk
)|+ ‖f − fnk

‖+M |xnk
− y|+ ‖fnk

− f‖
→M |x− y| as k →∞.

Hence f is M-Lipschitz at x and henceforth f ∈ C[0, 1] \ NLM [0, 1]. Thus
C[0, 1] \ NLM [0, 1] is closed and therefore NLM [0, 1] is open.
(ii) This is obvious from the definition of a Borel set and (i).
(iii) Take f ∈ NL[0, 1]. Then for every M ∈ N and for every x, y ∈ [0, 1]

|f(x)− f(y)| > M |x− y| ⇒ |f(x)− f(y)|
|x− y|

> M
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and so the difference quotient is unbounded for all x, y ∈ [0, 1]. Hence f has
no derivative and thus f ∈ ND[0, 1].

Now follows the two main theorems of this section. The first ensures the
existence of a probe and the second proves the desired prevalence of ND[0, 1].

Theorem 4.7. There exists g, h ∈ C[0, 1] such that for all f ∈ C[0, 1]

m

(
R2 \

{
(λ, ν)

∣∣∣∣∣ (λ, ν) ∈ R2, (f + λg + νh) ∈
⋂

m∈N

NLm[0, 1]

})
= 0,

where m is the Lebesgue measure on R2.

Proof. Take g and h as in Lemma 4.5. That both functions are continuous
is shown similarly as for Weierstrass’ function in Section 3.4. Let f ∈ C[0, 1]
be arbitrary and put

S =
{

(α, β) ∈ R2 | f + αg + βh is Lipschitz at some x ∈ [0, 1]
}

.

We want to show that S has Lebesgue measure zero. Let

SM =
{

(α, β) ∈ R2 | f + αg + βh is M-Lipschitz at some x ∈ [0, 1]
}

.

From this definition it is clear that S =
⋃

M∈N SM . So if m is the Lebesgue
measure on R2 and we show that m(SM) = 0 for each M ∈ N it is clear that
m(S) = 0 (by the countable sub-additivity of m).
Let N ∈ N \ {1} and cover [0, 1] by N closed intervals of length ε = 1

N
. Let

I be anyone of those intervals and put

JI = {(α, β) ∈ SM | f + αg + βh is M-Lipschitz at some x ∈ I } .

Let (α1, β1), (α2, β2) ∈ JI be arbitrary. Let fi = f + αig + βih and xi ∈ I be
an M-Lipschitz point for fi where i = 1, 2. Then

sup
x∈I

|fi(x)− fi(xi)| ≤ sup
x∈I

M |x− xi| ≤Mε

which gives

sup
x∈I

|f1(x)− f2(x)− [f1(x1)− f2(x2)] | ≤ sup
x∈I

|f1(x)− f1(x1)|

+ sup
x∈I

|f2(x)− f2(x2)| ≤ 2Mε.
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This gives
sup
x∈I

(f1(x)− f2(x))− inf
x∈I

(f1(x)− f2(x)) ≤ 4Mε

and since f1 − f2 = (α1 − α2)g + (β1 − β2)h, Lemma 4.5 gives the bound

√
(α1 − α2)2 + (β1 − β2)2 ≤ 4Mε log(ε)2

cI
.

Let c = minI{cI}. Since the points were arbitrary, it follows that JI is
enclosed by a disk of radius 4M

c
ε log(ε)2 (for all the intervals I). It now

follows that SM can be covered by N = 1
ε

such discs, giving that the total
area of the covering is bounded by

A = π

(
4M

c
ε(log ε)2

)2
1

ε
=
π16M2

c2
ε(log ε)4.

As ε → 0, A → 0. Hence SM has measure zero and thus S has measure
zero.

Theorem 4.8. Almost every function in C[0, 1] is nowhere differentiable;
that is, ND[0, 1] is a prevalent subset of C[0, 1].

Proof. Let NL[0, 1] be the set of all nowhere Lipschitz functions. By The-
orem 4.7 there exists a probe P (spanned by g and h) for NL[0, 1]. This is
clear since, by the conclusion of said theorem, Lebesgue measure supported
on P is transverse to NL[0, 1]c = C[0, 1] \ NL[0, 1] (which is a Borel set
by Lemma 4.6(ii) since NL[0, 1] is a Borel set and obviously there exists a
compact set K ⊂ C[0, 1] such that 0 < m(K) <∞ (where m is the Lebesgue
measure)). Hence NL[0, 1]c is shy and therefore NL[0, 1] is a prevalent set.
By Lemma 4.6(iii) it is also clear that ND[0, 1] must be a prevalent set in
C[0, 1].
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Sci. de l’École Norm. Super., Sér. 2, 8 (1879), 195–202.

[13] A. L. Dawidowicz, O funkcjach cia̧g lych nie maja̧cych nigdzie pochod-
nych [On continuous functions without derivative everywhere], In: Ma-
thetmatics of the Weierstrass Time (Proc. of XV All Polish School of
History of Mathematics, Ko lobrzeg, 28 May - 2 June 2001), Szczecinski
Oddzia l PTM, Szczecin 2002, 39–50 (Polish).

[14] G. de Rham, Sur un example de fonction continue sans dérivée, Enseign.
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Časopis Pěst. Mat. 60 (1931), 240–262 (Czech).
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Verlag, Basel 1991, 212–233.

[49] E. Neuenschwander, Riemann’s example of a continuous “nondifferen-
tiable” function, Math. Intelligencer 1 (1978), 40–44.

[50] W. Orlicz, Sur les fonctions continues non dérivables, Fund. Math. 34
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[61]∗ K. Rychlik, Über eine Funktion aus Bolzanos handschriftlichem Nach-
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André Marie Ampère (1775–1836),
4

Stefan Banach (1892–1945), 74
Abram Besivocitch (1891–1970), 78
Bernhard Bolzano (1781–1848), 11
Carl Borchardt (1817–1880), 21
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Hölder sense, 39
of limit, 9

contraction mapping, 57, 59
convergence

of sequence, 7
uniform, 7

Darboux function, 30
decimal representation, 47
dense

ND[a, b], 75
P [a, b], 74

Dini-derivatives, 77
dyadic rational, 32, 38, 44

Faber functions, 43
functional equation, 37

generic (topologically), 73

Hausdorff metric, 59
Hilbert curve, 33

Katsuura function, 57
Knopp function, 46
Koch “snowflake” curve, 39

Lebesgue curve, 33
Lipschitz class, 39
Lipschitz condition, 52, 81
Lynch function, 62

McCarthy function, 55
metric, 52, 71
metric space, 52, 54, 59, 71

ND[a, b], 71
NL[a, b], 82
NLM [a, b], 82
norm, 72
normed space, 72
nowhere M -Lipschitz, 82
nowhere dense, 73
nowhere Lipschitz, 82

Orlicz functions, 52

p-adic numbers, 47
Peano function, 32
Petr function, 48
prevalence, 78, 79
probe, 79

residual, 53, 73
Riemann function, 20

93



Schoenberg function, 48
Schwarz function, 31
shy, 79
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