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Abstract

Many machine learning algorithms can be formulated as the minimization of a train�

ing criterion which involves ��� �training errors� on each training example and ��� some

hyper�parameters� which are kept �xed during this minimization	 When there is only

a single hyper�parameter one can easily explore how its value a
ects a model selection

criterion �that is not the same as the training criterion� and is used to select hyper�

parameters�	 In this paper we present a methodology to select many hyper�parameters

that is based on the computation of the gradient of a model selection criterion with

respect to the hyper�parameters	 We �rst consider the case of a training criterion that

is quadratic in the parameters	 In that case� the gradient of the selection criterion with

respect to the hyper�parameters is e�ciently computed by back�propagating through a
Cholesky decomposition	 In the more general case� we show that the implicit function

theorem can be used to derive a formula for the hyper�parameter gradient� but this

formula requires the computation of second derivatives of the training criterion	
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� Introduction

Machine learning algorithms pick a function f from a set of functions F in order to minimize
something that cannot be measured� only estimated� that is the expected generalization per�
formance of the chosen function� Many machine learning algorithms can be formulated as
the minimization of a training criterion which involves� on the one hand� training errors
on each training example and� on the other hand� some hyper�parameters� which are kept
�xed during this minimization� For example� in the regularization framework �Tikhonov and
Arsenin� ��		
 Poggio� Torre and Koch� ����� one hyper�parameter controls the strength of
the penalty term and thus the capacity �Vapnik� ���� of the system� a larger penalty term
reduces the �complexity� of the resulting function �forces the solution f to lie in a subset of
F� A very common example is weight decay �Hinton� ���	 used with neural networks and
linear regression �also known as ridge regression �Hoerl and Kennard� ��	�� in that case�
the penalty term is the hyper�parameter times the norm of the parameter vector� Increasing
the penalty term �increasing the weight decay hyper�parameter corresponds to reducing the
e�ective capacity �Guyon et al�� ����� which may improve generalization� A regularization
term can also be interpreted as an a�priori probability distribution on F � in that case the
weight decay is a scale parameter �e�g�� inverse variance of that distribution�
A model selection criterion is not the same as the training criterion� it is a criterion
used to select hyper�parameters� more generally to compare and choose among models which
may have a di�erent capacity� Many model selection criteria have been proposed in the
past �Vapnik� ����
 Akaike� ��	�
 Craven and Wahba� ��	�� When there is only a single
hyper�parameter one can easily explore how its value a�ects the model selection criterion�
typically one tries a �nite number of values of the hyper�parameter and picks the one which
gives the lowest value of the model selection criterion�
In this paper we present a methodology to simultaneously select many hyper�parameters
using the gradient of the model selection criterion with respect to the hyper�parameters�
This methodology can be applied when some di�erentiability and continuity conditions of
the training criterion are satis�ed� The use of multiple hyper�parameters has already been
proposed in the Bayesian literature� one hyper�parameter per input feature was used to
control the prior on the weights associated to that input feature �MacKay and Neal� ����

Neal� ����� In this case� the hyper�parameters can be interpreted as scale parameters for the
prior distribution on the parameters� for di�erent directions in parameter space� In a neural
network or a linear regression� this is equivalent to having a di�erent weight decay for the
weights from each of the inputs� A large weight decay on one of the inputs e�ectively forces
the corresponding weights to very small values� In contrast to feature selection algorithms
such as the classical forward and backward selection methods used for linear regression� an
algorithm for selecting such hyper�parameters explores a continuous rather than a discrete
space�
In Section �� we formalize the notions of hyper�parameters� training criterion� and model
selection criterion� and we give examples of training and selection criteria for which the
proposed methodology could be applied� In Section �� we show how to compute the gradient
of a model selection criterion with respect to the hyper�parameters� In Section �� we extend
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the result to a more general setting� which requires computing second derivatives� In the
conclusion� we brie�y describe the results of preliminary experiments performed with the
proposed methodology �described in more details in �Bengio and Latendresse� ����
 Bengio
and Dugas� ����� and we raise some important open questions concerning the kind of �over�
�tting� that can occur with the proposed methodology� and how the notion of capacity might
be extended to deal with the additional degrees of freedom conferred by the choice of many
hyper�parameters�

