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Abstract

Many machine learning algorithms can be formulated as the minimization of a train-
ing criterion which involves (1) “training errors” on each training example and (2) some
hyper-parameters, which are kept fixed during this minimization. When there is only
a single hyper-parameter one can easily explore how its value affects a model selection
criterion (that is not the same as the training criterion, and is used to select hyper-
parameters). In this paper we present a methodology to select many hyper-parameters
that is based on the computation of the gradient of a model selection criterion with
respect to the hyper-parameters. We first consider the case of a training criterion that
is quadratic in the parameters. In that case, the gradient of the selection criterion with
respect to the hyper-parameters is efficiently computed by back-propagating through a
Cholesky decomposition. In the more general case, we show that the implicit function
theorem can be used to derive a formula for the hyper-parameter gradient, but this
formula requires the computation of second derivatives of the training criterion.



1 Introduction

Machine learning algorithms pick a function f from a set of functions F in order to minimize
something that cannot be measured, only estimated, that is the expected generalization per-
formance of the chosen function. Many machine learning algorithms can be formulated as
the minimization of a training criterion which involves, on the one hand, training errors
on each training example and, on the other hand, some hyper-parameters, which are kept
fixed during this minimization. For example, in the regularization framework (Tikhonov and
Arsenin, 1977; Poggio, Torre and Koch, 1985), one hyper-parameter controls the strength of
the penalty term and thus the capacity (Vapnik, 1995) of the system: a larger penalty term
reduces the “complexity” of the resulting function (forces the solution f to lie in a subset of
F). A very common example is weight decay (Hinton, 1987) used with neural networks and
linear regression (also known as ridge regression (Hoerl and Kennard, 1970), in that case):
the penalty term is the hyper-parameter times the norm of the parameter vector. Increasing
the penalty term (increasing the weight decay hyper-parameter) corresponds to reducing the
effective capacity (Guyon et al., 1992), which may improve generalization. A regularization
term can also be interpreted as an a-priori probability distribution on F: in that case the
weight decay is a scale parameter (e.g., inverse variance) of that distribution.

A model selection criterion is not the same as the training criterion: it is a criterion
used to select hyper-parameters, more generally to compare and choose among models which
may have a different capacity. Many model selection criteria have been proposed in the
past (Vapnik, 1982; Akaike, 1974; Craven and Wahba, 1979). When there is only a single
hyper-parameter one can easily explore how its value affects the model selection criterion:
typically one tries a finite number of values of the hyper-parameter and picks the one which
gives the lowest value of the model selection criterion.

In this paper we present a methodology to simultaneously select many hyper-parameters
using the gradient of the model selection criterion with respect to the hyper-parameters.
This methodology can be applied when some differentiability and continuity conditions of
the training criterion are satisfied. The use of multiple hyper-parameters has already been
proposed in the Bayesian literature: one hyper-parameter per input feature was used to
control the prior on the weights associated to that input feature (MacKay and Neal, 1994;
Neal, 1998). In this case, the hyper-parameters can be interpreted as scale parameters for the
prior distribution on the parameters, for different directions in parameter space. In a neural
network or a linear regression, this is equivalent to having a different weight decay for the
weights from each of the inputs. A large weight decay on one of the inputs effectively forces
the corresponding weights to very small values. In contrast to feature selection algorithms
such as the classical forward and backward selection methods used for linear regression, an
algorithm for selecting such hyper-parameters explores a continuous rather than a discrete
space.

In Section 2, we formalize the notions of hyper-parameters, training criterion, and model
selection criterion, and we give examples of training and selection criteria for which the
proposed methodology could be applied. In Section 3, we show how to compute the gradient
of a model selection criterion with respect to the hyper-parameters. In Section 4, we extend



the result to a more general setting, which requires computing second derivatives. In the
conclusion, we briefly describe the results of preliminary experiments performed with the
proposed methodology (described in more details in (Bengio and Latendresse, 1999; Bengio
and Dugas, 1999)), and we raise some important open questions concerning the kind of “over-
fitting” that can occur with the proposed methodology, and how the notion of capacity might
be extended to deal with the additional degrees of freedom conferred by the choice of many
hyper-parameters.

