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Abstract

Novel View Synthesis (NVS) is concerned with synthesizing views under camera
viewpoint transformations from one or multiple input images. NVS requires explicit
reasoning about 3D object structure and unseen parts of the scene to synthesize
convincing results. As a result, current approaches typically rely on supervised
training with either ground truth 3D models or multiple target images. We propose
Continuous Object Representation Networks (CORN), a conditional architecture
that encodes an input image’s geometry and appearance that map to a 3D consistent
scene representation. We can train CORN with only two source images per object
by combining our model with a neural renderer. A key feature of CORN is that
it requires no ground truth 3D models or target view supervision. Regardless,
CORN performs well on challenging tasks such as novel view synthesis and single-
view 3D reconstruction and achieves performance comparable to state-of-the-art
approaches that use direct supervision. For up-to-date information, data, and code,
please see our project page 1.

1 Introduction

In 1971, Shephard and Metzler [44] introduced the concept of mental rotation, the ability to rotate
3D objects mentally and link the model to its projection. Novel View Synthesis (NVS) research
seeks to replicate this capability in machines by generating images of a scene from previously unseen
viewpoints, unlocking applications in image editing, animation, or robotic manipulation. View
synthesis is a challenging problem, as it requires understanding the 3D scene structure, reason on
image semantics, and the ability to render the internal representation into a target viewpoint. A
common approach for NVS is to use a large collection of views to reconstruct a 3D mesh [10, 43].
Recent methods have made progress in learning 3D object representations, such as voxel grids [60, 46,
52, 33, 32], point clouds [1, 61, 56], or meshes [54, 12, 48, 55]. However, the discrete nature of these
representations limit the achievable resolution and induce significant memory overhead. Continuous
representations [36, 25, 42, 47, 58, 6, 24, 27] address these challenges. However, proposed methods
require either 3D ground truth or multi-view supervision, limiting these approaches’ applicability to
domains where data is available.

We introduce Continuous Object Representation Networks (CORNs), a neural object representation
that enforces multi-view consistency in geometry and appearance with natural generalization across
scenes, learned from as few as two images per object. The key idea of CORNs is to extract
local and global features from the input images and represent the scene implicitly as a continuous,
differentiable function that maps local and global features to 3D world coordinates. We optimize
CORNs from only two source views using transformation chains and 3D feature consistency as
self-supervision, requiring 50× fewer data during training than the current state-of-the-art models.

1Project page: nicolaihaeni.github.io/corn/
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Figure 1: Our model learns to synthesize novel views using only two source images per object during
training (a). For this instance, even though both source images are from the back of the car, our
model can reconstruct unseen areas with a reasonable detail level. During training, the target view
prediction is not directly supervised with ground truth. Instead, it is transformed into the second
source image while maintaining the consistency of the learned representation. During inference (b),
our model predicts novel views from a single input image. It can accommodate drastically different
source and target poses.

The conditional formulation of CORNs, combined with a differentiable neural renderer, enforces
multi-view consistency and allows for the fast inference of novel views from a single image during test
time, without additional optimization of latent variables. We evaluate CORNs on various challenging
3D computer vision problems, including novel view synthesis, 3D model reconstruction, and out of
domain view synthesis.

To summarize, our approach makes the following contributions:

• A continuous, conditional novel view synthesis model, CORNs based on a novel repre-
sentation that captures the scene’s appearance and geometry at arbitrary spatial resolution.
CORNs are end-to-end trainable and uses only two images per object during training time,
without any 3D space or 2D target view supervision.

• Despite being self-supervised, CORN performs competitively or even outperforms current
state-of-the-art approaches that use dozens of images per object and direct supervision on
the target views.

• We demonstrate several applications of our method, including novel view synthesis, single-
view 3D reconstruction, and novel view synthesis from out-of-domain samples.

2 Related Work

Our goal is to generate novel camera perspectives of static 3D scenes. As such, our work lies at
the intersection of novel view synthesis, 3D object reconstruction, and generative modeling. In the
following, we review related work in these areas.

Novel view synthesis. Novel view synthesis is the problem of generating new camera perspectives
of a scene. Key challenges of novel view synthesis are inferring the scene’s 3D structure and
inpainting occluded and unseen parts. Existing methods differ in their generality, some aim to
learn a general model for a class of objects [59, 33, 5, 47], while others learn instance-specific
models [46, 26, 28]. Training an instance-specific model generally produces higher quality results, at
the cost of lengthy training times for each object instance. For real-world applications, this is often
prohibitive. Improving general models is an open problem, and as CORNs generalize naturally across
object instances, we focus our literature review on methods that synthesize novel views for a general
category of objects.