� Objective Functions for Hyper�Parameters

We are given a set of independent data points D � fz�� � � � � zTg� each generated by an
unknown distribution P �Z� We want to choose a function f from a given set of functions F
that minimizes the expectation EZ�Q�f� Z of a given cost functional Q�f� Z� In supervised
learning problems� we have input�output pairs Z � �X� Y � with X � X � Y � Y� and
f � X � Y� For example� we will consider the case of the quadratic cost� with real�valued
vectors Y � Rm and

Q�f� �X� Y  �
�

�
�f�X� Y ��f�X� Y �

Note that in this case� we are trying to pick f � F which is closest in L� norm under EX ���
to the conditional expectation EY �Y jX� of Y given X �see as a function of X�
Let us use the �x notation for extending vectors x � Rn by one constant element�

�x � �x� � � �x�� � � � � xn� ��

In the next section� we will provide a formulation for the cases of constant and a�ne function
sets F � e�g��

F constant � ff � Rn � Rmjf�x � ��x � Rn� � � Rmg

Faffine � ff � Rn �Rmjf�x � ��x�x � Rn�� � Rm��n���g

In section �� we will consider more general classes of functions and cost functions� which may
be applied to the case of multi�layer neural networks� for example�

��� Training Criteria

In its most general form� a training criterion C is any real�valued function of the set of
empirical costs Q�f� zi�

C � c�Q�f� z�� Q�f� z�� � � � � Q�f� zT 

In the cases in which we are interested� C is parameterized by a vector of real�valued hyper�
parameters � � ���� � � � � �q� and since we concentrate on gradient�based learning� we will
consider that the choice of f within F is equivalent to the choice of a vector of parameters
� � � � Rs� We can rewrite the training criterion C in the more compact form

C � c��� ��D�
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which emphasizes the dependence on the training data D and the hyper�parameters �� The
proposed method will rely on the assumption that C is continuous and di�erentiable almost
everywhere with respect to � and ��
When the hyper�parameters are �xed� the learning algorithm attempts to perform the follow�
ing minimization�

����D � argmin�c��� ��D�

More generally� a function f is chosen as follows�

f��D � argminf�Fc�f� ��D

where we have again changed the semantics of the �rst argument of c� from � to f �
A particularly simple training criterion �without hyper�parameters is the so�called empirical

risk� which is simply the average of training errors�

empirical risk �
�

jDj

X
zi�D

Q�f� zi�

Bounds on the generalization error can be computed when this criterion is minimized and the
capacity of F is smaller than jDj� These bounds depend on the capacity of F � which measures
the diversity of the functions f within F with respect to the cost criterion Q�f� z� The larger
the capacity� the larger the optimism in the estimate of generalization error provided by the
empirical risk�
An example of training criterion with hyper�parameters is the following�

C �
X

�xi�yi��D

wi���F �xi� �� yi
� � ��A��� ��

where the hyper�parameters provide di�erent quadratic penalties to di�erent parameters �with
the matrix A� and di�erent weights to di�erent training patterns �with wi��� �as in �Bengio
and Dugas� ����
 Bengio and Latendresse� �����

��� Model Selection Criteria

The model selection criterion E is a criterion that is used to select hyper�parameters or
more generally to choose one model among several models� Ideally� it should be the expected
generalization error �when using a particular �� but we don�t know the true distribution of
the data� P �Z� so many alternatives have been proposed� which are either approximations�
bounds� or approximate bounds�
Most model selection criteria have been proposed for selecting a single hyper�parameter that
controls the �complexity� of the class of functions in which the learning algorithms �nds
a solution� For example� the minimum description length principle �Rissanen� ���� states
that the optimal trade�o� will occur when the total cost of compressing the data using the
model and compressing the model is minimized �however� this in general requires some a�
priori choices about the distribution of the model� e�g� � of the parameters� Some methods
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rely on theoretical bounds on generalization error� such as the structural risk minimization
approach of �Vapnik� ����
 Vapnik� ����� the Akaike Information Criterion �Akaike� ��	�
and the generalized cross�validation criterion �Craven and Wahba� ��	� �not to be mixed
with the cross�validation criterion�
The above criteria are based on performance on the training data and some measure of
complexity that depends on the parameterization of F � Another type of criteria are those
based on held�out data� also known as cross�validation estimates of generalization error� These
are almost unbiased estimates of generalization error �Vapnik� ���� obtained by testing f on
data not used to choose f within F � If lots of data are available� the total data set is simply
split into a training set S� and a validation set S�� and the performance on the validation set
is used to compare models and choose the value of the hyper�parameter�s� Otherwise� there
are di�erent resampling strategies that have been proposed in which several choices of the
split S� � S� � D are made and a di�erent function is trained for each of these partitions�
and the average of the errors on the validation sets is used as an estimate of generalization
error� Note that it is an estimate of generalization error when training with a set of size jS�j
rather than a set of size jDj� An extreme case is the well�known leave�one�out estimate� in
which jS�j � jDj � � and all the jDj possible such partitions are considered� Another popular
alternative is the K�fold cross�validation estimate �Efron and Tibshirani� ����� in which we
consider K partitions of D� S�

� � S
�
� � S

�
� � S

�
� � ��� and SK

� � S
K
� �

Formally� the cross�validation criterion is

Ecv���D �
�

K

X
i

�

jSi
�j

X

zt�S
i
�

Q�f��Si
�

� zt�

One way to understand this criterion is as an analogue of the empirical risk de�ned above�
but with respect to hyper�parameters rather than with respect to parameters � �or f� The
analogy goes as follows� when f is �xed� the empirical risk is an unbiased estimate of the
generalization error of f �but of course it becomes an optimistic estimate when f is chosen
within F to minimize the empirical risk� Similarly� when � is �xed� the cross�validation
criterion is an almost unbiased estimate of the generalization error of f��D �actually it is a
slightly pessimistic estimate because jSi

�j � jDj� Likewise� when � is chosen to minimize
the cross�validation criterion� the value of this criterion becomes a more optimistic estimate�
Likewise� we can expect that if the set of values that � can take is large �or more precisely�
when there is is a great diversity of functions f��D that can be obtained for di�erent values of
� we can expect that this optimism will be greater� i�e�� there is more risk of over�tting the
hyper�parameters�
In this paper� we discuss the case in which � is a real�valued vector and we compute the
gradient �E

��
in order to choose � �with numerical optimization methods�
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� Optimizing Hyper�Parameters for a Quadratic Train�

ing Criterion

In this section we analyze the simpler case in which the training criterion C is a quadratic
polynomial of the parameters �� The dependence on the hyper�parameters � can be of higher
order� as long as it is continuous and di�erentiable almost everywhere �see for example �Bot�
tou� ���� for more detailed technical conditions su�cient for stochastic gradient descent�

C � a�� � b���� �
�

�
��H��� ��

where �� b � Rs� a � R� and H � Rs�s� Later on in this section we will consider particular
cases corresponding to linear regression with di�erent weight decays on the parameters and
in �Bengio and Dugas� ���� we consider hyper�parameters that control the weights that C
puts on di�erent training examples�
For a minimum of the above quadratic training criterion to exist requires that H be positive
de�nite� This minimum is obtained by solving the linear system

�C

��
� b �H� � � ��

which yields the solution
��� � �H����b��� ��

In this paper we will use cross�validation types criteria to illustrate the application of the
method� but any model selection criterion can be used� as long as it is continuous and di�er�
entiable with respect to � and ��
Therefore the gradient of the model selection criterion E with respect to � is

�E

��

�����
�

�
�E

��

�����
���

��

��

�����
�

�
�E

��

�����
���

where we have denoted by �y

�x

���
x�v

the partial derivative of y with respect to x when y is seen

as a function of x and v �i�e� keeping x and v �xed� so that even if v is a function x� that
dependency is not accounted in that derivative� Later on in this text we will drop the jx�v
notation when all the dependencies are taken into account �i�e� this is �y