2 Objective Functions for Hyper-Parameters

We are given a set of independent data points D = {z1,...,2r}, each generated by an
unknown distribution P(Z). We want to choose a function f from a given set of functions F
that minimizes the expectation Ez(Q(f, Z)) of a given cost functional Q(f, Z). In supervised
learning problems, we have input/output pairs Z = (X,Y), with X € X, Y € Y, and
f X — Y. For example, we will consider the case of the quadratic cost, with real-valued
vectors Y C R™ and

1
QU (X)) = 5(f(X) = Y)'(f(X) = Y).
Note that in this case, we are trying to pick f € F which is closest in Ly norm under Ex]|.|

to the conditional expectation Ey[Y|X] of Y given X (see as a function of X).
Let us use the x notation for extending vectors x € R™ by one constant element:

x=(x,1) = (z1,...,2p,1).

In the next section, we will provide a formulation for the cases of constant and affine function
sets F, e.g.,
Feonstant — £ R™ » R™|f(x) =60,x € R",0 € R™}

Fellne = {f: R" - R™|f(x) = O%,x € R",© € R™* "1}

In section 4, we will consider more general classes of functions and cost functions, which may
be applied to the case of multi-layer neural networks, for example.

2.1 Training Criteria

In its most general form, a training criterion C' is any real-valued function of the set of
empirical costs Q(f, z;):

C=c(Q(f, 21),Q(f,22),...,Qf, 2r))

In the cases in which we are interested, C' is parameterized by a vector of real-valued hyper-
parameters A = (Ar,..., ), and since we concentrate on gradient-based learning, we will
consider that the choice of f within F is equivalent to the choice of a vector of parameters
6 € 2 C R°. We can rewrite the training criterion C' in the more compact form

C =c(0,\, D).
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which emphasizes the dependence on the training data D and the hyper-parameters A\. The
proposed method will rely on the assumption that C' is continuous and differentiable almost
everywhere with respect to 6 and .

When the hyper-parameters are fixed, the learning algorithm attempts to perform the follow-
ing minimization:

6(A, D) = argminyc(f, A, D).

More generally, a function f is chosen as follows,

fap = argmin;zc(f, A, D)

where we have again changed the semantics of the first argument of ¢, from 6 to f.
A particularly simple training criterion (without hyper-parameters) is the so-called empirical
risk, which is simply the average of training errors:

1
empirical risk = ﬁ > Qf. ).

z; €D

Bounds on the generalization error can be computed when this criterion is minimized and the
capacity of F is smaller than |D|. These bounds depend on the capacity of F, which measures
the diversity of the functions f within F with respect to the cost criterion Q(f, z). The larger
the capacity, the larger the optimism in the estimate of generalization error provided by the
empirical risk.

An example of training criterion with hyper-parameters is the following:

C= Y wN(F(x;,0) —y;)> + 0 AN (1)

(zi,yi)€ED

where the hyper-parameters provide different quadratic penalties to different parameters (with
the matrix A), and different weights to different training patterns (with w;()\)), (asin (Bengio
and Dugas, 1999; Bengio and Latendresse, 1999)).

2.2 Model Selection Criteria

The model selection criterion FE is a criterion that is used to select hyper-parameters or
more generally to choose one model among several models. Ideally, it should be the expected
generalization error (when using a particular A), but we don’t know the true distribution of
the data, P(Z), so many alternatives have been proposed, which are either approximations,
bounds, or approximate bounds.

