Continuous orbit equivalence of topological Markov shifts and Cuntz-Krieger algebras

Kengo Matsumoto and Hiroki Matui

Abstract

Let A, B be square irreducible matrices with entries in $\{0,1\}$. We will show that if the one-sided topological Markov shifts (X_{A}, σ_{A}) and (X_{B}, σ_{B}) are continuously orbit equivalent, then the two-sided topological Markov shifts $\left(\bar{X}_{A}, \bar{\sigma}_{A}\right)$ and $\left(\bar{X}_{B}, \bar{\sigma}_{B}\right)$ are flow equivalent, and hence $\operatorname{det}(\mathrm{id}-A)=\operatorname{det}(\mathrm{id}-B)$. As a result, the one-sided topological Markov shifts (X_{A}, σ_{A}) and (X_{B}, σ_{B}) are continuously orbit equivalent if and only if the Cuntz-Krieger algebras \mathcal{O}_{A} and \mathcal{O}_{B} are isomorphic and $\operatorname{det}(\mathrm{id}-A)=$ $\operatorname{det}(\mathrm{id}-B)$.

1. Introduction

The interplay between the orbit equivalence of topological dynamical systems and the theory of C^{*}-algebras has been studied by many authors. Giordano, Putnam, and Skau [7] have proved that two minimal homeomorphisms on a Cantor set are strongly orbit equivalent if and only if the associated C^{*}-crossed products are isomorphic. Boyle and Tomiyama [3] and Tomiyama [20] have studied relationships between orbit equivalence and C^{*}-crossed products for topologically free homeomorphisms on compact Hausdorff spaces.

In this paper, we classify one-sided irreducible topological Markov shifts up to continuous orbit equivalence and show that there exists a close connection with the Cuntz-Krieger algebras. The class of one-sided topological Markov shifts is an important class of topological dynamical systems on Cantor sets, though they are not homeomorphisms but local homeomorphisms. The first author [11] introduced the notion of continuous orbit equivalence for one-sided topological Markov shifts (see Definition 2.1) and proved that one-sided topological Markov shifts $\left(X_{A}, \sigma_{A}\right)$ and $\left(X_{B}, \sigma_{B}\right)$ for irreducible matrices A and B with entries in $\{0,1\}$ are continuously orbit equivalent if and only if there exists an isomorphism between the Cuntz-Krieger algebras \mathcal{O}_{A} and \mathcal{O}_{B} preserving their canonical Cartan subalgebras \mathcal{D}_{A} and \mathcal{D}_{B}. The second author in [15] and [16] studied the associated étale groupoids G_{A} and their homology groups $H_{n}\left(G_{A}\right)$ and topological full groups [[$\left.\left.G_{A}\right]\right]$. In fact, the two shifts are continuously orbit equivalent if and only
if G_{A} is isomorphic to G_{B} (see Theorem 2.3). In [12] it was also shown that if \mathcal{O}_{A} is isomorphic to \mathcal{O}_{B} and $\operatorname{det}(\mathrm{id}-A)=\operatorname{det}(\mathrm{id}-B)$, then there exists an isomorphism $\Psi: \mathcal{O}_{A} \rightarrow \mathcal{O}_{B}$ such that $\Psi\left(\mathcal{D}_{A}\right)=\mathcal{D}_{B}$, and hence the one-sided topological Markov shifts $\left(X_{A}, \sigma_{A}\right)$ and $\left(X_{B}, \sigma_{B}\right)$ are continuously orbit equivalent. Since there were no known examples of irreducible matrices A, B such that (X_{A}, σ_{A}) and $\left(X_{B}, \sigma_{B}\right)$ are continuously orbit equivalent and $\operatorname{det}(\mathrm{id}-A) \neq \operatorname{det}(\mathrm{id}-B)$, the first author [12, Section 6] presented the following conjecture: the determinant $\operatorname{det}(1-A)$ is an invariant for the continuous orbit equivalence class of $\left(X_{A}, \sigma_{A}\right)$. In the present article we confirm this conjecture. In other words, we show that $\left(X_{A}, \sigma_{A}\right)$ and (X_{B}, σ_{B}) are continuously orbit equivalent if and only if \mathcal{O}_{A} is isomorphic to \mathcal{O}_{B} and $\operatorname{det}(\mathrm{id}-A)=\operatorname{det}(\mathrm{id}-B)$ (see Theorem 3.6).

Our proof is closely related to another notion of equivalence for shifts, namely, flow equivalence for two-sided topological Markov shifts. Two-sided topological Markov shifts $\left(\bar{X}_{A}, \bar{\sigma}_{A}\right)$ and $\left(\bar{X}_{B}, \bar{\sigma}_{B}\right)$ are said to be flow equivalent if there exists an orientation-preserving homeomorphism between their suspension spaces (see [17]). Two characterizations of the flow equivalence are known. One is due to Boyle and Handelman [2] and the other is due to Parry and Sullivan [17], Bowen and Franks [1], and Franks [6] (see Theorems 2.4 and 2.6). By using the former characterization and the groupoid approach, we show that if $\left(X_{A}, \sigma_{A}\right)$ and $\left(X_{B}, \sigma_{B}\right)$ are continuously orbit equivalent, then $\left(\bar{X}_{A}, \bar{\sigma}_{A}\right)$ and $\left(\bar{X}_{B}, \bar{\sigma}_{B}\right)$ are flow equivalent (see Theorem 3.5). This, together with the second characterization, implies that $\operatorname{det}(\mathrm{id}-A)=\operatorname{det}(\mathrm{id}-B)$, and so the conjecture is confirmed. It is known that flow equivalence has a close relationship to stable isomorphisms of Cuntz-Krieger algebras (see [4], [5], [6], [8], [9], [19]). As a corollary of the main result, we also prove that two-sided irreducible topological Markov shifts $\left(\bar{X}_{A}, \bar{\sigma}_{A}\right)$ and $\left(\bar{X}_{B}, \bar{\sigma}_{B}\right)$ are flow equivalent if and only if there exists an isomorphism between the stable Cuntz-Krieger algebras $\mathcal{O}_{A} \otimes \mathbb{K}$ and $\mathcal{O}_{B} \otimes \mathbb{K}$ preserving their canonical maximal abelian subalgebras (see Corollary 3.8).

2. Preliminaries

We write $\mathbb{Z}_{+}=\mathbb{N} \cup\{0\}$. The transpose of a matrix A is written A^{t}. The characteristic function of a set S is denoted by 1_{S}. We say that a subset of a topological space is clopen if it is both closed and open. A topological space is said to be totally disconnected if its topology is generated by clopen subsets. By a Cantor set, we mean a compact, metrizable, totally disconnected space with no isolated points. It is known that any two such spaces are homeomorphic. A good introduction to symbolic dynamics can be found in the standard textbook [10] by Lind and Marcus.

Let $A=[A(i, j)]_{i, j=1}^{N}$ be an $N \times N$ matrix with entries in $\{0,1\}$, where $1<N \in \mathbb{N}$. Throughout the paper, we assume that A has no rows or columns identically equal to zero. Define

$$
X_{A}=\left\{\left(x_{n}\right)_{n \in \mathbb{N}} \in\{1, \ldots, N\}^{\mathbb{N}} \mid A\left(x_{n}, x_{n+1}\right)=1 \forall n \in \mathbb{N}\right\} .
$$

It is a compact Hausdorff space with natural product topology on $\{1, \ldots, N\}^{\mathbb{N}}$. The shift transformation σ_{A} on X_{A} defined by $\sigma_{A}\left(\left(x_{n}\right)_{n}\right)=\left(x_{n+1}\right)_{n}$ is a continuous surjective map on X_{A}. The topological dynamical system $\left(X_{A}, \sigma_{A}\right)$ is called the (right) one-sided topological Markov shift for A. We henceforth assume that A satisfies condition (I) in the sense of [5]. The matrix A satisfies condition (I) if and only if X_{A} has no isolated points, that is, X_{A} is a Cantor set.

