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Continuous On-Board Monocular-Vision–based Elevation Mapping

Applied to Autonomous Landing of Micro Aerial Vehicles

Christian Forster, Matthias Faessler, Flavio Fontana, Manuel Werlberger, Davide Scaramuzza

Abstract— In this paper, we propose a resource-efficient
system for real-time 3D terrain reconstruction and landing-
spot detection for micro aerial vehicles. The system runs on
an on-board smartphone processor and requires only the input
of a single downlooking camera and an inertial measurement
unit. We generate a two-dimensional elevation map that is prob-
abilistic, of fixed size, and robot-centric, thus, always covering
the area immediately underneath the robot. The elevation map
is continuously updated at a rate of 1 Hz with depth maps that
are triangulated from multiple views using recursive Bayesian
estimation. To highlight the usefulness of the proposed mapping
framework for autonomous navigation of micro aerial vehicles,
we successfully demonstrate fully autonomous landing including
landing-spot detection in real-world experiments.

MULTIMEDIA MATERIAL

A video attachment to this work is available at:

http://rpg.ifi.uzh.ch

I. INTRODUCTION

Autonomous Micro Aerial Vehicles (MAVs) will soon

play a major role in industrial inspection, agriculture, search

and rescue and consumer goods delivery. For autonomous

operations in these fields, it is crucial that the vehicle is at

all times fully aware of the surface immediately underneath:

First, during normal operation, the vehicle should maintain

a minimum distance to the ground surface to avoid crashing.

Second, for autonomous landing, the MAV needs to identify,

approach and land at a safe site without human interven-

tion. Knowing the ground surface in previously-unknown

environments is invaluable in case of forced landings due

to emergencies like communication loss as well as for

planned landings for, e.g., saving energy during monitoring

operations or for the delivery of goods.

Large-scale Unmanned Aerial Vehicles (UAVs) often use

range sensors to detect hazards, avoid obstacles or to land

autonomously [1], [2]. However, these active sensors are

expensive, heavy and quickly drain the battery when used

on small MAVs. Instead, given efficient and robust computer

vision algorithms, active range sensors can be replaced by a

single downward-looking camera. This setup is lightweight,

cost effective, and, as shown in previous works [3], allows

accurate localization and stabilization of the MAV in GPS

denied environments, such as indoors, close to buildings, or

below bridges.

The authors are with the Robotics and Perception Group, University
of Zurich, Switzerland—http://rpg.ifi.uzh.ch. This research was
supported by the Swiss National Science Foundation through project number
200021-143607 (“Swarm of Flying Cameras”) and the National Centre of
Competence in Research Robotics (NCCR).

Fig. 1: Illustration of the local elevation map E. The two-dimensional
probabilistic grid map is of fixed size and centered below the MAV’s
position. The MAV updates the map continuously at a rate of 1 Hz using
only the on-board smartphone processor and data from a single down-
looking camera. The map enables the robot to autonomously detect and
approach a landing spot S at any time (green trajectory).

In contrast to stereo and RGBD-cameras with fixed base-

lines, a single moving camera may be seen as a stereo

setting that can dynamically adjust its baseline according to

the required measurement accuracy as well as the structure

and texture of the scene. Indeed, a single moving camera

represents the most general setting for stereo vision. This

property was previously exploited for real-time 3D terrain

reconstruction from aerial images in order to detect landing

spots [4]–[6] or for visualization purposes [7]–[10].

In this paper, we propose a system for mapping the local

ground environment underneath an MAV equipped with a

single camera. Detailed dense and textured reconstructions

are valuable for human operators and can be computed in

real-time but off-board by streaming images to a ground

station as shown in [8]–[10]. In order to work also for

emergency maneuvers or autonomous flying in remote areas

without the availability of a ground station, we restrict the

system to solely use the computing capability on-board the

MAV. To achieve this objective we utilize a coarse two-

dimensional elevation map [11] as on-board map represen-

tation, which is sufficient for many autonomous maneuvers

in outdoor environments. A further advantage compared to

other map representations, such as surface meshes [7], is

the regular sampling of the surface and the possibility to

fuse multiple elevation measurements via a probabilistic

representation. The proposed system runs continuously on

an on-board smartphone processor and updates the robot-

centric elevation map of fixed dimension at a rate of 1 Hz.