Most model selection criteria have been proposed for selecting a single hyper-parameter that
controls the “complexity” of the class of functions in which the learning algorithms finds
a solution. For example, the minimum description length principle (Rissanen, 1990) states
that the optimal trade-off will occur when the total cost of compressing the data using the
model and compressing the model is minimized (however, this in general requires some a-
priori choices about the distribution of the model, e.g. , of the parameters). Some methods

4



rely on theoretical bounds on generalization error, such as the structural risk minimization
approach of (Vapnik, 1982; Vapnik, 1995), the Akaike Information Criterion (Akaike, 1974)
and the generalized cross-validation criterion (Craven and Wahba, 1979) (not to be mixed
with the cross-validation criterion).

The above criteria are based on performance on the training data and some measure of
complexity that depends on the parameterization of F. Another type of criteria are those
based on held-out data, also known as cross-validation estimates of generalization error. These
are almost unbiased estimates of generalization error (Vapnik, 1995) obtained by testing f on
data not used to choose f within F. If lots of data are available, the total data set is simply
split into a training set S; and a validation set S, and the performance on the validation set
is used to compare models and choose the value of the hyper-parameter(s). Otherwise, there
are different resampling strategies that have been proposed in which several choices of the
split S; U Sy = D are made and a different function is trained for each of these partitions,
and the average of the errors on the validation sets is used as an estimate of generalization
error. Note that it is an estimate of generalization error when training with a set of size |S|
rather than a set of size |D|. An extreme case is the well-known leave-one-out estimate, in
which |S;| = |D| — 1 and all the |D| possible such partitions are considered. Another popular
alternative is the K-fold cross-validation estimate (Efron and Tibshirani, 1993), in which we
consider K partitions of D, ST U Si, S? U SZ, ... and SE U SE.

Formally, the cross-validation criterion is

Ecv >\ D Z Z Q(f/\,vazt)'

| 2|z€5§

One way to understand this criterion is as an analogue of the empirical risk defined above,
but with respect to hyper-parameters rather than with respect to parameters 6 (or f). The
analogy goes as follows: when f is fixed, the empirical risk is an unbiased estimate of the
generalization error of f (but of course it becomes an optimistic estimate when f is chosen
within F to minimize the empirical risk). Similarly, when \ is fixed, the cross-validation
criterion is an almost unbiased estimate of the generalization error of fy p (actually it is a
slightly pessimistic estimate because |St| < |DJ). Likewise, when A is chosen to minimize
the cross-validation criterion, the value of this criterion becomes a more optimistic estimate.
Likewise, we can expect that if the set of values that A can take is large (or more precisely,
when there is is a great diversity of functions f) p that can be obtained for different values of
A) we can expect that this optimism will be greater, i.e., there is more risk of overfitting the
hyper-parameters.

In this paper, we discuss the case in which A is a real-valued vector and we compute the

gradient 22 in order to choose A (with numerical optimization methods).



3 Optimizing Hyper-Parameters for a Quadratic Train-
ing Criterion

In this section we analyze the simpler case in which the training criterion C' is a quadratic
polynomial of the parameters #. The dependence on the hyper-parameters A can be of higher
order, as long as it is continuous and differentiable almost everywhere (see for example (Bot-
tou, 1998) for more detailed technical conditions sufficient for stochastic gradient descent):

C =a(N)+b(N)'0+ %H’H(A)e (2)

where 0,6 € R*, a € R, and H € R°*5. Later on in this section we will consider particular
cases corresponding to linear regression with different weight decays on the parameters and
in (Bengio and Dugas, 1999) we consider hyper-parameters that control the weights that C'
puts on different training examples.

For a minimum of the above quadratic training criterion to exist requires that H be positive
definite. This minimum is obtained by solving the linear system

oC
— = HO =
20 b+HO=0 (3)
which yields the solution
O(\) = —H (A)b(N). (4)

In this paper we will use cross-validation types criteria to illustrate the application of the
method, but any model selection criterion can be used, as long as it is continuous and differ-
entiable with respect to # and A.