�x

���
x
� In the above

equation� we distinguish �E
��

���
�
� which takes into account the in�uence of � on E through all

paths� including �� from �E
��

���
���

� in which the in�uence of � through � is not taken into account

because we take � as �xed�
For example� in the case of the cross�validation criteria�

�Ecv

��

�����
���

� �

 



and
�Ecv

��
�

�

K

X
i

�

jSi
�j

X

zt�S
i
�

�Q��� zt

��
�

Since the gradient �Q���zt�
��

is commonly used to obtain a minimum of the empirical risk� the
only di�culty that remains is the computation of the gradient of the parameters with respect
to the hyper�parameters� ��

��
�

In the quadratic case� the in�uence of � on � is spelled out explicitly by equation �� yielding

��i
��

� �
X
j

�H��
i�j

��
bj �

X
j

H��
i�j

�bj
��

��

The second sum can be readily computed by multiplying H�� with the gradient of b with
respect to �� The �rst sum is less trivial� we consider two approaches in the next subsection�
and in the subsection that follows the next one� we present a better alternative that is based
on equation � instead of equation ��

��� Gradient of Matrix Inversion

One way to compute the above gradient is based on the computation of gradients through
the inverse of a matrix� A general but ine�cient solution is the following�

�H��
i�j

��
�
X
k�l

�H��
i�j

�Hk�l

�Hk�l

��

Let us consider a square matrix B � A��� We want to compute �Bi�j

�Ak�l
� Consider the expression

of the inverse and the determinant in terms of the cofactors and minors�

Bi�j �
���i�jjminor�A� j� ij

jAj

where minor�A� j� i denotes the �minor matrix�� obtained by removing the j�th row and the
i�th column from A� and the jAj is the determinant of A� which can be written

jAj �
X
k

Akl���
k�ljminor�A� k� lj � Akl���

k�ljminor�A� k� lj� const

where const does not depend of Akl� Applying the chain rule and simple algebra then yields

�Bi�j

�Ak�l

� �Bi�jBl�k � Ii��l�j ��kBi�jminor�A� j� i
��
l��k�� � 

where the indices �l�� k� in the above equation refer to the position within a minor matrix
that corresponds to the position �l� k in the original matrix A �note l �� i and k �� j�
Unfortunately� the computation of this gradient requires O�s� multiply�add operations for
an s� s matrix� which is much more that the computation of the inverse �O�s��

	



A better solution is based on the following equality�

AB � I

where I is the s� s identity matrix� This implies� by di�erentiating with respect to a scalar
x�

�A

�x
B � A

�B

�x
� ��

Isolating �B
�x

� we get
�B

�x
� �B

�A

�x
B

so that in particular� for equation �� we obtain the required gradient

�H��

��
� �H���H

��
H�� �	

which requires only O��s� multiply�add operations�

��� Gradient Through the Cholesky Decomposition

An even better solution � is to return to equation �� which can be solved in O�s��� multiply�
add operations �when � � Rs� The idea is to back�propagate gradients through each of
the operations performed to solve the linear system �just as back�propagation of gradients
is used to compute derivatives through a multi�layer neural network� The objective is to
compute the gradient of � with respect to H and b� which are themselves functions of �� in
order to compute �E

��
from ��

��
� The back�propagation will just cost the same as the linear

system solution� i�e�� O�s��� operations� so this is the approach that we have kept for our
implementation�
Since H is the Hessian matrix� with second derivatives of the training criterion with respect
to the parameters �� it will be not only positive de�nite but also symmetric �under adequate
conditions of continuity of C with respect to �� Therefore� the linear system in equation �
enjoys a particularly simple and elegant solution through the Cholesky decomposition of the
matrix H� To solve the system� we will also assume that H is full rank� which is likely if
the hyper�parameters provide some sort of weight decay� The Cholesky decomposition of a
symmetric positive de�nite matrix H gives