The system does not require any prior information of the

scene or external navigation aids such as GPS.



A. Related Work

Real-time dense reconstruction with a single camera has

been previously demonstrated in [8], [9], [12]–[14]. How-

ever, all previous approaches rely on heavy GPU paralleliza-

tion and therefore can currently not be computed with the

on-board computing power of an MAV. In [9] we presented

the REMODE (regularized monocular depth estimation) al-

gorithm and demonstrated live but off-board dense mapping

from an MAV. Therefore, we streamed on-board pose es-

timates provided by an accurate visual odometry algorithm

[15] together with images at a rate of 10 Hz to a ground

station that was equipped with a powerful laptop computer

and was capable to compute dense depth maps in real-time.

In the current paper, we utilize REMODE to build a 2D

elevation map and present modifications to the algorithm to

run it on a smartphone CPU on-board the MAV.

Early works on vision-based autonomous landing for

Unmanned Aerial Vehicles (UAV) were based on detecting

known planar shapes (e.g., helipads with “H” markings) in

images [16] or on the analysis of textures in single images

[17]. Later works (e.g., [4]–[6]) assessed the risk of a landing

spot by evaluating the roughness and inclination of the

surface using 3D terrain reconstruction from images.

The first demonstration of vision based autonomous land-

ing in unknown and hazardous terrain is described in [4].

Similar to our work, structure-from-motion was used to

estimate the relative pose of two monocular images and

subsequently, a dense elevation map with a resolution of 19×
27 cells was computed by matching and triangulating 600

regularly sampled features. The evaluation of the roughness

and slope of the computed terrain map resulted in a binary

classification of safe and hazardous landing areas. While this

work detects the landing spot entirely based on two selected

images, we continuously make depth measurements and fuse

them in a local elevation map.

In [5], homography estimation was used to compute the

motion of the camera as well as to recover planar surfaces

in the scene. Similar to our work, a probabilistic two-

dimensional grid was used as map representation. However,

the grid stored the probability of the cells being flat and

not the actual elevation value as in our approach, therefore,

barring the possibility to use the map for obstacle avoidance.

While previously mentioned works were passive in the

sense that the exploration flight was pre-programmed, recent

work [6] was actively choosing the best trajectory to explore

and verify a landing spot. Due to computational complexity,

the full system could not run entirely on-board in real-time.

Thus, outdoor experiments were processed on datasets. In

contrast to our work, only two frames were used to compute

dense motion stereo, hence a criterion, based on the visibility

of features and the inter-frame baseline, was needed to select

two images. The probabilistic depth estimation in our work

not only allows using every image for robust incremental

estimation but also provides a measure of uncertainty that can

be used for planning trajectories minimizing the uncertainty

as fast as possible [18].
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Fig. 2: Overview of the main components and connections in the proposed
system. All modules are running on-board the MAV.

B. Contributions

The contribution of this work is a monocular-vision–

based 3D terrain scanning system that runs in real-time

and continuously on a smartphone processor on-board an

MAV. Therefore, we introduce a novel robot-centric elevation

map representation to the MAV research community. To

highlight the usefulness of the proposed elevation map, we

demonstrate both indoor and outdoor experiments of a fully

integrated landing spot detection and autonomous landing

system for a lightweight quadrotor.

II. SYSTEM OVERVIEW

Figure 2 illustrates the proposed systems’ main compo-

nents and their linkage:

We use our Semi-direct Visual Odometry (SVO) [15] to

estimate the current MAV’s pose given the image stream

from the single downward-looking camera.1 However, with

a single camera we can obtain the relative camera motion

only up to an unknown scale factor.

Therefore, in order to align the pose correctly with the

gravity vector, and to estimate the scale of the trajectory, we

fuse the output of SVO with the data coming from the on-

board inertial measurement unit (IMU). For integrating the

IMU’s data, we use the MSF (multi-sensor fusion) software

package [19], which utilizes an extended Kalman filter.2

Next, we compute depth estimates with a modified version of

the REMODE (REgularized MOnocular Depth Estimation)

[9] algorithm. Details on the modifications of the REMODE

algorithm for computing probabilistic depth maps purely

relying on the on-board computing capability are given in

Section III.