We let $\left(\bar{X}_{A}, \bar{\sigma}_{A}\right)$ denote the two-sided topological Markov shift. Namely,

$$
\bar{X}_{A}=\left\{\left(x_{n}\right)_{n \in \mathbb{Z}} \in\{1, \ldots, N\}^{\mathbb{Z}} \mid A\left(x_{n}, x_{n+1}\right)=1 \forall n \in \mathbb{Z}\right\}
$$

and $\bar{\sigma}_{A}\left(\left(x_{n}\right)_{n \in \mathbb{Z}}\right)=\left(x_{n+1}\right)_{n \in \mathbb{Z}}$.
 invariant) if $\sigma_{A}(S)=S$ (resp., $\left.\bar{\sigma}_{A}(S)=S\right)$.

2.1. Continuous orbit equivalence

For $x=\left(x_{n}\right)_{n \in \mathbb{N}} \in X_{A}$, the orbit $\operatorname{orb}_{\sigma_{A}}(x)$ of x under σ_{A} is defined by

$$
\operatorname{orb}_{\sigma_{A}}(x)=\bigcup_{k=0}^{\infty} \bigcup_{l=0}^{\infty} \sigma_{A}^{-k}\left(\sigma_{A}^{l}(x)\right)
$$

DEFINITION 2.1 ([11, SECTION 5])

Let $\left(X_{A}, \sigma_{A}\right)$ and $\left(X_{B}, \sigma_{B}\right)$ be two one-sided topological Markov shifts. If there exists a homeomorphism $h: X_{A} \rightarrow X_{B}$ such that $h\left(\operatorname{orb}_{\sigma_{A}}(x)\right)=\operatorname{orb}_{\sigma_{B}}(h(x))$ for $x \in X_{A}$, then $\left(X_{A}, \sigma_{A}\right)$ and $\left(X_{B}, \sigma_{B}\right)$ are said to be topologically orbit equivalent. In this case, there exist $k_{1}, l_{1}: X_{A} \rightarrow \mathbb{Z}_{+}$such that

$$
\sigma_{B}^{k_{1}(x)}\left(h\left(\sigma_{A}(x)\right)\right)=\sigma_{B}^{l_{1}(x)}(h(x)) \quad \forall x \in X_{A} .
$$

Similarly there exist $k_{2}, l_{2}: X_{B} \rightarrow \mathbb{Z}_{+}$such that

$$
\sigma_{A}^{k_{2}(x)}\left(h^{-1}\left(\sigma_{B}(x)\right)\right)=\sigma_{A}^{l_{2}(x)}\left(h^{-1}(x)\right) \quad \forall x \in X_{B}
$$

Furthermore, if we may choose $k_{1}, l_{1}: X_{A} \rightarrow \mathbb{Z}_{+}$and $k_{2}, l_{2}: X_{B} \rightarrow \mathbb{Z}_{+}$as continuous maps, then the topological Markov shifts $\left(X_{A}, \sigma_{A}\right)$ and (X_{B}, σ_{B}) are said to be continuously orbit equivalent.

If two one-sided topological Markov shifts are topologically conjugate, then they are continuously orbit equivalent. For the two matrices

$$
A=\left[\begin{array}{ll}
1 & 1 \\
1 & 1
\end{array}\right] \quad \text { and } \quad B=\left[\begin{array}{ll}
1 & 1 \\
1 & 0
\end{array}\right]
$$

the topological Markov shifts $\left(X_{A}, \sigma_{A}\right)$ and $\left(X_{B}, \sigma_{B}\right)$ are continuously orbit equivalent, but not topologically conjugate (see [11, Section 5]).

Let $\left[\sigma_{A}\right]$ denote the set of all homeomorphisms τ of X_{A} such that $\tau(x) \in$ $\operatorname{orb}_{\sigma_{A}}(x)$ for all $x \in X_{A}$. It is called the full group of $\left(X_{A}, \sigma_{A}\right)$. Let Γ_{A} be the set of all τ in $\left[\sigma_{A}\right]$ such that there exist continuous functions $k, l: X_{A} \rightarrow \mathbb{Z}_{+}$ satisfying $\sigma_{A}^{k(x)}(\tau(x))=\sigma_{A}^{l(x)}(x)$ for all $x \in X_{A}$. The set Γ_{A} is a subgroup of $\left[\sigma_{A}\right]$ and is called the continuous full group for $\left(X_{A}, \sigma_{A}\right)$. We note that the group Γ_{A}
has been written as $\left[\sigma_{A}\right]_{c}$ in the earlier paper [11]. It has been proved in [14] that the isomorphism class of Γ_{A} as an abstract group is a complete invariant of the continuous orbit equivalence class of $\left(X_{A}, \sigma_{A}\right)$ (see [16] for more general results and further studies).

2.2. Étale groupoids

By an étale groupoid we mean a second countable locally compact Hausdorff groupoid such that the range map is a local homeomorphism. We refer the reader to [18] for background material on étale groupoids. For an étale groupoid G, we let $G^{(0)}$ denote the unit space, and we let s and r denote the source and range maps, respectively. For $x \in G^{(0)}, r(G x)$ is called the G-orbit of x. When every G-orbit is dense in $G^{(0)}, G$ is said to be minimal. For $x \in G^{(0)}$, we write $G_{x}=r^{-1}(x) \cap s^{-1}(x)$ and call it the isotropy group of x. The isotropy bundle is $G^{\prime}=\{g \in G \mid r(g)=s(g)\}=\bigcup_{x \in G^{(0)}} G_{x}$. We say that G is principal if $G^{\prime}=G^{(0)}$. When the interior of G^{\prime} is $G^{(0)}$, we say that G is essentially principal. A subset $U \subset G$ is called a G-set if $r|U, s| U$ are injective. For an open G-set U, we let π_{U} denote the homeomorphism $r \circ(s \mid U)^{-1}$ from $s(U)$ to $r(U)$.

We would like to recall the notion of topological full groups for étale groupoids.

DEFINITION 2.2 ([15, DEFINITION 2.3])

Let G be an essentially principal étale groupoid whose unit space $G^{(0)}$ is compact.
(a) The set of all $\alpha \in \operatorname{Homeo}\left(G^{(0)}\right)$ such that for every $x \in G^{(0)}$ there exists $g \in G$ satisfying $r(g)=x$ and $s(g)=\alpha(x)$ is called the full group of G and is denoted by $[G]$.
(b) The set of all $\alpha \in \operatorname{Homeo}\left(G^{(0)}\right)$ for which there exists a compact open G-set U satisfying $\alpha=\pi_{U}$ is called the topological full group of G and is denoted by $[[G]]$.

Obviously $[G]$ is a subgroup of $\operatorname{Homeo}\left(G^{(0)}\right)$ and $[[G]]$ is a subgroup of $[G]$.
For $\alpha \in[[G]]$ the compact open G-set U as above uniquely exists, because G is essentially principal. Since G is second countable, it has countably many compact open subsets, and so $[[G]]$ is at most countable. For minimal groupoids on Cantor sets, it is known that the isomorphism class of $[[G]]$ is a complete invariant of G (see [16, Theorem 3.10]).