Therefore the gradient of the model selection criterion E with respect to A is
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where we have denoted by % the partial derivative of y with respect to x when ¥ is seen
T,V

as a function of x and v (i.e, keeping = and v fixed, so that even if v is a function z, that
dependency is not accounted in that derivative). Later on in this text we will drop the |,

notation when all the dependencies are taken into account (i.e, this is %‘ ). In the above
T

equation, we distinguish g—f K which takes into account the influence of A on E through all

oE
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because we take 6 as fixed.
For example, in the case of the cross-validation criteria,
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Since the gradient 3Q(0 2) g commonly used to obtain a minimum of the empirical risk, the

only difficulty that remalns is the computation of the gradient of the parameters with respect
0

to the hyper-parameters, 57.

In the quadratic case, the influence of A on 6 is spelled out explicitly by equation 4, yielding
OH; ' b

o J _ ~177
> 2o - TG )

The second sum can be readily computed by multiplying H~! with the gradient of b with
respect to A. The first sum is less trivial: we consider two approaches in the next subsection,
and in the subsection that follows the next one, we present a better alternative that is based
on equation 3 instead of equation 4.

3.1 Gradient of Matrix Inversion

One way to compute the above gradient is based on the computation of gradients through
the inverse of a matrix. A general but inefficient solution is the following:
aHile B 8H OHyy
N 4 aHk,l e

B

Let us consider a square matrix B = A~'. We want to compute 5=, Consider the expression

of the inverse and the determinant in terms of the cofactors and mlnors.

5 (C) W minor(4,,0)
v 4]

where minor(A, j,1) denotes the “minor matrix”, obtained by removing the j-th row and the
i-th column from A, and the |A] is the determlnant of A, which can be written

|A| = ZAM D minor(A, k,1)| = A (=1 " minor(A, k,1)| + const

where const does not depend of Ag;. Applying the chain rule and simple algebra then yields

0B;
OAk,

—B; ’]Bl k + [Z;,gl];,ng”mmor(A ], )l’ k' (6)

where the indices (I, k') in the above equation refer to the position within a minor matrix
that corresponds to the position ([, k) in the original matrix A (note [ # i and k # j).
Unfortunately, the computation of this gradient requires O(s®) multiply-add operations for
an s X s matrix, which is much more that the computation of the inverse (O(s?)).
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A better solution is based on the following equality:
AB =1

where [ is the s X s identity matrix. This implies, by differentiating with respect to a scalar
aj’

0A 0B
—B+A— =0.
ox * ox
Isolating %—I;, we get
0B 0A
— =—-B—B
ox ox
so that in particular, for equation 5, we obtain the required gradient
OH=! OH
= H'“—H! 7
o\ o\ 0

which requires only O(2s%) multiply-add operations.

3.2 Gradient Through the Cholesky Decomposition

An even better solution ! is to return to equation 3, which can be solved in O(s/3) multiply-
add operations (when 6 € R*). The idea is to back-propagate gradients through each of
the operations performed to solve the linear system (just as back-propagation of gradients
is used to compute derivatives through a multi-layer neural network). The objective is to
compute the gradient of # with respect to H and b, which are themselves functions of A, in
order to compute %—f from %. The back-propagation will just cost the same as the linear
system solution, i.e., O(s®/3) operations, so this is the approach that we have kept for our
implementation.

Since H is the Hessian matrix, with second derivatives of the training criterion with respect
to the parameters 6, it will be not only positive definite but also symmetric (under adequate
conditions of continuity of C' with respect to ). Therefore, the linear system in equation 3
enjoys a particularly simple and elegant solution through the Cholesky decomposition of the
matrix H. To solve the system, we will also assume that H is full rank, which is likely if
the hyper-parameters provide some sort of weight decay. The Cholesky decomposition of a

symmetric positive definite matrix H gives
H=1LL

where L is a lower diagonal matrix (with zeros above the diagonal). It is computed in time
O(s?) as follows:

fori:=1,...,s

Li;, = \/Hw — i L7y

!which was suggested by Léon Bottou



forj=i+1,...,s .
Lj; = (Hi; — >52y LixLj) [ Lig

Once the Cholesky decomposition is achieved, the linear system LL'6 = —b can be easily
solved, in two back-substitution steps: first solve Lu = —b, then solve L' = u. First step,
iterating once forward through the rows of L:

fori:=1,...,s

u; = (=b; — X0~ Ligur)/Li
Second step, iterating once backward through the rows of L:

fori=s,...,1

0; = (wi — Yh—iy1 Liibk)/Li;

where it can be noticed that the diagonal elements of L must be positive (otherwise the
Hessian H is not full rank).