The generated depth maps are then used to incrementally

update a 2D robot-centric elevation map [11]. Since the

elevation map is probabilistic, we perform a Bayesian update

step for the elevation values of the affected cells, whenever

a new depth map is available. In addition, the elevation

1Available at http://github.com/uzh-rpg/rpg_svo
2Available at https://github.com/ethz-asl/ethzasl_msf
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Fig. 3: Overview of the monocular dense reconstruction system.

map moves together with the robot’s pose as it is local and

robot-centric. More details on the update steps and how to

incorporate the depth measurements are given in Section IV.

The flight trajectory of the MAV is provided by the path

planning module which can be implemented in different

ways: For instance, it has a pre-programmed flight path, or it

obtains way-points from a remote operator, or it uses active

vision in order to select the next-best views to make the

current depth map converge as fast as possible. For further

details on the active vision approach, we refer to [18].

As an exemplar application of the given system, we show

an autonomous landing of the MAV. Therefore, an additional

module for landing-spot detection based on the elevation map

is presented in Section V.

III. MONOCULAR DENSE RECONSTRUCTION

In the following, we summarize the REMODE (REgu-

larized MOnocular Depth Estimation) algorithm, which we

introduced in [9], and describe the necessary modifications

to run the algorithm in real-time on a smartphone processor

on-board the MAV.

An overview of the algorithm is given in Figure 3. The

algorithm computes a dense depth map for selected reference

views. The depth computation for a single pixel is formalized

as a Bayesian estimation problem. Therefore, a so called

depth filter is initialized for all pixels in every newly selected

reference image Ir (see Figure 4). Every subsequent image

Ik is used to perform a recursive Bayesian update step of the

depth estimates. The selection of reference frames — hence

the amount of generated depth maps given a sequence of

images — is based on two criterions: a new reference view

is selected whenever (1) the uncertainties of the given depth

estimates are below a certain threshold (thus the depth map

has converged), or (2) when the spatial distance between

the current camera pose and the reference view is larger

than a certain threshold. After the depth map converged, we

enforce its smoothness by applying a Total Variation (TV)

based image filter.

A. Depth Filter

Given a new reference frame Ir, a depth filter is initialized

for every pixel with a high uncertainty in depth and a mean

that is derived from the sparse 3D reconstruction in the visual
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i
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Fig. 4: Probabilistic depth estimate d̂i for pixel i in the reference frame r.
The point at the true depth projects to similar image regions in both images
(blue squares). Thus, the depth estimate is updated with the triangulated

depth d̃k
i

computed from the point u
′

i
of highest correlation with the

reference patch. The point of highest correlation lies always on the epipolar
line in the new image.

odometry (see Section III-C). The depth filter is described

by a parametric model that is updated on the basis of every

subsequent frame k.

Let the rigid body transformation TWr ∈ SE(3) describe

the pose of a reference frame r relative to the world frame

W. Given a new observation {Ik,TWk}, we project the

95% depth-confidence interval [dmin
i , dmax

i ] of the depth filter

corresponding to pixel i into the image Ik and find a

segment of the epipolar line l (see Figure 4). Using the

zero-mean sum of squared differences (ZMSSD) score on

a 8×8 patch, we search the pixel u′
i on the epipolar line

segment l that has highest correlation with the reference

pixel ui. A depth measurement d̃ki is generated from the

observation by triangulating ui and u′
i from the views r

and k respectively. As proposed in [20], we can model the

measurements with a model that mixes “good” measurements

(i.e., inliers) with “bad” ones (i.e., outliers). With probability

ρi, the measurement is a good one and is normally distributed

around the correct depth di with a measurement variance

τki
2
. With probability 1− ρi, the measurement is an outlier

and is uniformly distributed in an interval [dmin
i , dmax

i ]):

p(d̃ki |di, ρi)

= ρiN (d̃ki |di, τ
k
i

2
) + (1− ρi)U(d̃

k
i |d

min
i , dmax

i ),
(1)

Assuming independent observations, the Bayesian estimation

for di on the basis of all measurements d̃r+1
i , . . . , d̃ki is given

by the posterior

p(di, ρi|d̃
r+1
i , . . . , d̃ki ) ∝ p0(di, ρi)

∏

k

p(d̃ki |di, ρi), (2)

with p0(di, ρi) being a prior on the true depth and the ratio

of good measurements supporting it. A sequential update is

implemented by using the estimation at time step k− 1 as a

prior to combine with the observation at time step k. We refer

to [20] for the final formalization and in-depth discussion of

the update step.