H � LL�

where L is a lower diagonal matrix �with zeros above the diagonal� It is computed in time
O�s� as follows�

for i � �� � � � � s

Li�i �
q
Hi�i �

Pi��
k�� L

�
i�k

�which was suggested by L�eon Bottou
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for j � i � �� � � � � s
Lj�i � �Hi�j �

Pi��
k�� Li�kLj�k�Li�i

Once the Cholesky decomposition is achieved� the linear system LL�� � �b can be easily
solved� in two back�substitution steps� �rst solve Lu � �b� then solve L�� � u� First step�
iterating once forward through the rows of L�

for i � �� � � � � s
ui � ��bi �

Pi��
k�� Li�kuk�Li�i

Second step� iterating once backward through the rows of L�

for i � s� � � � � �
�i � �ui �

Ps
k�i�� Lk�i�k�Li�i

where it can be noticed that the diagonal elements of L must be positive �otherwise the
Hessian H is not full rank�
The computation of the gradient of � with respect to the elements of H and b proceed in
exactly the reverse order� We start by back�propagating through the back�substitution steps�
and then through the Cholesky decomposition�
The back�propagation through the two back�substitution steps is the following� First back�
propagate through the solution of L�� � u�

initialize dEdtheta � �E
��

���
��������s

initialize dEdL� �
for i � �� � � � � s

dEdui � dEdthetai�Li�i

dEdLi�i � dEdLi�i � dEdthetai �i�Li�i

for k � i � � � � � s
dEdthetak � dEdthetak � dEdthetai Lk�i�Li�i

dEdLk�i � dEdLk�i � dEdthetai �k�Li�i

Then back�propagate through the solution of Lu � �b�

for i � s� � � � � �
�E
�bi
� �dEdui�Li�i

dEdLi�i � dEdLi�i � dEdui ui�Li�i

for k � �� � � � � i� �
dEduk � dEduk � dEdui Li�k�Li�i

dEdLi�k � dEdLi�k � dEdui uk�Li�i

The above algorithm gives us the gradient of the model selection criterion E with respect to
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coe�cient b�� of the training criterion� as well as with respect to the lower diagonal matrix
L�
Finally� we back�propagate through the Cholesky decomposition� to convert the gradients
with respect to L into gradients with respect to the Hessian H��� Note that for another ap�
plication it has already been proposed to di�erentiate the Cholesky algorithm �Smith� �����

for i � s� � � � � �
for j � s� � � � � i� �

dEdLi�i � dEdLi�i � dEdLj�iLj�i�Li�i
�E
�Hi�j

� dEdLj�i�Li�i

for k � �� � � � � i� �
dEdLi�k � dEdLi�k � dEdLj�iLj�k�Li�i

dEdLj�k � dEdLj�k � dEdLj�iLi�k�Li�i
�E
�Hi�i

� �
�
dEdLi�i�Li�i

for k � �� � � � � i� �
dEdLi�k � dEdLi�k � dEdLi�iLi�k�Li�i

Note that we have only computed gradients with respect to the diagonal and upper diagonal
of H because H is symmetric� Once we have the gradients of E with respect to b and H� we
use the functional form of b�� and H�� to compute the gradient of E with respect to ��

�E

��
�

�E

��

�����
���

�
X
i

�E

�bi

�bi
��

�
X
i�j

�E

�Hi�j

�Hi�j

��

Using this approach rather than the one described in the previous subsection� the overall
computation of gradients is therefore O�s��� rather than O�s�� The most expensive step is
the back�propagation through the Cholesky decomposition itself �three nested O�s loops�
Note that this step may be shared if there are several linear systems to solve with the same
matrix H�

��� Weight Decays for Linear Regression

In this subsection� we consider in more detail the particular case of multiple weight decays
for linear regression� The data examples are input�output pairs Z � �X� Y � with X � Rn

and Y � Rm� The cost function is the squared error

Q�f� �X� Y  �
�

�
�f�X� Y ��f�X� Y �

The class of functions is the a�ne class de�ned earlier

Faffine � ff � Rn �Rmjf�x � ��x�x � Rn�� � Rm��n���g

with the parameter vector � � vec�� formed by concatenating the rows of the weight matrix
��
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All the developments that precede in this section can be applied in a straightforward way� We
will consider here the K�fold cross�validation criterion as our model selection criterion� The
hyper�parameter �j will be a weight decay associated to the j�th input variable �j�th element
of the input vector X� The training criterion for the k�th partition is