Traditionally, novel view synthesis uses multi-view geometry [7, 10, 43] to triangulate 3D scene
content. Once the 3D scene is reconstructed, novel views can be generated by rendering the resulting
3D mesh. Instead of explicit 3D mesh reconstruction, other approaches have sought to represent
3D knowledge implicitly; by directly regressing pixels in the target image [50, 49, 59], weakly
disentangling view pose and appearance [67, 62, 22] or by learning appearance flow [65, 35, 49, 5].
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Other prior work proposed to apply the view transformations in latent space [57] or learn a complete
latent space of posed objects [51] from which to sample. While these techniques successfully predict
novel views under small viewpoint transformations, they do not allow 3D structure extraction. Our
proposed method encapsulates both the scenes 3D structure and appearance and can be trained
end-to-end via a differentiable renderer.

Neural scene representations. Deep-learning-based image rendering has become an active research
area, creating a plethora of geometric proxy representations. Broadly, these representations can be
categorized on whether they represent 3D geometry implicity or explicitly. Explicit representations
include voxels [60, 46, 52, 33, 32], meshes [54, 12, 48, 55] or point clouds [1, 61, 56]. While
these discretization based methods have enabled some impressive results, they are memory intensive
and limited in the representation of complicated surfaces. To improve upon these shortcomings,
recent work focuses on learning neural scene representations. Generative Query Networks (GQN)
(GQN) [9, 23, 31] a framework to learn low dimensional embedding vectors that represent both the
3D scenes structure and appearance. While GQNs allow sampling of 2D view samples consistent
with its lower-dimensional embedding, they disregard the scenes 3D structure.

Continuous function representations represent 3D space as the level set of a function, parametrized
by a memory-efficient neural network, which can be sampled to extract 3D structure. Different
function representations have emerged, such as binary occupancy classifiers [6, 24, 27], signed
distance functions [36, 25, 42, 47, 58] or volumetric representations [28]. While these techniques
are successful at modeling 3D geometry, they often require 3D supervision. When combined with a
differentiable renderer, some approaches are supervised with 2D target images instead, relying on
large image collections for training. However, it can be difficult for real-world applications to obtain
dozens or even hundreds of images of each object we would like to model. In contrast, our proposed
method encapsulates scene geometry and appearance from only two reference images per object and
can be trained end-to-end via a learned neural rendering function through self-supervision.

Generative models. Our work builds on recent advances in generating high-quality images with deep
neural networks. Especially Generative Adversarial Networks (GAN) [13, 38, 3] and its conditional
variants [30, 16, 66] have achieved photo-realistic image generation. Some approaches synthesize new
views by incorporating explicit spatial or perspective transformations into the network [15, 17, 60].
Another approach is to treat novel view synthesis as an inverse graphics problem [22, 62, 21, 53, 45,
63]. However, these 2D generative models only learn to parametrize 2D views and their respective
transformations and struggle to produce multi-view consistent outputs since the underlying 3D
structure cannot be exploited.

3 Method

Given a dataset D = {(Ii
1,2,K

i
1,2, T

i
1,2)}

N
i=1

of N objects, each consisting of a tuple with two images

Ii
1,2 ∈ R

H×W×3 and their respective intrinsic Ki
1,2 ∈ R

3×3 and extrinsic T i
1,2 ∈ R

3×4 camera
matrices, our goal is to learn a function f that synthesizes novel views at arbitrary goal camera
poses T i

G ∈ R
3×4 (Fig. 2). We parametrize f = fθ as a neural network with parameters θ that

naturally enforces 3D structure and enables generalization of shape and appearance across objects.
We are interested in a conditional formulation of fθ that requires no additional optimization of latent
variables at inference time, and that can be optimized from only two images per object. In the
following, we first introduce the three components of our network and then discuss how to optimize
with limited data from only two input images per object. For notational simplicity, we drop the
superscript denoting the specific object.