The computation of the gradient of # with respect to the elements of H and b proceed in
exactly the reverse order. We start by back-propagating through the back-substitution steps,
and then through the Cholesky decomposition.

The back-propagation through the two back-substitution steps is the following. First back-
propagate through the solution of L'f = u:

initialize dEdtheta «+ 2&

00 |p
initialize dEdL < 0
fori:=1,...,s
dEdu; <+ dEdthetai/Li,i
dEdLi,Z‘ — dEdLi,Z‘ — dEdtheta; Hl/Lm
fork=i+1...5
dEdtheta;, < dEdtheta;, — dEdtheta; Lk,z/Lz,z
dEde’l — dEde,Z — dEdtheta; gk/Lz,z

1yeensls

Then back-propagate through the solution of Lu = —b:

fori=s,...,1
fork=1,...,i—1
dEdu; < dEdu; — dEdu; Li,k/Li,i
dEdLi,k — dEdLiyk — dEduy; Uk/Lz',z'

The above algorithm gives us the gradient of the model selection criterion £ with respect to



coefficient b(\) of the training criterion, as well as with respect to the lower diagonal matrix
L.

Finally, we back-propagate through the Cholesky decomposition, to convert the gradients
with respect to L into gradients with respect to the Hessian H(\). Note that for another ap-
plication it has already been proposed to differentiate the Cholesky algorithm (Smith, 1995).

fori=s,...,1
forj=s,...,1+1
dEdLZ,Z — dEdLZ,Z — dEdLj,iL]’,i/Li’i
fork—=1,....i—1
dEdLiyk — dEdLiyk — dEdLj,iLj,k/Li,i
dEdLj,k — dEdL],k — dEdLj,iLi,k/Li,i
fork=1,...,i—1
dEdLi,k — dEdLiyk — dEsz,sz,k/Lz,z

Note that we have only computed gradients with respect to the diagonal and upper diagonal
of H because H is symmetric. Once we have the gradients of E with respect to b and H, we
use the functional form of b(\) and H(\) to compute the gradient of E with respect to A:

08 _OF| | ~OBOh < 0B 9,
ON — OX|,, 4 b OX 0H;; O\

i7j

Using this approach rather than the one described in the previous subsection, the overall
computation of gradients is therefore O(s3/3) rather than O(s®). The most expensive step is
the back-propagation through the Cholesky decomposition itself (three nested O(s) loops).
Note that this step may be shared if there are several linear systems to solve with the same
matrix H.

3.3 Weight Decays for Linear Regression

In this subsection, we consider in more detail the particular case of multiple weight decays
for linear regression. The data examples are input/output pairs Z = (X,Y), with X € R”"
and Y € R™. The cost function is the squared error

QU (X, Y)) = 5 (F(X) = Y)'(f(X) =Y).

The class of functions is the affine class defined earlier
Felline — {f: R" - R™|f(x) = O%,x € R",0 € R™ "1}

with the parameter vector § = vec(©) formed by concatenating the rows of the weight matrix

.
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All the developments that precede in this section can be applied in a straightforward way. We
will consider here the K-fold cross-validation criterion as our model selection criterion. The
hyper-parameter \; will be a weight decay associated to the j-th input variable (j-th element
of the input vector X'). The training criterion for the k-th partition is

1 , 1
Z 5(@1} — yt) (@IL’t - yt) + 5 Z )\j Z 612,]'
j i

(ze,ye)ESE

1
RTH
The objective is to penalize separately each of the input variables. Each of the hyper-
parameters gives a penalty for using the corresponding input variable. The use of mul-
tiple hyper-parameters has already been proposed in the Bayesian literature in a similar
setup (MacKay and Neal, 1994; Neal, 1998): one hyper-parameter per input feature was used
to control the prior on the weights associated to that input feature, for multi-layer neural net-
works. The selection of the hyper-parameters amounts to a kind of “soft variable selection”
in which variables that do not help to generalize significantly better are penalized but not
necessarily turned off completely. See (Bengio and Latendresse, 1999) for more discussion and
experiments with this setup, including comparisons with more conventional variable selection
schemes.