Note that we consider the depth estimate that is modeled as

a Gaussian di ∼ N (d̂i, σ̂
2
i ) as converged when its estimated

inlier probability ρ̂i is more than the threshold ηinlier and the

depth variance σ̂2
i is below σ2

thresh.



Fig. 5: Evolution of the depth map reconstruction process. The leftmost image shows the depth map after initialization from the sparse point cloud. After
some iterations, the depth filters converge upon which their corresponding pixels are colored in blue. The final depth map is integrated in the elevation
map shown in Figure 8(b). The rightmost image shows the reference image of the depth map.

B. Depth Smoothing

The main goal is to filter coarse outliers in the depth

estimate but keep the discontinuities in the depth map intact.

In [9], we utilized a variant of the weighted total variation,

introduced by [21] in the context of image segmentation, in

order to enforce spatial smoothness of the constructed depth

maps. Therefore, we utilize the given depth map D(u) with

u ∈ R
2 being the image coordinates. For computing the

smooth depth map F (u), we apply a variant of the weighted

Huber-L1 model as presented in [9], that is defined as the

variational problem

min
F

∫

Ω

{

G(u) ‖∇F (u)‖ε+λ(u) ‖F (u)−D(u)‖1
}

du . (3)

Note that there are two modifications to the variant presented

in [9]: (1) first, we use a weighted Huber regularizer that

weights the Huber norm according to the image gradient

magnitude of the respective reference image by using the

weighting function

G(u) = exp
(

− α ||∇Ir (u)||
q

2

)

. (4)

This is based on the assumption that image edges of the

reference image coincide with depth discontinuities, hence

prevents the regularization to smooth across object bound-

aries. (2) Second, we define λ(u), the trade-off between

regularization and data fidelity, as a pointwise function

depending on the estimated pixel-wise depth uncertainty

σ̂2(u) and inlier probability ρ̂(u) of the depth filters:

λ(u) = E[ρ̂(u)]
σ2

max − σ̂2(u)

σ2
max

, (5)

where σ2
max is the maximal uncertainty that the depth filters

are initialized with. The confidence value λ(u) represents

the quality of the convergence of the depth value for each

pixel. In the extreme case, if the expected value of the inlier

probability ρ̂(u) is zero or the variance is close to σ2
max, the

confidence value λ(u) becomes zero and solving (3) will

perform inpainting for these regions.

For solving the optimization problem (3), we refer to

[9] where we defined the primal-dual formulation of the

weighted Huber-L1 model. Then, for solving such primal-

dual saddle-point problems we utilize the first-order primal-

dual algorithm proposed by Chambolle and Pock [22].

C. Implementation Details

On-board the MAV, only a coarse elevation map is nec-

essary for autonomous maneuvers. This requirement allows

us to lower the resolution of the reconstruction, which

drastically reduces the processing time for one depth map.

In practice, we initialize one depth filter for every 8×8 pixel

block in the reference frame. We therefore obtain dense depth

maps of size 94×60, totalling 5820 depth filters for every

reference image. Given the computing capabilities of our

platform, we can update the depth filters in real-time; thus,

we do not require to buffer any images and provide frequent

updates to the elevation map.

More accurate initialization of the depth filters further

reduced the processing time. Hence, we exploit that the

visual odometry algorithm already computes a sparse point-

cloud of the scene (shown in Figure 9(b)). We create a two-

dimensional KD-Tree of the sparse depth estimates in the

reference frame and find for every depth-filter the closest

sparse depth estimate. The result is a mosaic of locally-

constant depths as shown in the leftmost image of Figure 5.

In case a depth estimate is very close to the depth-filter, the

initial depth uncertainty σ̂2
i is additionally reduced for faster

convergence. This approach relies on the fact that SVO has

few outliers. However, in case of an outlier, we find that

the depth-filters do not converge and, thus, no erroneous

height measurement will be inserted in the elevation map.

In Figure 5, converged depths are colored in blue and from

visual inspection it can be seen that most obvious outliers

have not converged. Resulting holes in the elevation map are

quickly filled by subsequent updates.