3.1 Feature encoding

The feature encoder network e maps input images to a lower-dimensional feature encoding. Inspired
by Xu et al. [58], we hypothesize that combining a global feature encoding with spatial pixel-wise
features increases the level of detail of the generated images, which we confirm in Sec. 4. The global
encoder predicts a global feature vector z that should represent object characteristics such as geometry
and appearance. The spatial feature encoder predicts feature maps at the same resolution as the input
image. Sampling from this feature map should represent scene semantics beyond merely RGB color
and provide additional details to the 3D scene representation.
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Figure 2: Our proposed end-to-end model. CORN takes two source images I1,2, together with
their respective camera poses T1,2, and a target camera pose TG as input. We aim to learn a function

ÎG = fθ(I1,
1TG) that synthesizes novel views ÎG at target pose TG. Our approach consists of

three parts. The feature predictor e embeds the input image in a lower dimensional feature space
(visualization by projecting features with PCA). The neural scene representation, Φ, maps these
features to a 3D consistent neural representation in world coordinates (x, y, z) (the diagram shows
RGB for clarity). Finally, a neural renderer r renders the scene from arbitrary novel views TG.

Global feature encoder. To predict a global feature embedding, we use a ResNet-18 [14] network
to extract a 128-dimensional global feature z ∈ R

128. We initialize the ResNet-18 with weights
pretrained on the ImageNet dataset and allow further optimization during training.

Spatial feature network. The spatial feature network builds on the UNet [40] architecture. It
takes the last two-dimensional feature map of the global feature encoder as input, followed by four
upsampling and skip-connection layers to extract a 64-dimensional per-pixel feature l ∈ R

64×H×W

of the same size as the input image.

3.2 Neural scene representation

Our neural scene representation Φ maps a spatial location x ∈ R
3, the global object descriptor z,

and local features l to a feature representation of learned scene properties at spatial location x. The
feature representation may encode visual information, such as RGB color, but it may also encode
higher-order information, such as binary occupancy. In contrast to discrete representations, such
as voxel grids or point clouds, which only sparsely sample object properties, Φ densely models
object properties, which can, in theory, be sampled at arbitrary resolutions. In contrast to recent work
on representing scenes as continuous functions with a single global object descriptor [36, 47] we
combine global and local features. Combining local and global features is similar to recent work by
Xu et al. [58] on single-view 3D model reconstruction, which has shown improved performance on
modeling fine details.

Our implicit representation Φ is aware of the 3D structure of objects, as the input to Φ contains world
coordinates x. We sample k 3D points {xj}

k
j=1

uniformly at random from a cubic volume and extract
local features by projecting the 3D points to the feature map l using the known camera pose. We
follow a perspective pinhole camera model that is fully specified by its extrinsic E = [R, t] ∈ R

3×4

and intrinsic K ∈ R
3×3 camera matrices. The extrinsic camera matrix contains rotation matrix

R ∈ R
3×3 and translation vector t ∈ R

3. Given a 3D coordinate xj , the projection from world space
to the camera frame is given by:

u = [u v 1]⊤ = K(Rxj + t) (1)

where u and v are the pixel coordinates in the image plane. We extract local features luv using
bilinear sampling, which is fast to compute and differentiable. The neural representation network Φ
takes concatenated global features, local features, and world coordinates (z, luv,x) ∈ R

m as input
and maps them to a higher dimensional feature vj ∈ R

n at the given spatial coordinate xj :

Φ : Rm → R
n, (z, luv,xj) 7→ Φ(z, luv,xj) = vj (2)
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We denote the collection of features at sampled points by V = {vj}
k
j=1

, and in our experiments use
a 64-dimensional feature vj for each spatial location. We also predict occupancy probabilities for
each 3D point to increase spatial consistency, which we render as binary masks. In Sec. 4, we show
that this formulation leads to multi-view consistent novel view synthesis results.

3.3 Point encoding

Instead of operating on (x, y, z) world-coordinates directly, we found that learning a higher di-
mensional embedding of the 3D space improves the overall performance. This is consistent with
recent work [39, 29], which show that neural networks are biased towards learning low frequency
functions. A higher dimensional encoding of world-coordinates can increase the network’s capacity
to model high-frequency details. Previous works also showed, that using deterministic trigonometric
functions for the point encoding γ achieves similar performance as when γ is parametrized as an
MLP. Following Mildenhall et al. [29] we parametrize γ as non-learned composition of trigonometric
functions:

γ(x) =
(

sin(20πx), cos(20πx), ..., sin(2L−1πx), cos(2L−1πx)
)

. (3)

In our experiments, we set L = 10 and apply γ to each point coordinate individually.