Let $\left(X_{A}, \sigma_{A}\right)$ be a topological Markov shift. The étale groupoid G_{A} for (X_{A}, σ_{A}) is given by

$$
G_{A}=\left\{(x, n, y) \in X_{A} \times \mathbb{Z} \times X_{A} \mid \exists k, l \in \mathbb{Z}_{+}, n=k-l, \sigma_{A}^{k}(x)=\sigma_{A}^{l}(y)\right\} .
$$

The topology of G_{A} is generated by the sets

$$
\left\{(x, k-l, y) \in G_{A} \mid x \in V, y \in W, \sigma_{A}^{k}(x)=\sigma_{A}^{l}(y)\right\}
$$

where $V, W \subset X_{A}$ are open and $k, l \in \mathbb{Z}_{+}$. Two elements (x, n, y) and $\left(x^{\prime}, n^{\prime}, y^{\prime}\right)$ in G_{A} are composable if and only if $y=x^{\prime}$, and the multiplication and the inverse
are

$$
(x, n, y) \cdot\left(y, n^{\prime}, y^{\prime}\right)=\left(x, n+n^{\prime}, y^{\prime}\right), \quad(x, n, y)^{-1}=(y,-n, x) .
$$

The range and source maps are given by $r(x, n, y)=(x, 0, x)$ and $s(x, n, y)=$ $(y, 0, y)$, respectively. We identify X_{A} with the unit space $G_{A}^{(0)}$ via $x \mapsto(x, 0, x)$. The groupoid G_{A} is essentially principal. The groupoid G_{A} is minimal if and only if $\left(X_{A}, \sigma_{A}\right)$ is irreducible. It is easy to see that the topological full group $\left[\left[G_{A}\right]\right]$ is canonically isomorphic to the continuous full group Γ_{A}.

2.3. Cuntz-Krieger algebras

Let $A=[A(i, j)]_{i, j=1}^{N}$ be an $N \times N$ matrix with entries in $\{0,1\}$, and let $\left(X_{A}, \sigma_{A}\right)$ be the one-sided topological Markov shift. The Cuntz-Krieger algebra \mathcal{O}_{A}, introduced in [5], is the universal C^{*}-algebra generated by N partial isometries S_{1}, \ldots, S_{N} subject to the relations

$$
\sum_{j=1}^{N} S_{j} S_{j}^{*}=1 \quad \text { and } \quad S_{i}^{*} S_{i}=\sum_{j=1}^{N} A(i, j) S_{j} S_{j}^{*}
$$

The subalgebra \mathcal{D}_{A} of \mathcal{O}_{A} generated by elements $S_{i_{1}} S_{i_{2}} \cdots S_{i_{k}} S_{i_{k}}^{*} \cdots S_{i_{1}}^{*}$ is naturally isomorphic to $C\left(X_{A}\right)$, and is a Cartan subalgebra in the sense of [18]. It is also well known that the pair $\left(\mathcal{O}_{A}, \mathcal{D}_{A}\right)$ is isomorphic to the pair $\left(C_{r}^{*}\left(G_{A}\right)\right.$, $C\left(X_{A}\right)$), where $C_{r}^{*}\left(G_{A}\right)$ denotes the reduced groupoid C^{*}-algebra and $C\left(X_{A}\right)$ is regarded as a subalgebra of it. Thus, there exists an isomorphism $\Psi: \mathcal{O}_{A} \rightarrow C_{r}^{*}(G)$ such that $\Psi\left(\mathcal{D}_{A}\right)=C\left(X_{A}\right)$.

THEOREM 2.3

Let $\left(X_{A}, \sigma_{A}\right)$ and $\left(X_{B}, \sigma_{B}\right)$ be two irreducible one-sided topological Markov shifts. The following conditions are equivalent.
(a) $\left(X_{A}, \sigma_{A}\right)$ and $\left(X_{B}, \sigma_{B}\right)$ are continuously orbit equivalent.
(b) The étale groupoids G_{A} and G_{B} are isomorphic.
(c) There exists an isomorphism $\Psi: \mathcal{O}_{A} \rightarrow \mathcal{O}_{B}$ such that $\Psi\left(\mathcal{D}_{A}\right)=\mathcal{D}_{B}$.

Proof
The equivalence between (a) and (c) follows from [11, Theorem 1.1]. The equivalence between (b) and (c) follows from [18, Proposition 4.11] (see also [15, Theorem 5.1]).

2.4. Flow equivalence

In this section, we would like to recall Boyle-Handelman's theorem, which says that the ordered cohomology group is a complete invariant for flow equivalence between irreducible shifts of finite type.

Let $A=[A(i, j)]_{i, j=1}^{N}$ be an $N \times N$ matrix with entries in $\{0,1\}$, and consider the two-sided topological Markov shift $\left(\bar{X}_{A}, \bar{\sigma}_{A}\right)$. Set

$$
\bar{H}^{A}=C\left(\bar{X}_{A}, \mathbb{Z}\right) /\left\{\xi-\xi \circ \bar{\sigma}_{A} \mid \xi \in C\left(\bar{X}_{A}, \mathbb{Z}\right)\right\} .
$$

The equivalence class of a function $\xi \in C\left(\bar{X}_{A}, \mathbb{Z}\right)$ in \bar{H}^{A} is written [ξ]. We define the positive cone \bar{H}_{+}^{A} by

$$
\bar{H}_{+}^{A}=\left\{[\xi] \in \bar{H}^{A} \mid \xi(x) \geq 0 \forall x \in \bar{X}_{A}\right\} .
$$

The pair $\left(\bar{H}^{A}, \bar{H}_{+}^{A}\right)$ is called the ordered cohomology group of $\left(\bar{X}_{A}, \bar{\sigma}_{A}\right)$ (see [2, Section 1.3]). Boyle and Handelman proved the following theorem, which plays a key role in this paper.

THEOREM 2.4 ([2, THEOREM 1.12])
Suppose that $\left(\bar{X}_{A}, \bar{\sigma}_{A}\right)$ and $\left(\bar{X}_{B}, \bar{\sigma}_{B}\right)$ are irreducible two-sided topological Markov shifts. Then the following are equivalent.
(a) $\left(\bar{X}_{A}, \bar{\sigma}_{A}\right)$ and $\left(\bar{X}_{B}, \bar{\sigma}_{B}\right)$ are flow equivalent.
(b) The ordered cohomology groups $\left(\bar{H}^{A}, \bar{H}_{+}^{A}\right)$ and $\left(\bar{H}^{B}, \bar{H}_{+}^{B}\right)$ are isomorphic; that is, there exists an isomorphism $\Phi: \bar{H}^{A} \rightarrow \bar{H}^{B}$ such that $\Phi\left(\bar{H}_{+}^{A}\right)=\bar{H}_{+}^{B}$.

We also recall the following from [2] for later use.
PROPOSITION 2.5 ([2, PROPOSITION $3.13(A)])$
Let $\left(\bar{X}_{A}, \bar{\sigma}_{A}\right)$ be a two-sided topological Markov shift, and let $\xi \in C\left(\bar{X}_{A}, \mathbb{Z}\right)$. Then [ξ] is in \bar{H}_{+}^{A} if and only if

$$
\sum_{x \in O} \xi(x) \geq 0
$$

holds for any finite $\bar{\sigma}_{A}$-invariant set $O \subset \bar{X}_{A}$.
In the same way as above, we introduce $\left(H^{A}, H_{+}^{A}\right)$ for the one-sided topological Markov shift $\left(X_{A}, \sigma_{A}\right)$ as follows:

$$
H^{A}=C\left(X_{A}, \mathbb{Z}\right) /\left\{\xi-\xi \circ \sigma_{A} \mid \xi \in C\left(X_{A}, \mathbb{Z}\right)\right\}
$$

and

$$
H_{+}^{A}=\left\{[\xi] \in H^{A} \mid \xi(x) \geq 0 \forall x \in X_{A}\right\} .
$$

We will show that $\left(\bar{H}^{A}, \bar{H}_{+}^{A}\right)$ and $\left(H^{A}, H_{+}^{A}\right)$ are actually isomorphic (see Lemma 3.1).