Ck �
�

jSk
� j

X

�xt�yt��Sk
�

�

�
��xt � yt

���xt � yt �
�

�

X
j

�j
X
i

��
i�j

The objective is to penalize separately each of the input variables� Each of the hyper�
parameters gives a penalty for using the corresponding input variable� The use of mul�
tiple hyper�parameters has already been proposed in the Bayesian literature in a similar
setup �MacKay and Neal� ����
 Neal� ����� one hyper�parameter per input feature was used
to control the prior on the weights associated to that input feature� for multi�layer neural net�
works� The selection of the hyper�parameters amounts to a kind of �soft variable selection�
in which variables that do not help to generalize signi�cantly better are penalized but not
necessarily turned o� completely� See �Bengio and Latendresse� ���� for more discussion and
experiments with this setup� including comparisons with more conventional variable selection
schemes�
The training criterion is quadratic� as in equation �� with coe�cients

a �
�

�

X
t

y�tyt

b�ij� � �
X
t

yt�ixt�j

H�ij���i�j�� � �i�i�
X
t

xt�jxt�j� � �i�i��j�j��j� ��

where �i�j � � when i � j and � otherwise� and �ij is an index for the coe�cient vector b�
the parameter vector �� or the Hessian matrix H� corresponding to indices �i� j in the weight
matrix �� e�g�� �ij � �i� �� s� j�
From the above de�nition of the coe�cients of C� we obtain their partial derivatives with
respect to ��

�b

��
� �

�H�ij���i�j��

��k
� �i�i��j�j��j�k

Plugging the above de�nitions of the coe�cients and their derivatives in the equations and
algorithms of the previous subsection� we have therefore obtained an algorithm for computing
the gradient of the model selection criterion with respect to the input weight decays of a
linear regression� Note that here H is block�diagonal� with m identical blocks of size �n� ��
so the Cholesky decomposition �and similarly back�propagating through it can be performed
in time O��s�m��� rather than O�s���� where m is the number of outputs �the dimension
of the output variable�
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� Optimizing Hyper�Parameters for a Non�Quadratic

Criterion

If the training criterion C is not quadratic in terms of the parameters �� it will in general
be necessary to apply an iterative numerical optimization algorithm to minimize the training
criterion� In this section we will consider what happens after this minimization is performed�
i�e�� at a value of � where �C

��
is approximately zero and ��C

���
is positive de�nite �otherwise we

would not be at a minimum of C� We will use the implicit function theorem to obtain the
derivative of � with respect to � at this point� Under appropriate conditions of continuity
and di�erentiability� we have

F ��� � � ��
��

��
� ��

�F

��
��

�F

��

for a vector�valued function F of the vectors � and �� In particular we consider here

F ��� � �
�C

��
� �

so we obtain a general formula for the gradient of the parameters with respect to

the hyper�parameters�

��

��
� ��

��C

���
��

��C

����
� �H�� �

�C

����
� ��

where H is the second derivative of the training criterion with respect to the parameters�
Let us see how this result relates to the special case of a quadratic training criterion� C �
a� b�� � �

�
��H��

��

��
� �H���

�b

��
�
�H

��
� � �H�� �b

��
�H���H

��
H��b

where we have substituted � � �H��b� Using the equality 	� we obtain the same formula as
in eq� ���
Let us consider more closely the case of a neural network with one hidden layer and with a
squared error cost function�
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and the class of functions is for example

Fmlp � ff � Rn �Rmjf�x � V �h� h � tanh�W �x� x � Rn�� � Rm��n����g

For example� if we want to use hyper�parameters for penalizing the use of inputs� we have as
before
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In this case� the cross�derivatives are easy to compute�

��C

�Wi�j��k
� �k�jWi�j�

The Hessian and its inverse require more work� but can be done respectively in at most O�s�
and O�s� operations� See for example �Bishop� ����
 Bishop� ���� for the exact computation
of the Hessian for multi�layer neural networks� See �Becker and LeCun� ����
 LeCun� Denker
and Solla� ���� for a diagonal approximation which can be computed and inverted in O�s
operations� Another kind of approximation is the Gauss�Newton approximation also called
the outer product approximation �Bishop� ����
 Hassibi and Stork� ����� and applied when
the cost function is the squared error�
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In that case� it is possible compute the inverse of the Hessian e�ciently in time O�Ts� where
T is the number of training examples �Hassibi and Stork� �����

� Conclusions

In this paper� we have presented a new methodology for simultaneously optimizing several
hyper�parameters within gradient�based machine learning algorithms� It is based on the com�
putation of the gradient of a model selection criterion with respect to the hyper�parameters�
taking into account the in�uence of the hyper�parameters on the parameters� We have con�
sidered both the simpler case of a training criterion that is quadratic with respect to the
parameters and the more general non�quadratic case� In both cases the Hessian of training
cost must be computed and inverted �implicitly or explicitly� We have shown a particu�
larly e�cient procedure in the quadratic case that is based on back�propagating gradients
through the Cholesky decomposition and back�substitutions� This was an improvement� we
have arrived at this O�s��� procedure after studying �rst an O�s� procedure and then an
O��s� procedure for computing the gradients taking into account the in�ence of � on �� In
the particular case of input weight decays for linear regression� the computation can even be
reduced to O��s�m��� operations when there are m outputs�
We have performed preliminary experiments with the proposed methodology in several simple
cases� First� the application to linear regression with weight decays for each input is described
in �Bengio and Latendresse� ����� The hyper�parameter optimization algorithm is used to
perform a soft selection of the input variables� A large weight decay on one of the inputs
e�ectively forces the corresponding weights to very small values� In contrast to feature selec�
tion algorithms such as the classical forward and backward selection methods used for linear
regression� the algorithm for selecting hyper�parameters explores a continuous rather than

��



a discrete space� Comparisons are made in �Bengio and Latendresse� ���� with ordinary
regression as well as with stepwise regression methods and the adaptive ridge �Grandvalet�
���� or LASSO �Tibshirani� ����� suggesting that the proposed method gives better results
when thre are many true non�zero regression coe�cients and the correlation between the
inputs is large�
Another type of application of the proposed method has been explored� in the context of
non�stationary time�series prediction �Bengio and Dugas� ����� In this case� an extension
of the cross�validation criterion to sequential data which may be non�stationary is presented�
Because of this non�stationarity� recent data may sometimes be more relevant to current
predictions than older data� The squared error criterion is weighted by a parameterized
function of the time indices �as the wi�� in eq� �� and the parameters of that weighting
function are the hyper�parameters discussed in this paper� Two hyper�parameters control
from what point in the past the examples become more relevant to current predictions� and
how much this point should be trusted� Using simply a constant model �i�e�� the prediction is a
weighted average of past desired outputs� we obtained statistically signi�cant improvements
in predicting one�month ahead future volatility of Canadian stocks� The comparisons were
made against several linear� constant� and ARMA models of the volatility�
What remains to be done! �rst� on the practical side� we still have no experiments with
the non�quadratic case �e�g�� multi�layer neural networks� and no experiments with model
selection criteria other than cross�validation� The cross�validation estimate of generalization
error is unbiased but has a large variance �Breiman� ��� � and this might be hurtful to our
procedure� Second� there are important theoretical questions that remain unanswered con�
cerning the amount of over�tting that can be brought �or more precisely to the di�erence
between the true generalization error and the value of the model selection criterion that is
minimized when too many hyper�parameters are optimized� As we have outlined in the
introduction� the situation with hyper�parameters may be compared with the situation of pa�
rameters and the class of functions in which a solution is chosen� However� whereas the form
of the training criterion as a sum of independent errors allows to de�ne the capacity for a class
of functions and relate it to the di�erence between generalization error and empirical error� it
does not appear clearly to us how a similar analysis could be performed for hyper�parameters�
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