3.4 Neural renderer

Given a 3D feature space V of a scene sampled at 3D points, we introduce a neural rendering
algorithm that maps a 3D feature space V as well as the intrinsic K and extrinsic camera parameters

T to a novel view ÎG target camera pose TG. The sampled feature points are projected to the image
plane at the target camera’s transformation matrix TG high-performance renderer based on [56]. The
neural renderer projects a 3D feature point vj to a region in image space with center cj , and radius r,
where the features influence on a given pixel puv is given by it’s Euclidean distance d to the region’s
center:

pmn =







N (vj , puv) = 0 if d(cj , puv) > r

N (vj , puv) = 1−
d(cj , puv)

M
otherwise

(4)

where r and M are controllable hyper-parameters. Although N is non-differentiable, Wiles et al. [56]
approximate derivatives using the sub-derivative. The projected points are accumulated in a z-buffer
and sorted according to the distance from the new camera before accumulating into a projected
feature map V̄ ∈ R

64×H×W using alpha over-composting. For additional technical details, please
refer to the excellent description in [56].

To render the high dimensional projected features into an RGB image, we use a refinement net-
work r. The refinement network renders color values, infers missing features, and reasons for
the image’s occluded regions. The refinement network is built on a UNet [40] architecture with
four down/upsampling blocks and skip connections and spectral normalization [39] following each
convolution layer to regularize training.

3.5 Training details

To discover a meaningful 3D scene representation without 3D or 2D target image supervision, we
assume without loss of generality that for an object, there exists a unique 3D object representation
in a canonical view frame. We define the objects’ frontal view (0· azimuth and 0· elevation) as the
canonical view. To learn such a canonical 3D representation, we offer two key insights: 1) If at least
two source images per object are available, we can use transformation chains as supervision, and 2)
for the same object, the sampled 3D feature space V has to be multi-view consistent. In the following,
we introduce two loss terms that enforce these insights.

Transformation chain loss. Given two source images, I1 and I2 of an object, we learn a multi-view
consistent 3D feature space through transformation chains. We define a transformation chain as:

Î2 = fθ(fθ(I1,
1TG, )

GT2) (5)

where we first transform source image I1 with relative transformation 1TG from camera pose

T1 to TG and subsequently transform the intermediate prediction ÎG with relative transformation
GT2. Similarly, we transform source view I2 to camera pose T1. To additionally regularize the
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network output, we add supervision by transforming the source views to their respective camera pose:
Ī2 = fθ(I1,

1T2) and Ī1 = fθ(I2,
2T1). We use a combination of L1 and perceptual losses [18] to

get our transformation loss

Ltrafo(fθ, I1,2, T1,2, TG) =
∑

i∈{1,2}

||Ii − Îi||1 + ||Ii − Īi||1 + ||Ii − Îi||vgg + ||Ii − Īi||vgg. (6)

3D feature consistency loss. We assume the object to be in a canonical view frame which allows
us to enforce 3D feature consistency among transformation chains. We define 0◦ for azimuth and
elevation as our canonical camera frame. To enable comparison across transformation chain, 3D
points x are sampled at the beginning of each iteration. Given the sampled 3D feature spaces jVi of
all transformation chains, we enforce feature space consistency with

L3d(fθ, I1,2, T1,2, TG) =
∑

i 6=j

||Vj − Vi||1 (7)

for i, j ∈ {1, 2, G}.

Other losses. To encourage the network to generate spatially meaningful features in 3D space, we
also use our object representation network Φ to predict occupancy for the sampled 3D points. We
supervise occupancy prediction using binary cross-entropy between the source masks (we segment
the input image instead of using ground truth masks) and the predicted masks. Finally, to encourage
the generator to synthesize realistic images, we use a GAN loss LGAN with a patch discriminator [16].
Our ful objective function is:

L = λtrafoLtrafo + λ3dL3d + λBCELBCE + λGANLGAN (8)

where the λ parameters are the respective weight of the loss terms.

4 Experiments

We evaluate CORN on the task of novel view synthesis for several object classes and on potential
applications, namely single-view 3D reconstruction and out of distribution view synthesis on real
data. For additional results, we refer the reader to the supplementary document.

Implementation details. Hyper-parameters, full network architectures for CORNs, and all baseline
descriptions can be found in the supplementary material. Training of the presented models takes on
the order of 2 days. Links to code and datasets are available on our project website.