2.5. The Bowen-Franks group

Let $A=[A(i, j)]_{i, j=1}^{N}$ be an $N \times N$ matrix with entries in $\{0,1\}$. The BowenFranks group $\operatorname{BF}(A)$ is the abelian group $\mathbb{Z}^{N} /(\mathrm{id}-A) \mathbb{Z}^{N}$. Bowen and Franks [1] have proved that the Bowen-Franks group is an invariant of flow equivalence. Parry and Sullivan [17] have proved that the determinant of id $-A$ is also an invariant of flow equivalence. Evidently, if $\operatorname{BF}(A)$ is an infinite group, then $\operatorname{det}(\mathrm{id}-A)$ is zero. If $\operatorname{BF}(A)$ is a finite group, then $|\operatorname{det}(\mathrm{id}-A)|$ is equal to the cardinality of $\mathrm{BF}(A)$. Therefore it is sufficient to know the Bowen-Franks group
and the sign of the determinant in order to find the determinant. The following theorem by Franks shows that these invariants are complete.

THEOREM 2.6 ([6, THEOREM])
Suppose that $\left(\bar{X}_{A}, \bar{\sigma}_{A}\right)$ and $\left(\bar{X}_{B}, \bar{\sigma}_{B}\right)$ are irreducible two-sided topological Markov shifts. Then $\left(\bar{X}_{A}, \bar{\sigma}_{A}\right)$ and $\left(\bar{X}_{B}, \bar{\sigma}_{B}\right)$ are flow equivalent if and only if $\operatorname{BF}(A) \cong$ $\mathrm{BF}(B)$ and $\operatorname{sgn}(\operatorname{det}(\mathrm{id}-A))=\operatorname{sgn}(\operatorname{det}(\mathrm{id}-B))$.

In what follows, we consider $\operatorname{BF}\left(A^{t}\right)=\mathbb{Z}^{N} /\left(\mathrm{id}-A^{t}\right) \mathbb{Z}^{N}$. Although $\mathrm{BF}\left(A^{t}\right)$ is isomorphic to $\operatorname{BF}(A)$ as an abelian group, there does not exist a canonical isomorphism between them, and so we must distinguish them carefully.

We denote the equivalence class of $(1,1, \ldots, 1) \in \mathbb{Z}^{N}$ in $\operatorname{BF}\left(A^{t}\right)$ by u_{A}. By [4, Proposition 3.1], $K_{0}\left(\mathcal{O}_{A}\right)$ is isomorphic to $\operatorname{BF}\left(A^{t}\right)$ and the class of the unit of \mathcal{O}_{A} maps to u_{A} under this isomorphism. And $K_{1}\left(\mathcal{O}_{A}\right)$ is isomorphic to $\operatorname{Ker}\left(\mathrm{id}-A^{t}\right)$ on \mathbb{Z}^{N}. In [15], it has been shown that these groups naturally arise from the homology theory of étale groupoids.

Let G be an étale groupoid whose unit space $G^{(0)}$ is a Cantor set. One can associate the homology groups $H_{n}(G)$ with G (see [15, Section 3] for the precise definition). The homology group $H_{0}(G)$ is the quotient of $C\left(G^{(0)}, \mathbb{Z}\right)$ by the subgroup generated by $1_{r(U)}-1_{s(U)}$ for compact open G-sets U. We denote the equivalence class of $\xi \in C\left(G^{(0)}, \mathbb{Z}\right)$ in $H_{0}(G)$ by $[\xi]$. For the étale groupoid G_{A}, we have the following.

THEOREM 2.7 ([15, THEOREM 4.14])
Let $\left(X_{A}, \sigma_{A}\right)$ be a one-sided topological Markov shift. Then

$$
H_{n}\left(G_{A}\right) \cong \begin{cases}\operatorname{BF}\left(A^{t}\right)=\mathbb{Z}^{N} /\left(\mathrm{id}-A^{t}\right) \mathbb{Z}^{N}, & n=0 \\ \operatorname{Ker}\left(\mathrm{id}-A^{t}\right), & n=1 \\ 0, & n \geq 2\end{cases}
$$

Moreover, there exists an isomorphism $\Phi: H_{0}\left(G_{A}\right) \rightarrow \operatorname{BF}\left(A^{t}\right)$ such that $\Phi\left(\left[1_{X_{A}}\right]\right)=u_{A}$.

In particular, it follows from Theorem 2.3 that the pair $\left(\mathrm{BF}\left(A^{t}\right), u_{A}\right)$ is an invariant for continuous orbit equivalence of one-sided topological Markov shifts (see also [13, Theorem 1.3]). Thus, if $\left(X_{A}, \sigma_{A}\right)$ and $\left(X_{B}, \sigma_{B}\right)$ are continuously orbit equivalent, then there exists an isomorphism $\Phi: \mathrm{BF}\left(A^{t}\right) \rightarrow \mathrm{BF}\left(B^{t}\right)$ such that $\Phi\left(u_{A}\right)=u_{B}$.

3. Classification up to continuous orbit equivalence

Let $\left(X_{A}, \sigma_{A}\right)$ be an irreducible one-sided topological Markov shift. As in the previous section, $\left(\bar{X}_{A}, \bar{\sigma}_{A}\right)$ denotes the two-sided topological Markov shift corresponding to $\left(X_{A}, \sigma_{A}\right)$. Define $\rho: \bar{X}_{A} \rightarrow X_{A}$ by $\rho\left(\left(x_{n}\right)_{n \in \mathbb{Z}}\right)=\left(x_{n}\right)_{n \in \mathbb{N}}$. Clearly we have that $\sigma_{A} \circ \rho=\rho \circ \bar{\sigma}_{A}$.

LEMMA 3.1
The map $C\left(X_{A}, \mathbb{Z}\right) \ni \xi \mapsto \xi \circ \rho \in C\left(\bar{X}_{A}, \mathbb{Z}\right)$ gives rise to an isomorphism $\tilde{\rho}$ from H^{A} to \bar{H}^{A} satisfying $\tilde{\rho}\left(H_{+}^{A}\right)=\bar{H}_{+}^{A}$.

Proof
For any $\eta \in C\left(X_{A}, \mathbb{Z}\right)$, one has that $\left(\eta-\eta \circ \sigma_{A}\right) \circ \rho=\eta \circ \rho-\eta \circ \rho \circ \bar{\sigma}_{A}$, and so $[\xi] \mapsto[\xi \circ \rho]$ is a well-defined homomorphism $\tilde{\rho}$ from H^{A} to \bar{H}^{A}.

Let $\zeta \in C\left(\bar{X}_{A}, \mathbb{Z}\right)$. Then $\zeta(x)$ depends only on finitely many coordinates of $x \in \bar{X}_{A}$. Hence, for sufficiently large $n \in \mathbb{N}$, there exists $\xi \in C\left(X_{A}, \mathbb{Z}\right)$ such that $\zeta \circ \bar{\sigma}_{A}^{n}=\xi \circ \rho$. Thus $\tilde{\rho}$ is surjective.

Clearly $\tilde{\rho}\left(H_{+}^{A}\right) \subset \bar{H}_{+}^{A}$. It follows from the argument above that \bar{H}_{+}^{A} is contained in $\tilde{\rho}\left(H_{+}^{A}\right)$.