The training criterion is quadratic, as in equation 2, with coefficients

1
a = 52%%
t
bijy = — D Yrituj
t

Hj gy = 5i,i'§t:$t,j$t,j' + 0i,ir 073t Ay (8)

where ¢; ; = 1 when ¢ = j and 0 otherwise, and (ij) is an index for the coefficient vector b,
the parameter vector 6, or the Hessian matrix H, corresponding to indices (7, j) in the weight
matrix O, e.g., (ij) = (i — 1) X s+ J.

From the above definition of the coefficients of C', we obtain their partial derivatives with
respect to A:

b
~—Z =0
N
OH ij) (1)
8])\k : - 6iai'6j:j' 7,k

Plugging the above definitions of the coefficients and their derivatives in the equations and
algorithms of the previous subsection, we have therefore obtained an algorithm for computing
the gradient of the model selection criterion with respect to the input weight decays of a
linear regression. Note that here H is block-diagonal, with m identical blocks of size (n + 1),
so the Cholesky decomposition (and similarly back-propagating through it) can be performed
in time O((s/m)?/3) rather than O(s*/3), where m is the number of outputs (the dimension
of the output variable).
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4 Optimizing Hyper-Parameters for a Non-Quadratic
Criterion

If the training criterion C' is not quadratic in terms of the parameters , it will in general
be necessary to apply an iterative numerical optimization algorithm to minimize the training
criterion. In this section we will consider what happens after this minimization is performed,
i.e., at a value of 6 where % is approximately zero and 3327(; is positive definite (otherwise we
would not be at a minimum of C'). We will use the implicit function theorem to obtain the
derivative of 6 with respect to A at this point. Under appropriate conditions of continuity

and differentiability, we have

o __oF oF

oN 1007 O\

for a vector-valued function F' of the vectors 6 and A. In particular we consider here

oC
FO,\)=—=0
0,0 =2,
so we obtain a general formula for the gradient of the parameters with respect to
the hyper-parameters:

F0,\)=0—

R = _ i 9
o\ (892) opNel7) opNel7) )

where H is the second derivative of the training criterion with respect to the parameters.

Let us see how this result relates to the special case of a quadratic training criterion, C' =

a+b6+ 30 HY:

00 o°Cc ,C ., 0°C

00 ob OH 0b oH
— = H Y =40 =-H'—+H'"Z—H™"%

) Gxta? o
where we have substituted # = —H~'b. Using the equality 7, we obtain the same formula as
in eq. (5).
Let us consider more closely the case of a neural network with one hidden layer and with a
squared error cost function:

1
QU (X, Y)) = 5 (f(X) =Y)'(f(X) =Y)
and the class of functions is for example
Frr={f:R" = R™f(x) = Vh, h = tanh(Wx), x € R",© € R™ 1) }

For example, if we want to use hyper-parameters for penalizing the use of inputs, we have as
before )

e = 157

S S Uale) ) ol — ) + 3 S0 S W

k
(xt,yt)ES]
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In this case, the cross-derivatives are easy to compute:

0*C

=5 W
OWigoNe

The Hessian and its inverse require more work, but can be done respectively in at most O(s?)
and O(s®) operations. See for example (Bishop, 1992; Bishop, 1995) for the exact computation
of the Hessian for multi-layer neural networks. See (Becker and LeCun, 1989; LeCun, Denker
and Solla, 1990) for a diagonal approximation which can be computed and inverted in O(s)
operations. Another kind of approximation is the Gauss-Newton approximation also called
the outer product approximation (Bishop, 1995; Hassibi and Stork, 1993), and applied when
the cost function is the squared error:

o°c
00?