IV. ELEVATION MAP

We make use of a recently developed robot-centric eleva-

tion mapping framework proposed in [11]. The goal of the

original work was to develop a local map representation that

serves foot-step planning for walking robots over and around

obstacles. However, we find that the local two-dimensional

elevation map is an efficient on-board map representation

for MAVs that are flying outdoors — it allows us to keep

a safe distance to the surface and to detect and approach

suitable landing spots. By tightly coupling the local map to

the robot’s pose, the framework can efficiently deal with drift

in the pose estimate. The local map has a fixed size, thus,

the map can be implemented with a two-dimensional circular

buffer that requires constant memory. The two-dimensional

buffer allows moving the map efficiently together with the

robot without copying any data but by shifting indices and

by resetting the values in the regions that move out of the

map region. An open-source implementation of the elevation

mapping framework is provided by the authors of [11].3

While the authors of [11] used a depth camera, we will

demonstrate how the elevation map can be efficiently updated

3Available at http://github.com/ethz-asl/grid_map
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with depth maps computed from aerial monocular views.

Furthermore, we extended the framework with a system to

switch the map resolution – a requirement that is necessary

when the MAV is operating at different altitudes.

A. Preliminaries

We use three coordinate frames, the inertial world frame

W is assumed fix, the map frame M is attached to the

elevation map, and C denotes the camera frame attached to

the MAV (see Figure 6). Since the elevation map is robot

centric, the translation part of the rigid body transformation

TMC(t) = {RMC(t), MtMC} ∈ SE(3) remains fixed at all times.

The MAV has an onboard vision-based state estimator that

estimates the relative transformation TWC(t) ∈ SE(3).
The elevation map is stored in a two-dimensional grid with

a resolution s [m/cell] and width w [m]. The height in each

cell (i, j) is modeled as a normal distribution with mean ĥ
and variance σ̂2

h.

B. Map Update

In Section III, we described how to process data from a

single camera to obtain a probabilistic depth estimate d ∼
N (d̂, σ̂2

d) corresponding to a pixel u in a selected reference

image Ir, where r = C(tr) denotes the camera frame C

at a selected time instant tr. Given the probabilistic depth

estimate, we can follow the derivation in [11] to integrate

a measurement in the elevation map. In the following, we

summarize the required steps.

Given the depth estimate d̂ of pixel u, we can find the

corresponding 3D point p by applying the camera model:

Cp̄ = π−1(u) · d̂, (6)

where π−1 is the inverse camera projection model that can

be obtained through camera calibration. The prescript c
denotes that the point cp̄ is expressed in the camera frame of

reference and the bar indicates that the point is expressed in

homogeneous coordinates. We find the height measurement

by transforming the point to map coordinates and applying

the projection matrix P = [0 0 1] that maps a 3D point to a

scalar value:

h̃ = P TMC Cp̄. (7)

To obtain the variance of the measurement, we need to

compute the Jacobian of the projection function (7):

JP =
∂h̃

∂Cp
= P RMC, (8)

where RMC ∈ SO(3) is the rotational part of TMC. The

variance of the measurement can then be written as:

σ̃2
h = JPΣpJ

⊤
P. (9)

Note that Equation (9) can be extended with the uncertainty

corresponding to the robot pose TCW as derived in [11]. The

uncertainty of the 3D point Σp is derived as follows:

Σp = R diag(
d̂

f
σ2
p,

d̂

f
σ2
p, σ

2
d) R

⊤, (10)

where R is a rotation matrix that aligns the pixel bearing

vector f with the z-axis of the camera coordinate frame C.

The fraction d̂
f

projects the pixel uncertainty σ2
p (set fixed to

one pixel) to the 3D space, using the focal length f of the

camera.

Given the height measurement mean h̃ and variance σ̃2
h,

we can update the height estimate in the corresponding cell

(i, j) using a recursive Bayesian update step:

ĥ←
σ̃2
hĥ+ σ̂2

hh̃

σ̃2
h + σ̂2

h

, σ̂2
h ←

σ̃2
hσ̂

2
h

σ̃2
h + σ̂2

h

. (11)

C. Map-Resolution Switching

Given the height z of the robot above ground in meters,

the focal length f in pixels, and the fact that we initialize a

depth-filter for every image block of 8 pixels size, we can

compute the optimal elevation map resolution:

sopt =
8

f
· z [m/cell]. (12)

For instance, when flying at a height of 5 meters with our

camera that has a focal length f = 420 pixels, the optimal

resolution would be 0.1 meters per cell. We limit the size of

the map to have 100 by 100 cells; thus, depending on the

resolution, a larger or smaller area is covered by the elevation

map.