It remains for us to show the injectivity. Let $\xi \in C\left(X_{A}, \mathbb{Z}\right)$. Suppose that there exists $\zeta \in C\left(\bar{X}_{A}, \mathbb{Z}\right)$ such that $\xi \circ \rho=\zeta-\zeta \circ \bar{\sigma}_{A}$. In the same way as above, for sufficiently large $n \in \mathbb{N}$, there exists $\eta \in C\left(X_{A}, \mathbb{Z}\right)$ such that $\zeta \circ \bar{\sigma}_{A}^{n}=\eta \circ \rho$. Then

$$
\xi \circ \sigma_{A}^{n} \circ \rho=\xi \circ \rho \circ \bar{\sigma}_{A}^{n}=\zeta \circ \bar{\sigma}_{A}^{n}-\zeta \circ \bar{\sigma}_{A}^{n+1}=\left(\eta-\eta \circ \sigma_{A}\right) \circ \rho .
$$

Hence $\xi \circ \sigma_{A}^{n}=\eta-\eta \circ \sigma_{A}$. Thus $[\xi]=\left[\xi \circ \sigma_{A}^{n}\right]=0$ in H^{A}.

LEMMA 3.2
For $\xi \in C\left(X_{A}, \mathbb{Z}\right)$, $[\xi]$ is in H_{+}^{A} if and only if $\sum_{x \in O} \xi(x) \geq 0$ holds for every finite σ_{A}-invariant set $O \subset X_{A}$.

Proof

Suppose that $[\xi]$ is in H_{+}^{A}. By the lemma above, $\tilde{\rho}([\xi])=[\xi \circ \rho]$ is in \bar{H}_{+}^{A}. Let $O \subset X_{A}$ be a finite σ_{A}-invariant set. There exists a finite $\bar{\sigma}_{A}$-invariant set $\bar{O} \subset \bar{X}_{A}$ such that $\rho \mid \bar{O}$ is a bijection from \bar{O} to O. It follows from Proposition 2.5 that $\sum_{x \in \bar{O}} \xi(\rho(x)) \geq 0$. Hence $\sum_{x \in O} \xi(x) \geq 0$.

Suppose that $\sum_{x \in O} \xi(x) \geq 0$ holds for every finite σ_{A}-invariant set $O \subset X_{A}$. For any finite $\bar{\sigma}_{A}$-invariant set $\bar{O} \subset \bar{X}_{A}, O=\rho(\bar{O}) \subset X_{A}$ is a finite σ_{A}-invariant set and $\rho \mid \bar{O}$ is injective. Therefore $\sum_{x \in \bar{O}} \xi(\rho(x))=\sum_{x \in O} \xi(x) \geq 0$. By Proposition 2.5, $[\xi \circ \rho]$ is in \bar{H}_{+}^{A}. By the lemma above, $[\xi]$ is in H_{+}^{A} as desired.

Let G be an étale groupoid. We denote by $\operatorname{Hom}(G, \mathbb{Z})$ the set of continuous homomorphisms $\omega: G \rightarrow \mathbb{Z}$. We think of $\operatorname{Hom}(G, \mathbb{Z})$ as an abelian group by pointwise addition. For $\xi \in C\left(G^{(0)}, \mathbb{Z}\right)$, we can define $\partial(\xi) \in \operatorname{Hom}(G, \mathbb{Z})$ by $\partial(\xi)(g)=$ $\xi(r(g))-\xi(s(g))$. The cohomology group $H^{1}(G)=H^{1}(G, \mathbb{Z})$ is the quotient of $\operatorname{Hom}(G, \mathbb{Z})$ by $\left\{\partial(\xi) \mid \xi \in C\left(G^{(0)}, \mathbb{Z}\right)\right\}$. The equivalence class of $\omega: G \rightarrow \mathbb{Z}$ is written $[\omega] \in H^{1}(G)$.

Let $g \in G$ be such that $r(g)=s(g)$, that is, $g \in G^{\prime}$. Since $\partial(\xi)(g)=0$ for any $\xi \in C\left(G^{(0)}, \mathbb{Z}\right),[\omega] \mapsto \omega(g)$ is a well-defined homomorphism from $H^{1}(G)$ to \mathbb{Z}. We say that g is attracting if there exists a compact open G-set U such that $g \in U$,
then $r(U) \subset s(U)$ and

$$
\lim _{n \rightarrow+\infty}\left(\pi_{U}\right)^{n}(y)=r(g)
$$

holds for any $y \in s(U)$.
Let $\left(X_{A}, \sigma_{A}\right)$ be a one-sided topological Markov shift, and consider the étale groupoid G_{A} (see Section 2.2 for the definition). We say that $x \in X_{A}$ is eventually periodic if there exist $k, l \in \mathbb{Z}_{+}$such that $k \neq l$ and $\sigma_{A}^{k}(x)=\sigma_{A}^{l}(x)$. This is equivalent to saying that $\left\{\sigma_{A}^{n}(x) \in X_{A} \mid n \in \mathbb{Z}_{+}\right\}$is a finite set. When x is eventually periodic, we call

$$
\min \left\{k-l \mid k, l \in \mathbb{Z}_{+}, k>l, \sigma_{A}^{k}(x)=\sigma_{A}^{l}(x)\right\}
$$

the period of x.

LEMMA 3.3

Let $x \in X_{A}$.
(a) If x is not eventually periodic, then the isotropy group $\left(G_{A}\right)_{x}$ is trivial.
(b) If x is eventually periodic, then $\left(G_{A}\right)_{x}=\left\{(x, n p, x) \in G_{A} \mid n \in \mathbb{Z}\right\} \cong \mathbb{Z}$, where p is the period of x.
(c) When x is eventually periodic and has period $p,(x, n p, x)$ is attracting if and only if n is positive.

Proof

Both (a) and (b) are obvious. We prove (c). Suppose that x is an eventually periodic point whose period is p. Let $(x, n p, x) \in\left(G_{A}\right)_{x}$. Assume that n is positive. Choose $k, l \in \mathbb{Z}_{+}$so that $\sigma_{A}^{k}(x)=\sigma_{A}^{l}(x)$ and $p n=k-l$. Define a clopen neighborhood V and W of x by

$$
V=\left\{\left(y_{n}\right)_{n} \in X_{A} \mid y_{i}=x_{i} \forall i=1,2, \ldots, k+1\right\}
$$

and

$$
W=\left\{\left(y_{n}\right)_{n} \in X_{A} \mid y_{i}=x_{i} \forall i=1,2, \ldots, l+1\right\} .
$$

We have that $V \subset W$ and $\sigma_{A}^{k}(V)=\sigma_{A}^{l}(W)$. Then

$$
U=\left\{(y, n p, z) \in G_{A} \mid y \in V, z \in W, \sigma_{A}^{k}(y)=\sigma_{A}^{l}(z)\right\}
$$

is a compact open G_{A}-set such that $(x, n p, x) \in U, r(U)=V, s(U)=W$, and $\pi_{U}=\left(\sigma_{A}^{k} \mid V\right)^{-1} \circ\left(\sigma_{A}^{l} \mid W\right)$. It is easy to see that

$$
\lim _{m \rightarrow+\infty}\left(\pi_{U}\right)^{m}(z)=x
$$

holds for any $z \in s(U)$. Thus ($x, n p, x$) is attracting.
Suppose that $U \subset G_{A}$ is a compact open G_{A}-set containing $(x, 0, x)$. Then $\pi_{U}(y)=y$ for any y sufficiently close to x, and so $(x, 0, x)$ is not attracting.