Zafa (xt))
00

= term due to penalty+ Z %((fG(xt) — Yt)
¢

afa(ﬁt)lafa(ﬁt)
00 00

~ term due to penalty+ Z
t

In that case, it is possible compute the inverse of the Hessian efficiently in time O(T's?) where
T is the number of training examples (Hassibi and Stork, 1993).

5 Conclusions

In this paper, we have presented a new methodology for simultaneously optimizing several
hyper-parameters within gradient-based machine learning algorithms. It is based on the com-
putation of the gradient of a model selection criterion with respect to the hyper-parameters,
taking into account the influence of the hyper-parameters on the parameters. We have con-
sidered both the simpler case of a training criterion that is quadratic with respect to the
parameters and the more general non-quadratic case. In both cases the Hessian of training
cost must be computed and inverted (implicitly or explicitly). We have shown a particu-
larly efficient procedure in the quadratic case that is based on back-propagating gradients
through the Cholesky decomposition and back-substitutions. This was an improvement: we
have arrived at this O(s*/3) procedure after studying first an O(s®) procedure and then an
O(2s*) procedure for computing the gradients taking into account the inflence of A on 6. In
the particular case of input weight decays for linear regression, the computation can even be
reduced to O((s/m)3/3) operations when there are m outputs.

We have performed preliminary experiments with the proposed methodology in several simple
cases. First, the application to linear regression with weight decays for each input is described
in (Bengio and Latendresse, 1999). The hyper-parameter optimization algorithm is used to
perform a soft selection of the input variables. A large weight decay on one of the inputs
effectively forces the corresponding weights to very small values. In contrast to feature selec-
tion algorithms such as the classical forward and backward selection methods used for linear
regression, the algorithm for selecting hyper-parameters explores a continuous rather than

13



a discrete space. Comparisons are made in (Bengio and Latendresse, 1999) with ordinary
regression as well as with stepwise regression methods and the adaptive ridge (Grandvalet,
1998) or LASSO (Tibshirani, 1995), suggesting that the proposed method gives better results
when thre are many true non-zero regression coefficients and the correlation between the
inputs is large.

Another type of application of the proposed method has been explored, in the context of
non-stationary time-series prediction (Bengio and Dugas, 1999). In this case, an extension
of the cross-validation criterion to sequential data which may be non-stationary is presented.
Because of this non-stationarity, recent data may sometimes be more relevant to current
predictions than older data. The squared error criterion is weighted by a parameterized
function of the time indices (as the w;(A) in eq. 1), and the parameters of that weighting
function are the hyper-parameters discussed in this paper. Two hyper-parameters control
from what point in the past the examples become more relevant to current predictions, and
how much this point should be trusted. Using simply a constant model (i.e., the prediction is a
weighted average of past desired outputs), we obtained statistically significant improvements
in predicting one-month ahead future volatility of Canadian stocks. The comparisons were
made against several linear, constant, and ARMA models of the volatility.

What remains to be done? first, on the practical side, we still have no experiments with
the non-quadratic case (e.g., multi-layer neural networks), and no experiments with model
selection criteria other than cross-validation. The cross-validation estimate of generalization
error is unbiased but has a large variance (Breiman, 1996), and this might be hurtful to our
procedure. Second, there are important theoretical questions that remain unanswered con-
cerning the amount of overfitting that can be brought (or more precisely to the difference
between the true generalization error and the value of the model selection criterion that is
minimized) when too many hyper-parameters are optimized. As we have outlined in the
introduction, the situation with hyper-parameters may be compared with the situation of pa-
rameters and the class of functions in which a solution is chosen. However, whereas the form
of the training criterion as a sum of independent errors allows to define the capacity for a class
of functions and relate it to the difference between generalization error and empirical error, it
does not appear clearly to us how a similar analysis could be performed for hyper-parameters.
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