During operation, we maintain an estimate of the optimal

resolution sopt and compare it with the currently-set resolu-

tion scur. If the MAV is ascending and the optimal resolution

increases by a factor αup = 1.8 compared to the current

resolution, we double the resolution. Similarly, if the optimal

resolution reduces by a factor of αdown = 0.6, i.e., the MAV

is approaching the surface, we reduce the resolution by half.

Additionally, we limit the minimal resolution to 5 cm per

cell to avoid changing the resolution too often during the

landing procedure. When the resolution changes, we down or

up-sample all values in the map using bilinear interpolation.

V. LANDING SPOT DETECTION

To motivate the usefulness of the proposed local elevation

map, we implemented a basic landing-spot detection and

landing system that is described in the following.



Fig. 7: Experimental platform with (1) down-looking camera, (2) on-board
computer, and (3) inertial measurement unit.

Let us define a 3D point p located on the surface of the

terrain and within the range of the local elevation map. The

point has discrete coordinates (i, j) in the two-dimensional

elevation map and is located at height h(i, j).
We define a safe landing spot to have a local neighborhood

of radius r in which the surface is flat. The radius r is related

to the size of the MAV. We formalize this criterion with the

cost function:

C(i, j) =
∑

(u,v)∈R(i,j,r)

||h(u, v)− h(i, j)||2, (13)

where R(i, j, r) is the set of cells around coordinate (i, j)
that are located within a radius r.

Experimentally, we find a threshold Cmax that defines the

acceptable cost to be a safe landing spot. We compute a

binary mask of all cells in the elevation mask, which have

a cost lower than Cmax. Subsequently, we apply the distance

transform to the binary mask in order to find the coordinates

(i, j) that have a cost lower than the threshold and are farthest

from all cells that do not satisfy the criterion. Thus, the final

landing spot should be as far as possible from any obstacles.

From the construction of the elevation map, it may well

be that a cell does not have an elevation value. This is the

case in regions that have not been measured before or in

which the depth filters did not converge, e.g., due to lack

of texture, reflections, or due to moving objects. Therefore,

before applying the kernel in Equation (13) to the elevation

map, we set all cells without an elevation value to Cmax.

Thereby, assuring to land in regions where depth computation

is feasible, thus, landing is more likely to be safe.

VI. EXPERIMENTS

We performed experiments of the elevation-mapping and

landing system both indoors in a quadrotor testbed as well

as outdoors. Videos of the experiments can be viewed at:

http://rpg.ifi.uzh.ch

The quadrotor used for all experiments is shown in Fig-

ure 7. It is equipped with a MatrixVision mvBlueFOX-

MLC200w 752×480-pixel monochrome global shutter cam-

era, an 1.7 GHz quad-core smartphone processor running

Ubuntu, and an PX4FMU autopilot board from Pixhawk

that houses an Inertial Measurement Unit (IMU). In total

the quadrotor weights less than 450 grams and has a frame

diameter of 35 cm. More details about the experimental

platform are given in [10].

Mean Median Std. Dev.
[ms] [ms] [ms]

Depthmap update 150 143 40

Regularization (10 iterations) 133 129 19
Elevation map update 10 10 2

Total time for one depthmap: 1098 999 503

Landing spot detection 268 268 19

TABLE I: On-board timing measurements.

A. Timing Measurements

All processing during the experiments was done on the

on-board computer using the ROS4 middleware. During

operation, the elevation-mapping and landing module uses,

on average, one processing core, SVO and MSF together

another two cores, and the fourth core is reserved for the

camera driver, communication, and control.

Table I lists the timing measurements. On average, the

depth map requires 6 to 10 images for convergence. However,

this depends greatly on the motion of the camera as well as

the depth and the texture of the scene [18]. For the listed

measurements, we were flying at a speed of approximately

1.5 m/s and at a height of 1.8 meters. Updating all depth

estimates with a new image requires on average 150 millisec-

onds. Once 50% of the depth filters in the depth map have

converged, we filter the resultand depth map by solving the

gradient-weighted Huber-L1 model (3) (130 milliseconds)

and integrate the smoothed depth map in the elevation map

(10 milliseconds).

Summarizing, the mapping module receives images from

the camera at 10 Hz and integrates approximately 6-10

images to output one depth map per second.