Assume that n is negative. Let $U \subset G_{A}$ be a compact open G_{A}-set containing $(x, n p, x)$. By the argument above, $(x,-n p, x)$ is attracting. Hence there exists
a clopen neighborhood V of x such that $V \subset s(U)$ and $V \subset \pi_{U}(V)$. This means that $(x, n p, x)$ cannot be an attracting element.

PROPOSITION 3.4
There exists an isomorphism $\Phi: H^{1}\left(G_{A}\right) \rightarrow H^{A}$ such that $\Phi([\omega])$ is in H_{+}^{A} if and only if $\omega(g) \geq 0$ for every attracting $g \in G_{A}$.

Proof
Let $\omega \in \operatorname{Hom}\left(G_{A}, \mathbb{Z}\right)$. Define $\xi \in C\left(X_{A}, \mathbb{Z}\right)$ by

$$
\xi(x)=\omega\left(\left(x, 1, \sigma_{A}(x)\right)\right) .
$$

Let us verify that the map $\omega \mapsto \xi$ is surjective. For a given $\xi \in C\left(X_{A}, \mathbb{Z}\right)$, we can define $\omega \in \operatorname{Hom}\left(G_{A}, \mathbb{Z}\right)$ as follows. Take $(x, n, y) \in G_{A}$. There exists $k, l \in \mathbb{Z}_{+}$ such that $k-l=n$ and $\sigma_{A}^{k}(x)=\sigma_{A}^{l}(y)$. Put

$$
\omega((x, n, y))=\sum_{i=0}^{k-1} \xi\left(\sigma_{A}^{i}(x)\right)-\sum_{j=0}^{l-1} \xi\left(\sigma_{A}^{j}(y)\right) .
$$

Clearly this gives a well-defined continuous homomorphism from G_{A} to \mathbb{Z}. If there exists $\eta \in C\left(X_{A}, \mathbb{Z}\right)$ such that $\omega=\partial(\eta)$, then $\xi=\eta-\eta \circ \sigma_{A}$, that is, $[\xi]=0$ in H^{A}. It is also easy to see that the converse holds. Therefore $\Phi:[\omega] \mapsto[\xi]$ is an isomorphism from $H^{1}\left(G_{A}\right)$ to H^{A}.

We would like to show that [ξ] is in H_{+}^{A} if and only if $\omega(g) \geq 0$ for every attracting $g \in G_{A}$. Let $x \in X_{A}$ be an eventually periodic point whose period is p, and let $g=(x, n p, x)$ be an attracting element. By the lemma above, n is positive. There exists $k, l \in \mathbb{Z}_{+}$such that $k-l=n p$ and $\sigma_{A}^{k}(x)=\sigma_{A}^{l}(x)$. Then one has

$$
\begin{aligned}
\omega(g) & =\sum_{i=0}^{k-1} \xi\left(\sigma_{A}^{i}(x)\right)-\sum_{j=0}^{l-1} \xi\left(\sigma_{A}^{j}(x)\right) \\
& =\sum_{i=l}^{k-1} \xi\left(\sigma_{A}^{i}(x)\right) \\
& =n \sum_{i=l}^{l+p-1} \xi\left(\sigma_{A}^{i}(x)\right) .
\end{aligned}
$$

Notice that $O=\left\{\sigma_{A}^{l}(x), \sigma_{A}^{l+1}(x), \ldots, \sigma_{A}^{l+p-1}(x)\right\}$ is a finite σ_{A}-invariant set. By Lemma 3.2, [ξ] belongs to H_{+}^{A} if and only if

$$
\sum_{y \in O} \xi(y) \geq 0
$$

for any finite σ_{A}-invariant set $O \subset X_{A}$, thereby completing the proof.
Consequently we have the following.

THEOREM 3.5

Let $\left(X_{A}, \sigma_{A}\right)$ and $\left(X_{B}, \sigma_{B}\right)$ be two irreducible one-sided topological Markov shifts. If $\left(X_{A}, \sigma_{A}\right)$ is continuously orbit equivalent to $\left(X_{B}, \sigma_{B}\right)$, then there exists an isomorphism $\Phi: H^{A} \rightarrow H^{B}$ such that $\Phi\left(H_{+}^{A}\right)=H_{+}^{B}$. In particular, $\left(\bar{X}_{A}, \bar{\sigma}_{A}\right)$ is flow equivalent to $\left(\bar{X}_{B}, \bar{\sigma}_{B}\right)$.

Proof

Consider the étale groupoids G_{A} and G_{B}. By Theorem 2.3, G_{A} and G_{B} are isomorphic. Let $\varphi: G_{A} \rightarrow G_{B}$ be an isomorphism. For $g \in G_{A}, g$ is attracting in G_{A} if and only if $\varphi(g)$ is attracting in G_{B}. It follows from Proposition 3.4 above that $\left(H^{A}, H_{+}^{A}\right)$ is isomorphic to (H^{B}, H_{+}^{B}). Then, Lemma 3.1 implies that ($\bar{H}^{A}, \bar{H}_{+}^{A}$) is isomorphic to $\left(\bar{H}^{B}, \bar{H}_{+}^{B}\right)$. By Theorem 2.4, $\left(\bar{X}_{A}, \bar{\sigma}_{A}\right)$ is flow equivalent to $\left(\bar{X}_{B}, \bar{\sigma}_{B}\right)$.

THEOREM 3.6

Let $\left(X_{A}, \sigma_{A}\right)$ and $\left(X_{B}, \sigma_{B}\right)$ be two irreducible one-sided topological Markov shifts. The following conditions are equivalent.
(a) $\left(X_{A}, \sigma_{A}\right)$ and $\left(X_{B}, \sigma_{B}\right)$ are continuously orbit equivalent.
(b) The étale groupoids G_{A} and G_{B} are isomorphic.
(c) There exists an isomorphism $\Psi: \mathcal{O}_{A} \rightarrow \mathcal{O}_{B}$ such that $\Psi\left(\mathcal{D}_{A}\right)=\mathcal{D}_{B}$.
(d) \mathcal{O}_{A} is isomorphic to \mathcal{O}_{B} and $\operatorname{sgn}(\operatorname{det}(\operatorname{id}-A))=\operatorname{sgn}(\operatorname{det}(\mathrm{id}-B))$.
(e) There exists an isomorphism $\Phi: \mathrm{BF}\left(A^{t}\right) \rightarrow \mathrm{BF}\left(B^{t}\right)$ such that $\Phi\left(u_{A}\right)=$ u_{B} and $\operatorname{sgn}(\operatorname{det}(\mathrm{id}-A))=\operatorname{sgn}(\operatorname{det}(\mathrm{id}-B))$.

Proof

The equivalence between (a), (b), and (c) is already known (see Theorem 2.3). As mentioned in Section 2.5, $\left(K_{0}\left(\mathcal{O}_{A}\right),[1]\right)$ is isomorphic to $\left(\operatorname{BF}\left(A^{t}\right), u_{A}\right)$, and so $(\mathrm{d}) \Rightarrow(\mathrm{e})$ holds. The implication $(\mathrm{e}) \Rightarrow(\mathrm{a})$ follows from [12, Theorem 1.1].

Suppose that $\left(X_{A}, \sigma_{A}\right)$ and $\left(X_{B}, \sigma_{B}\right)$ are continuously orbit equivalent. It follows from the theorem above that the two-sided topological Markov shifts $\left(\bar{X}_{A}, \bar{\sigma}_{A}\right)$ and $\left(\bar{X}_{B}, \bar{\sigma}_{B}\right)$ are flow equivalent. Therefore, by [17], we have that $\operatorname{det}(\mathrm{id}-A)=\operatorname{det}(\mathrm{id}-B)\left(\right.$ see Theorem 2.6). Since $(\mathrm{a}) \Rightarrow(\mathrm{c})$ is already known, \mathcal{O}_{A} is isomorphic to \mathcal{O}_{B}. Thus we have obtained (d). This completes the proof.