4.1 Datasets

ShapeNet v2. For novel view synthesis, we follow established evaluation protocols [35, 49] and
evaluate on the car and chair classes of ShapeNet v2.0 [4]. The rendered dataset contains 108
images at a resolution of 128× 128 pixels per object, with camera poses sampled from a viewing
hemisphere with equally spaced azimuth (ranging between 0◦ − 360◦) and elevation (0◦ − 20◦)
angles in 10-degree intervals. Of the 108 rendered images for each object, we select only two images

Source M2NV CVC VIGAN TBN Ours Ground Truth

Figure 3: Qualitative novel view synthesis results. Our method generates detailed novel views,
performing competitively to the baselines. Appearance flow methods fail to generate convincing
images for large viewpoint transformations (e.g. top row of M2NV and CVC).

6



at random per object for CORN training. We evaluate the performance of novel view synthesis on
20,000 randomly generated test pairs of objects in the held-out test dataset. We compare CORN to
four baseline methods from recent literature based on three evaluation metrics: 1) L1 distance, 2)
structural similarity (SSIM) between the predicted and ground truth images, and 3) learned perceptual
image patch similarity (LPIPS) [64], a metric that better replicates human judgment of visual quality.

Figure 4: Qualitative results
on the Basel Face dataset.

Basel Face Model. We show qualitative results on the Basel Face
Model [11] with face models showing a range of expressions. We
generate 33 renderings each from 10,000 face models with camera
poses sampled from a hemisphere in front of the face with azimuth
angles ranging between (±50◦) and elevation (±20◦). Appearance
and expression parameters are sampled from a zero-mean Gaus-
sian distribution with a standard deviation of 0.7. We use constant
ambient illumination and a variation of expression and appearance
parameters. After training, we evaluate our model on a holdout
test set. CORNs capture the appearance and orientation of the face
model and expression parameters, as seen in Fig. 4. As expected, due
to the deterministic implementation, CORNs reconstructs objects
resembling the mean of all feasible objects, decreasing performance
for instances showing considerable divergence from the mean shape.
For additional results, see the supplementary material and the video.

4.2 Results

Novel view synthesis. We evaluate our network on the task of transforming a single source-view into
a target camera view. Table 1 and Fig. 3 show quantitative and qualitative results respectively. Despite
using no 3D or 2D target view supervision and only two source images for training, our method
performs competitively (up to within 2% of the best score) or even outperforms other methods on the
LPIPS score against the supervised approaches, demonstrating CORN ability to generate meaningful
object representations from a fraction of the data. The appearance flow-based methods fail if the
viewpoint transformations are large (top row). Our model qualitatively preserves fine details and
generates meaningful results for missing parts of the object. Using the two source images for direct
supervision (CORN w 2VS) without learning a consistent 3D representation and using transformation
chains decreases model performance. Similarly, relying solely on a global object description vector
(CORN global) decreases performance. For additional ablations of individual loss function terms,
please see the supplementary material.

Table 1: Quantitative novel view synthesis results. We report mean and standard deviation of the
L1 loss (lower is better), structural similarity (SSIM) index (higher is better) and learned perceptual
image patch similarity (LPIPS) (lower is better) for several methods. Our model achieves competitive
results, using 50× less data and only two input images per object for self-supervision.

Methods
Car Chair

L1(↓) SSIM (↑) LPIPS (↓) L1(↓) SSIM (↑) LPIPS (↓)

M2NV [49] 0.139 0.751 0.238 0.114 0.738 0.217
CVC [5] 0.091 0.802 0.149 0.124 0.741 0.207
VIGAN [59] 0.0524 0.860 0.130 0.121 0.746 0.161
TBN [33] 0.0578 0.856 0.095 0.092 0.792 0.138

CORN w 2VS 0.073 0.819 0.120 0.157 0.689 0.245
CORN global 0.069 0.827 0.109 0.157 0.703 0.216
CORN 0.063 0.838 0.094 0.132 0.722 0.180

Continuous scene representation. We compare our method against SRN [47], a state-of-the-art
continuous scene representation network. To allow a fair comparison, we use only objects at the
intersection of the two evaluation protocols. We use a single source image for both models to
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Figure 5: Quantitative results of view sequence generation. We used a single image to predict 108
target views. Our model synthesizes images with a higher level of detail, models transient object
properties, and shows better form fit.

reconstruct the scene representation before generating 108 views (ranging between azimuth 0◦−360◦

and elevation 0◦ − 20◦ angles).