Once it is necessary to detect a landing spot, it requires

approximately 268 milliseconds to compute the landing cost

(13) for all 10,000 grid cells and to find the best landing-spot

in the current elevation map.

B. Outdoor mapping experiment

For the outdoor elevation-mapping experiment, the

quadrotor was commanded by a remote operator under

assistance of the on-board vision-based controller, i.e., the

operator could command the quadrotor directly in x-y-z-yaw

space. On average, the quadrotor was flying 4-5 meters above

the surface and used an elevation map of size 10 by 10 meters

with a resolution of 10 centimeters per cell. The terrain

consisted of a teared-down house, rubble, asphalt, and grass.

Figure 8(a) gives an overview of the scenario and indicates

the location of the MAV for the elevation maps shown in

Figures 8(b) to 8(d). The complete mapping process can be

viewed in the video attachment of this work.

An update rate of 1 Hz is sufficient to always maintain a

dense elevation map below the MAV. However, when moving

in a straight line, the local elevation map behind the MAV

is more populated than in the front. In the future, we will

modify the MAV to have a slightly forward facing camera

in order to have a more even distribution.

4http://www.ros.org



The system can cope with drastic elevation changes as

well as challenging surfaces such as grass and asphalt that

are characterized by high-frequency texture. Due to the

probabilistic approach to depth estimation, which uses mul-

tiple measurements until convergence, we observe very few

outliers in the elevation map. Note that we only insert depth

estimates in the elevation map that have actually converged.

In untextured regions, paths with of dynamic motion or zones

with reflecting surfaces, such as water, the depth filter does

not converge and, thus, the elevation map remains empty. As

visible in Figure 8(b), the elevation map remains also empty

in occluded areas.

C. Landing experiment

We performed autonomous landing experiments both in-

doors and outdoors as demonstrated in the supplemental

video. Figure 9(a) shows the indoor testbed that contains

textured boxes as artificial obstacles. The elevation map after

a short exploration is displayed in Figure 9(b). Once the

MAV receives a command to land autonomously, it computes

the landing score for the current elevation map and selects

the best spot as described in Section V. In Figure 9(c),

the elevation map is colored with the landing cost that is

formalized in Equation (13). Blue means that the area is flat

and, thus, safe for landing. The algorithm selects the point

that is farthest from any dangerous area (colored red) and

marks it with a green cube. The MAV then autonomously

approaches a way-point vertically above the detected landing

spot and then slowly descends until vision-based tracking is

lost, which is typically at less than 30 cm above ground.

Subsequently, the MAV continues blindly to descend until

impact is detected and the motors turn off.

VII. CONCLUSION

In this paper, we proposed a system for mapping the local

ground environment underneath an MAV using only a single

camera and on-board processing resources. We advocate the

use of a local, robot-centric, and two-dimensional elevation

map since it is efficient to compute on-board, ideal to

accumulate measurements from different observations, and

is less affected by drifting pose estimates. The elevation map

is updated at a rate of 1 Hz with probabilistic depth maps

computed from multiple monocular views. The probabilistic

approach results in precise elevation estimates with very few

outliers even for challenging surfaces with high frequency

texture, e.g., asphalt. To highlight the usefulness of the

proposed mapping system, we successfully demonstrated

autonomous landing-spot detection and landing.
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(a) Scenario overview

(b) Viewpoint 1

(c) Viewpoint 2

(d) Viewpoint 3

Fig. 8: Excerpts from the video attachment. The quadrotor is flying over
a destroyed building. Figures 8(b) to 8(d) show the elevation map at three
different times. The corresponding viewpoints are marked in the scenario
overview in Figure 8(a). Note that the elevation map is local and of fixed
size. Its center lies always below the quadrotor’s current position.

(a) Scenario

(b) Elevation map

(c) Landing procedure

Fig. 9: Excerpts from the video attachment. Figure 9(a) shows the indoor
flying arena with textured obstacles. The MAV first explores the arena and
creates an elevation map of the surface that is shown in Figure 9(b). The
pink points illustrate the sparse map built by the on-board visual odometry
system and which are used to initialize dense depth estimation. Figure 9(c)
shows the detected landing spot that is marked as green cube and the MAV
that is shortly before impact. The blue line is the trajectory that the MAV
flew to approach the landing spot.