As mentioned in Section 2.5, $\operatorname{det}(\mathrm{id}-A)=0$ when $\operatorname{BF}\left(A^{t}\right)$ is infinite, and $|\operatorname{det}(\mathrm{id}-A)|$ equals the cardinality of $\operatorname{BF}\left(A^{t}\right)$ when $\operatorname{BF}\left(A^{t}\right)$ is finite. Hence, our invariant of the continuous orbit equivalence consists of a finitely generated abelian group F, an element $u \in F$, and $s \in\{-1,0,1\}$ such that F is an infinite group if and only if $s=0$. Conversely, for any such triplet (F, u, s), there exists an irreducible one-sided topological Markov shift whose invariant is equal to (F, u, s). This is probably known to experts, but the authors are not aware of a specific reference and thus include a proof for completeness.

LEMMA 3.7
Let F be a finitely generated abelian group, and let $u \in F$. Let $s=0$ when F is infinite, and let s be either -1 or 1 when F is finite. There exists an irreducible one-sided topological Markov shift $\left(X_{A}, \sigma_{A}\right)$ such that $(F, u) \cong\left(\operatorname{BF}\left(A^{t}\right), u_{A}\right)$ and the sign of $\operatorname{det}(\mathrm{id}-A)$ equals $s \in\{-1,0,1\}$.

Proof
Suppose that we are given (F, u, s). It suffices to find a square irreducible matrix A with entries in \mathbb{Z}_{+}satisfying the desired properties (see [10, Section 2.3] or [5, Remark 2.16]). Let $A=[A(i, j)]_{i, j=1}^{N}$ be an $N \times N$ matrix with entries in \mathbb{Z}_{+}such that $A(1,1)=2, A(i, i) \geq 2$, and $A(i, j)=1$ for all i, j with $i \neq j$. Let $d_{i}=A(i, i)-2$, and let $r=\left|\left\{i \mid d_{i}=0\right\}\right|-1$. Then it is straightforward to see that

$$
\operatorname{BF}\left(A^{t}\right) \cong \mathbb{Z}^{r} \oplus \bigoplus_{d_{i} \geq 2} \mathbb{Z} / d_{i} \mathbb{Z} \quad \text { and } \quad \operatorname{det}(\mathrm{id}-A)=(-1)^{N} \prod_{i=2}^{N} d_{i} .
$$

Therefore we can construct such A so that $\operatorname{BF}\left(A^{t}\right) \cong F$ and the sign of $\operatorname{det}(\mathrm{id}-A)$ equals s. In what follows, we identify $\operatorname{BF}\left(A^{t}\right)$ with F. Note that $u_{A} \in \operatorname{BF}\left(A^{t}\right)$ is zero. Choose $\left(c_{1}, c_{2}, \ldots, c_{N}\right) \in \mathbb{Z}^{N}$ whose equivalence class in $\operatorname{BF}\left(A^{t}\right)$ equals u. Since u_{A} is zero, we may assume that $c_{i} \in \mathbb{Z}_{+}$for all i. We now construct a new matrix B as follows. Set

$$
\Sigma=\left\{(i, j) \in \mathbb{Z}_{+} \times \mathbb{Z}_{+} \mid 1 \leq i \leq N, 0 \leq j \leq c_{i}\right\} .
$$

Define $B=[B((i, j),(k, l))]_{(i, j),(k, l) \in \Sigma}$ by

$$
B((i, j),(k, l))= \begin{cases}A(i, k), & j=c_{i}, l=0 \\ 1, & i=k, j+1=l \\ 0, & \text { otherwise }\end{cases}
$$

The group $\mathrm{BF}\left(A^{t}\right)$ is the abelian group with generators e_{1}, \ldots, e_{N} and relations

$$
e_{i}=\sum_{j=1}^{N} A(i, j) e_{j},
$$

and u equals $\sum c_{i} e_{i}$. The group $\mathrm{BF}\left(B^{t}\right)$ is the abelian group with generators $\left\{f_{i, j} \mid(i, j) \in \Sigma\right\}$ and relations

$$
f_{i, j}=f_{i, j^{\prime}} \quad \text { and } \quad f_{i, c_{i}}=\sum_{k=1}^{N} A(i, k) f_{k, 0},
$$

and u_{B} equals $\sum f_{i, j}$. Hence $\left(\operatorname{BF}\left(A^{t}\right), u\right)$ is isomorphic to $\left(\mathrm{BF}\left(B^{t}\right), u_{B}\right)$. It is also easy to see that $\operatorname{det}(\mathrm{id}-A)=\operatorname{det}(\mathrm{id}-B)$. The proof is completed.

For $i=1,2$, let G_{i} be a minimal essentially principal étale groupoid whose unit space is a Cantor set. It has been shown that the following conditions are mutually
equivalent (see [16, Theorem 3.10]). For a group Γ, we let $D(\Gamma)$ denote the commutator subgroup.

- G_{1} and G_{2} are isomorphic as étale groupoids.
- $\left[\left[G_{1}\right]\right]$ and $\left[\left[G_{2}\right]\right]$ are isomorphic as discrete groups.
- $D\left(\left[\left[G_{1}\right]\right]\right)$ and $D\left(\left[\left[G_{2}\right]\right]\right)$ are isomorphic as discrete groups.

The étale groupoid G_{A} arising from $\left(X_{A}, \sigma_{A}\right)$ is minimal, essentially principal, and purely infinite (see [16, Lemma 6.1]). Hence $D\left(\left[\left[G_{A}\right]\right]\right)$ is simple by [16, Theorem 4.16]. Moreover, $D\left(\left[\left[G_{A}\right]\right]\right)$ is finitely generated (see [16, Corollary 6.25]), $\left[\left[G_{A}\right]\right]$ is of type F_{∞} (see [16, Theorem 6.21]), and $\left[\left[G_{A}\right]\right] / D\left(\left[\left[G_{A}\right]\right]\right)$ is isomorphic to $\left(H_{0}\left(G_{A}\right) \otimes \mathbb{Z}_{2}\right) \oplus H_{1}\left(G_{A}\right)$ (see [16, Corollary 6.24]). Theorem 3.6 tells us that the isomorphism class of $\left[\left[G_{A}\right]\right]$ (and $\left.D\left(\left[\left[G_{A}\right]\right]\right)\right)$ is determined by $\left(H_{0}\left(G_{A}\right),\left[1_{X_{A}}\right], \operatorname{det}(\mathrm{id}-A)\right.$) (see also Theorem 2.7). By Lemma 3.7, for each triplet (F, u, s) there exists $\left(X_{A}, \sigma_{A}\right)$ whose invariant agrees with it. In particular, the simple finitely generated groups $D\left(\left[\left[G_{A}\right]\right]\right)$ are parameterized by such triplets (F, u, s).

We conclude this article by giving a corollary. We denote by \mathbb{K} the C^{*} algebra of all compact operators on $\ell^{2}(\mathbb{Z})$. Let $\mathcal{C} \cong c_{0}(\mathbb{Z})$ be the maximal abelian subalgebra of \mathbb{K} consisting of diagonal operators.