Table 2 and Fig. 5 show the qualitative and quantitative results respectively. Our method outperforms
SRN, even without target view supervision, using only two images per object, compared to 50 for
SRN. Our model does not require latent code optimization during inference, which dramatically
reduces the inference time from about 5 minutes (SRN) to milliseconds per image.

Table 2: Continuous representation results. We evaluate the ability of SRN [47] and CORN
to synthesize 108 novel views from a single input image on car and chair objects. Our method
outperforms SRN on both datasets.

Methods
Car Chair

L1(↓) SSIM (↑) LPIPS (↓) L1(↓) SSIM (↑) LPIPS (↓)

SRN [47] 0.090 0.797 0.144 0.160 0.708 0.232
CORN 0.067 0.831 0.103 0.1333 0.725 0.181

4.3 Applications

Out of domain view synthesis. Results reported so far are on synthetic datasets where the input
images are rendered from 3D CAD models. To test the generalization performance of CORNs to
real data, we evaluate our model trained with the ShapeNet car objects on the Cars [19] dataset.
This dataset contains a wide variety of real car images taken from natural scenes. Note that we
did not retrain our model on this dataset. Fig. 6 shows the novel view synthesis of objects given
real input images as input. Our method preserves local geometric and photometric features in this
challenging setup. This experiment suggests that our model can synthesize images from different
dataset distributions, indicating some domain transfer capability.

Single-view 3D reconstruction. In addition to novel view synthesis, our method’s possible ap-
plications include single-image 3D reconstruction. We synthesize N novel views on the viewing
hemisphere from a single image. From these images, we sample k 3D points uniformly at random
from a cubic volume in a similar procedure to the one described in Section 3.2. Our goal is to
predict the occupancy of each of these k points. To accomplish this, we project each point onto the
synthesized images and label it as occupied if it projects to the foreground mask. Fig. 7 shows the
3D reconstruction results from the input images. Our method captures the overall structure of the
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Input Novel Views

Figure 6: Qualitative results of novel view synthesis on real data. Our model generates high
quality views of previously unseen data. We use the model trained on ShapeNet and evaluate on the
Cars [19] without retraining.

Ground TruthOursInput Ground TruthOursInput

Figure 7: Qualitative single view 3D reconstruction results. The synthesized views can be used to
produce high quality 3D reconstructions from a single input image.

objects, and in most cases, their fine-level details. In our experiments we synthesize N = 15 images
and sample k = 105 points in 3D space.

5 Discussion

We introduced CORNs, a continuous neural representation for novel view synthesis, learned without
any 3D object information or 2D target view supervision. Our system’s key component is the use
of transformation chains and 3D feature consistency to self-supervise the network. The resulting
continuous representation network maps local and global features, extracted from a single input image
to a spatial feature representation of the scene. Incorporating a differentiable neural renderer enables
the synthesis of new images from arbitrary views in an end-to-end trainable fashion. CORN requires
only two source images per object during training and achieves comparable results or outperforms
state-of-the-art supervised models with 50× fewer data and without target view supervision. We
demonstrate our model’s applications for novel view synthesis, single image 3D object reconstruction,
and out of distribution view synthesis on real images.

There are several exciting possible avenues for future work. Using two input views during training to
regularize the 3D representation by imposing consistency across the input training images is critical
to our method’s success. We intend to investigate whether such regularization can be achieved with
only one training image per object. However, the naive solution of using CORN with only a single
image fails, as cyclic consistency collapses the model to the trivial solution (the identity mapping).
Currently, CORNs achieve high confidence predictions from two randomly chosen training images.
Sampling views more intelligently, i.e., across aspect graph [8] event boundaries could improve
performance. Finally, CORN operate on synthetic data, without natural backgrounds, and with
defined camera poses. Future work may alternatively integrate CORN with pose estimation and
background modeling models.
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Broader Impact

Our approach to learning novel view synthesis has the immediate possibility of enabling augmented
and virtual reality applications [37, 20]. The limited requirement of only two images per object
will make these techniques applicable beyond synthetic data. As with any generative model that
provides tools for image manipulation, we too run the risk of producing fake visual content that can
be exploited for malicious causes. While visual object rotation itself does not have direct negative
consequences, the mere fact that such manipulations are possible can erode the public’s trust in
published images [34]. Image manipulation is not a new phenomenon, however, and there has been
research trying to detect manipulated images [41, 2] automatically. Still, more work on and broader
adoption of such techniques is needed to mitigate image manipulation’s adverse effects.
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