COROLLARY 3.8

Let $\left(\bar{X}_{A}, \bar{\sigma}_{A}\right)$ and $\left(\bar{X}_{B}, \bar{\sigma}_{B}\right)$ be two irreducible two-sided topological Markov shifts. The following conditions are equivalent.
(a) $\left(\bar{X}_{A}, \bar{\sigma}_{A}\right)$ and $\left(\bar{X}_{B}, \bar{\sigma}_{B}\right)$ are flow equivalent.
(b) There exists an isomorphism $\Psi: \mathcal{O}_{A} \otimes \mathbb{K} \rightarrow \mathcal{O}_{B} \otimes \mathbb{K}$ such that $\Psi\left(\mathcal{D}_{A} \otimes\right.$ $\mathcal{C})=\mathcal{D}_{B} \otimes \mathcal{C}$.

Proof

From [5, Theorem 4.1], we know that $(\mathrm{a}) \Rightarrow(\mathrm{b})$. Let us assume (b). In what follows, we identify the Bowen-Franks group with the K_{0}-group of the CuntzKrieger algebra. We have the isomorphism $K_{0}(\Psi): \mathrm{BF}\left(A^{t}\right) \rightarrow \mathrm{BF}\left(B^{t}\right)$. By Lemma 3.7, there exists an irreducible one-sided topological Markov shift $\left(X_{C}, \sigma_{C}\right)$ such that $\left(\operatorname{BF}\left(B^{t}\right), K_{0}(\Psi)\left(u_{A}\right)\right) \cong\left(\mathrm{BF}\left(C^{t}\right), u_{C}\right)$ and $\operatorname{det}(\mathrm{id}-B)=\operatorname{det}(\mathrm{id}-C)$. It follows from Theorem 2.6 that $\left(\bar{X}_{B}, \bar{\sigma}_{B}\right)$ is flow equivalent to ($\bar{X}_{C}, \bar{\sigma}_{C}$). Moreover, by Huang's theorem (see [8, Theorem 2.15]) and its proof, there exists an isomorphism $\Phi: \mathcal{O}_{B} \otimes \mathbb{K} \rightarrow \mathcal{O}_{C} \otimes \mathbb{K}$ such that $\Phi\left(\mathcal{D}_{B} \otimes \mathcal{C}\right)=\mathcal{D}_{C} \otimes \mathcal{C}$ and $K_{0}(\Phi)\left(K_{0}(\Psi)\left(u_{A}\right)\right)=u_{C}$. Then $\Phi \circ \Psi$ is an isomorphism from $\mathcal{O}_{A} \otimes \mathbb{K}$ to $\mathcal{O}_{C} \otimes \mathbb{K}$ such that $(\Phi \circ \Psi)\left(\mathcal{D}_{A} \otimes \mathcal{C}\right)=\mathcal{D}_{C} \otimes \mathcal{C}$ and $K_{0}(\Phi \circ \Psi)\left(u_{A}\right)=u_{C}$. In the same way as the proof of [12, Theorem 4.1], we can conclude that $\left(\mathcal{O}_{A}, \mathcal{D}_{A}\right)$ is isomorphic to $\left(\mathcal{O}_{C}, \mathcal{D}_{C}\right)$. By virtue of Theorem 3.6, we get that $\operatorname{det}(\mathrm{id}-A)=\operatorname{det}(\mathrm{id}-C)$. Therefore $\operatorname{det}(\mathrm{id}-A)=\operatorname{det}(\mathrm{id}-B)$. Hence, by Theorem 2.6, $\left(\bar{X}_{A}, \bar{\sigma}_{A}\right)$ and $\left(\bar{X}_{B}, \bar{\sigma}_{B}\right)$ are flow equivalent.

References

[1] R. Bowen and J. Franks, Homology for zero-dimensional nonwandering sets, Ann. of Math. (2) 106 (1977), 73-92. MR 0458492.
[2] M. Boyle and D. Handelman, Orbit equivalence, flow equivalence and ordered cohomology, Israel J. Math. 95 (1996), 169-210. MR 1418293.
DOI 10.1007/BF02761039.
[3] M. Boyle and J. Tomiyama, Bounded topological orbit equivalence and C^{*}-algebras, J. Math. Soc. Japan 50 (1998), 317-329. MR 1613140. DOI 10.2969/jmsj/05020317.
[4] J. Cuntz, A class of C^{*}-algebras and topological Markov chains, II: Reducible chains and the Ext-functor for C^{*}-algebras, Invent. Math. 63 (1981), 25-40. MR 0608527. DOI 10.1007/BF01389192.
[5] J. Cuntz and W. Krieger, A class of C^{*}-algebras and topological Markov chains, Invent. Math. 56 (1980), 251-268. MR 0561974. DOI 10.1007/BF01390048.
[6] J. Franks, Flow equivalence of subshifts of finite type, Ergodic Theory Dynam. Systems 4 (1984), 53-66. MR 0758893. DOI 10.1017/S0143385700002261.
[7] T. Giordano, I. F. Putnam, and C. F. Skau, Topological orbit equivalence and C^{*}-crossed products, J. Reine Angew. Math. 469 (1995), 51-111. MR 1363826.
[8] D. Huang, Flow equivalence of reducible shifts of finite type, Ergodic Theory Dynam. Systems 14 (1994), 695-720. MR 1304139. DOI 10.1017/S0143385700008129.
[9] , Flow equivalence of reducible shifts of finite type and Cuntz-Krieger algebras, J. Reine Angew. Math. 462 (1995), 185-217. MR 1329907. DOI 10.1515/crll. 1995.462.185.
[10] D. Lind and B. Marcus, An Introduction to Symbolic Dynamics and Coding, Cambridge Univ. Press, Cambridge, 1995. MR 1369092. DOI 10.1017/CBO9780511626302.
[11] K. Matsumoto, Orbit equivalence of topological Markov shifts and Cuntz-Krieger algebras, Pacific J. Math. 246 (2010), 199-225. MR 2645883. DOI 10.2140/pjm.2010.246.199.
[12] , Classification of Cuntz-Krieger algebras by orbit equivalence of topological Markov shifts, Proc. Amer. Math. Soc. 141 (2013), 2329-2342. MR 3043014. DOI 10.1090/S0002-9939-2013-11519-4.
[13] , K-groups of the full group actions on one-sided topological Markov shifts, Discrete Contin. Dyn. Syst. 33 (2013), 3753-3765. MR 3021379. DOI 10.3934/dcds.2013.33.3753.
[14] , Full groups of one-sided topological Markov shifts, preprint, arXiv:1205.1320v1 [math.OA].
[15] H. Matui, Homology and topological full groups of étale groupoids on totally disconnected spaces, Proc. Lond. Math. Soc. (3) 104 (2012), 27-56.
MR 2876963. DOI $10.1112 /$ plms/pdr029.
[16] , Topological full groups of one-sided shifts of finite type, J. Reine Angew. Math., published electronically 23 July 2013. DOI $10.1515 /$ crelle-2013-0041.
[17] W. Parry and D. Sullivan, A topological invariant of flows on 1-dimensional spaces, Topology 14 (1975), 297-299. MR 0405385.
[18] J. Renault, Cartan subalgebras in C^{*}-algebras, Irish Math. Soc. Bull. 61 (2008), 29-63. MR 2460017.
[19] M. Rørdam, Classification of Cuntz-Krieger algebras, K-Theory 9 (1995), 31-58. MR 1340839. DOI 10.1007/BF00965458.
[20] J. Tomiyama, Topological full groups and structure of normalizers in transformation group C^{*}-algebras, Pacific J. Math. 173 (1996), 571-583. MR 1394406.

Matsumoto: Department of Mathematics, Joetsu University of Education, Joetsu, Niigata 943-8512, Japan; kengo@juen.ac.jp

Matui: Graduate School of Science, Chiba University, Inage-ku, Chiba 263-8522, Japan; matui@math.s.chiba-u.ac.jp

